Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,823)

Search Parameters:
Keywords = calibrated models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 492 KiB  
Article
Caries Rates in Different School Environments Among Older Adolescents: A Cross-Sectional Study in Northeast Germany
by Ahmad Al Masri, Christian H. Splieth, Christiane Pink, Shereen Younus, Mohammad Alkilzy, Annina Vielhauer, Maria Abdin, Roger Basner and Mhd Said Mourad
Children 2025, 12(8), 1014; https://doi.org/10.3390/children12081014 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Educational background is an aspect of socio-economic status, that may be associated with higher caries risk. This study aimed to investigate differences in caries prevalence between different school types for older adolescents in Greifswald, Germany. Methods: Cross-sectional data were collected as part [...] Read more.
Background/Objectives: Educational background is an aspect of socio-economic status, that may be associated with higher caries risk. This study aimed to investigate differences in caries prevalence between different school types for older adolescents in Greifswald, Germany. Methods: Cross-sectional data were collected as part of compulsory dental school examinations between 2020 and 2023. Oral health status was assessed according to WHO criteria by six calibrated examiners and reported as mean D3MFT (D3: dentin caries, M: missing, F: filled, SD/±: standard deviation). To compare educational backgrounds, the adolescents were divided into two groups according to their age and type of school (11–15 and 16–18 years old). Results: The study included 5816 adolescents (48.7% females) with a mean D3MFT of 0.65 (Q1–Q3: 0–1); 73.8% were clinically caries-free, having D3MFT = 0, confirming the polarization in caries experience with 2.5 ± 2.13 SaC index. The logistic regression model showed a significantly increased Odds Ratio for having caries in relation to age, being male, having plaque or gingivitis (p < 0.005). There were significant differences in caries experience and prevalence between school types, where high schools had the lowest D3MFT values in both age groups (0.39 ± 1.17 and 0.64 ± 1.49, respectively). The highest D3MFT values were in schools for special educational needs in younger adolescents (1.12 ± 1.9) and in vocational schools in older adolescents (1.63 ± 2.55). Conclusions: In a low-caries-risk population, there were significant differences in caries experience and prevalence among adolescents in different school types. Prevention strategies should aim to reduce the polarization in caries across different educational backgrounds in late adolescence. Full article
Show Figures

Figure 1

26 pages, 25034 KiB  
Article
Research on Underwater Laser Communication Channel Attenuation Model Analysis and Calibration Device
by Wenyu Cai, Hengmei Wang, Meiyan Zhang and Yu Wang
J. Mar. Sci. Eng. 2025, 13(8), 1483; https://doi.org/10.3390/jmse13081483 (registering DOI) - 31 Jul 2025
Abstract
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, [...] Read more.
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, so as to explore the transmission influence mechanism under typical water quality environments. On this basis, a system of in situ measurements for underwater laser channel attenuation is designed and constructed, and several sets of experiments are carried out to verify the rationality and applicability of the model. The collected experimental data are denoised by the fusion of wavelet analysis and adaptive Kalman filtering (DWT-AKF in short) algorithm, and compared with the data measured by an underwater hyperspectral Absorption Coefficient Spectrophotometer (ACS in short), which shows that the channel attenuation coefficients of the model inversion and the measured values are in high agreement. The research results provide a reliable theoretical basis and experimental support for the performance optimization and engineering design of the underwater laser communication system. Full article
(This article belongs to the Section Ocean Engineering)
40 pages, 6840 KiB  
Article
Distributionally Robust Multivariate Stochastic Cone Order Portfolio Optimization: Theory and Evidence from Borsa Istanbul
by Larissa Margerata Batrancea, Mehmet Ali Balcı, Ömer Akgüller and Lucian Gaban
Mathematics 2025, 13(15), 2473; https://doi.org/10.3390/math13152473 (registering DOI) - 31 Jul 2025
Abstract
We introduce a novel portfolio optimization framework—Distributionally Robust Multivariate Stochastic Cone Order (DR-MSCO)—which integrates partial orders on random vectors with Wasserstein-metric ambiguity sets and adaptive cone structures to model multivariate investor preferences under distributional uncertainty. Grounded in measure theory and convex analysis, DR-MSCO [...] Read more.
We introduce a novel portfolio optimization framework—Distributionally Robust Multivariate Stochastic Cone Order (DR-MSCO)—which integrates partial orders on random vectors with Wasserstein-metric ambiguity sets and adaptive cone structures to model multivariate investor preferences under distributional uncertainty. Grounded in measure theory and convex analysis, DR-MSCO employs data-driven cone selection calibrated to market regimes, along with coherent tail-risk operators that generalize Conditional Value-at-Risk to the multivariate setting. We derive a tractable second-order cone programming reformulation and demonstrate statistical consistency under empirical ambiguity sets. Empirically, we apply DR-MSCO to 23 Borsa Istanbul equities from 2021–2024, using a rolling estimation window and realistic transaction costs. Compared to classical mean–variance and standard distributionally robust benchmarks, DR-MSCO achieves higher overall and crisis-period Sharpe ratios (2.18 vs. 2.09 full sample; 0.95 vs. 0.69 during crises), reduces maximum drawdown by 10%, and yields endogenous diversification without exogenous constraints. Our results underscore the practical benefits of combining multivariate preference modeling with distributional robustness, offering institutional investors a tractable tool for resilient portfolio construction in volatile emerging markets. Full article
(This article belongs to the Special Issue Modern Trends in Mathematics, Probability and Statistics for Finance)
23 pages, 1447 KiB  
Article
Modeling the Higher Heating Value of Spanish Biomass via Neural Networks and Analytical Equations
by Anbarasan Jayapal, Fernando Ordonez Morales, Muhammad Ishtiaq, Se Yun Kim and Nagireddy Gari Subba Reddy
Energies 2025, 18(15), 4067; https://doi.org/10.3390/en18154067 (registering DOI) - 31 Jul 2025
Abstract
Accurate estimation of biomass higher heating value (HHV) is crucial for designing efficient bioenergy systems. In this study, we developed a Backpropagation artificial neural network (ANN) that predicts HHV from routine proximate/ultimate composition data. The network (9-6-6-1 architecture, trained for 15,000 epochs with [...] Read more.
Accurate estimation of biomass higher heating value (HHV) is crucial for designing efficient bioenergy systems. In this study, we developed a Backpropagation artificial neural network (ANN) that predicts HHV from routine proximate/ultimate composition data. The network (9-6-6-1 architecture, trained for 15,000 epochs with learning rate 0.3 and momentum 0.4) was calibrated on 99 diverse Spanish biomass samples (inputs: moisture, ash, volatile matter, fixed carbon, C, H, O, N, S). The optimized ANN achieved strong predictive accuracy (validation R2 ≈ 0.81; mean squared error ≈ 1.33 MJ/kg; MAE ≈ 0.77 MJ/kg), representing a substantial improvement over 54 analytical models despite the known complexity and variability of biomass composition. Importantly, in direct comparisons it significantly outperformed 54 published analytical HHV correlations—the ANN achieved substantially higher R2 and lower prediction error than any fixed-form formula in the literature. A sensitivity analysis confirmed chemically intuitive trends (higher C/H/FC increase HHV; higher moisture/ash/O reduce it), indicating the model learned meaningful fuel-property relationships. The ANN thus provided a computationally efficient and robust tool for rapid, accurate HHV estimation from compositional data. Future work will expand the dataset, incorporate thermal pretreatment effects, and integrate the model into a user-friendly decision-support platform for bioenergy applications. Full article
31 pages, 18320 KiB  
Article
Penetrating Radar on Unmanned Aerial Vehicle for the Inspection of Civilian Infrastructure: System Design, Modeling, and Analysis
by Jorge Luis Alva Alarcon, Yan Rockee Zhang, Hernan Suarez, Anas Amaireh and Kegan Reynolds
Aerospace 2025, 12(8), 686; https://doi.org/10.3390/aerospace12080686 (registering DOI) - 31 Jul 2025
Abstract
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, [...] Read more.
The increasing demand for noninvasive inspection (NII) of complex civil infrastructures requires overcoming the limitations of traditional ground-penetrating radar (GPR) systems in addressing diverse and large-scale applications. The solution proposed in this study focuses on an initial design that integrates a low-SWaP (Size, Weight, and Power) ultra-wideband (UWB) impulse radar with realistic electromagnetic modeling for deployment on unmanned aerial vehicles (UAVs). The system incorporates ultra-realistic antenna and propagation models, utilizing Finite Difference Time Domain (FDTD) solvers and multilayered media, to replicate realistic airborne sensing geometries. Verification and calibration are performed by comparing simulation outputs with laboratory measurements using varied material samples and target models. Custom signal processing algorithms are developed to extract meaningful features from complex electromagnetic environments and support anomaly detection. Additionally, machine learning (ML) techniques are trained on synthetic data to automate the identification of structural characteristics. The results demonstrate accurate agreement between simulations and measurements, as well as the potential for deploying this design in flight tests within realistic environments featuring complex electromagnetic interference. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 1486 KiB  
Article
Evaluation of Miscible Gas Injection Strategies for Enhanced Oil Recovery in High-Salinity Reservoirs
by Mohamed Metwally and Emmanuel Gyimah
Processes 2025, 13(8), 2429; https://doi.org/10.3390/pr13082429 (registering DOI) - 31 Jul 2025
Abstract
This study presents a comprehensive evaluation of miscible gas injection (MGI) strategies for enhanced oil recovery (EOR) in high-salinity reservoirs, with a focus on the Raleigh Oil Field. Using a calibrated Equation of State (EOS) model in CMG WinProp™, eight gas injection scenarios [...] Read more.
This study presents a comprehensive evaluation of miscible gas injection (MGI) strategies for enhanced oil recovery (EOR) in high-salinity reservoirs, with a focus on the Raleigh Oil Field. Using a calibrated Equation of State (EOS) model in CMG WinProp™, eight gas injection scenarios were simulated to assess phase behavior, miscibility, and swelling factors. The results indicate that carbon dioxide (CO2) and enriched separator gas offer the most technically and economically viable options, with CO2 demonstrating superior swelling performance and lower miscibility pressure requirements. The findings underscore the potential of CO2-EOR as a sustainable and effective recovery method in pressure-depleted, high-salinity environments. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

17 pages, 920 KiB  
Article
Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning
by Tsung-Jung Tsai, Kun-Hua Lee, Chu-Kuang Chou, Riya Karmakar, Arvind Mukundan, Tsung-Hsien Chen, Devansh Gupta, Gargi Ghosh, Tao-Yuan Liu and Hsiang-Chen Wang
Bioengineering 2025, 12(8), 828; https://doi.org/10.3390/bioengineering12080828 - 30 Jul 2025
Abstract
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision [...] Read more.
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision Enhancer (SAVE), an innovative, software-driven framework that transforms standard WLI into high-fidelity hyperspectral imaging (HSI) and simulated narrow-band imaging (NBI) without any hardware modification. SAVE leverages advanced spectral reconstruction techniques, including Macbeth Color Checker-based calibration, principal component analysis (PCA), and multivariate polynomial regression, achieving a root mean square error (RMSE) of 0.056 and structural similarity index (SSIM) exceeding 90%. Trained and validated on the Kvasir v2 dataset (n = 6490) using deep learning models like ResNet-50, ResNet-101, EfficientNet-B2, both EfficientNet-B5 and EfficientNetV2-B0 were used to assess diagnostic performance across six key GI conditions. Results demonstrated that SAVE enhanced imagery and consistently outperformed raw WLI across precision, recall, and F1-score metrics, with EfficientNet-B2 and EfficientNetV2-B0 achieving the highest classification accuracy. Notably, this performance gain was achieved without the need for specialized imaging hardware. These findings highlight SAVE as a transformative solution for augmenting GI diagnostics, with the potential to significantly improve early detection, streamline clinical workflows, and broaden access to advanced imaging especially in resource constrained settings. Full article
Show Figures

Figure 1

14 pages, 2727 KiB  
Article
A Multimodal MRI-Based Model for Colorectal Liver Metastasis Prediction: Integrating Radiomics, Deep Learning, and Clinical Features with SHAP Interpretation
by Xin Yan, Furui Duan, Lu Chen, Runhong Wang, Kexin Li, Qiao Sun and Kuang Fu
Curr. Oncol. 2025, 32(8), 431; https://doi.org/10.3390/curroncol32080431 - 30 Jul 2025
Abstract
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through [...] Read more.
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through SHapley Additive exPlanations (SHAP) analysis and deep learning visualization. Methods: This multicenter retrospective study included 463 patients with pathologically confirmed colorectal cancer from two institutions, divided into training (n = 256), internal testing (n = 111), and external validation (n = 96) sets. Radiomics features were extracted from manually segmented regions on axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI). Deep learning features were obtained from a pretrained ResNet101 network using the same MRI inputs. A least absolute shrinkage and selection operator (LASSO) logistic regression classifier was developed for clinical, radiomics, deep learning, and combined models. Model performance was evaluated by AUC, sensitivity, specificity, and F1-score. SHAP was used to assess feature contributions, and Grad-CAM was applied to visualize deep feature attention. Results: The combined model integrating features across the three modalities achieved the highest performance across all datasets, with AUCs of 0.889 (training), 0.838 (internal test), and 0.822 (external validation), outperforming single-modality models. Decision curve analysis (DCA) revealed enhanced clinical net benefit from the integrated model, while calibration curves confirmed its good predictive consistency. SHAP analysis revealed that radiomic features related to T2WI texture (e.g., LargeDependenceLowGrayLevelEmphasis) and clinical biomarkers (e.g., CA19-9) were among the most predictive for CRLM. Grad-CAM visualizations confirmed that the deep learning model focused on tumor regions consistent with radiological interpretation. Conclusions: This study presents a robust and interpretable multiparametric MRI-based model for noninvasively predicting liver metastasis in colorectal cancer patients. By integrating handcrafted radiomics and deep learning features, and enhancing transparency through SHAP and Grad-CAM, the model provides both high predictive performance and clinically meaningful explanations. These findings highlight its potential value as a decision-support tool for individualized risk assessment and treatment planning in the management of colorectal cancer. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Graphical abstract

16 pages, 2242 KiB  
Article
Comparative Effectiveness of Tunneling vs. Coronally Advanced Flap Techniques for Root Coverage: A 6–12-Month Randomized Clinical Trial
by Luis Chauca-Bajaña, Pedro Samuel Vásquez González, María José Alban Guijarro, Carlos Andrés Guim Martínez, Byron Velásquez Ron, Patricio Proaño Yela, Alejandro Ismael Lorenzo-Pouso, Alba Pérez-Jardón and Andrea Ordoñez Balladares
Bioengineering 2025, 12(8), 824; https://doi.org/10.3390/bioengineering12080824 - 30 Jul 2025
Abstract
Background: Gingival recession is a common condition involving apical displacement of the gingival margin, leading to root surface exposure and associated complications such as dentin hypersensitivity and root caries. Among the most effective treatment options are the tunneling technique (TUN) and the coronally [...] Read more.
Background: Gingival recession is a common condition involving apical displacement of the gingival margin, leading to root surface exposure and associated complications such as dentin hypersensitivity and root caries. Among the most effective treatment options are the tunneling technique (TUN) and the coronally advanced flap (CAF), both combined with connective tissue grafts (CTGs). This study aimed to evaluate and compare the clinical outcomes of TUN + CTG and CAF + CTG in terms of root coverage and keratinized tissue width (KTW) over a 6–12-month follow-up. Methods: A randomized, double-blind clinical trial was conducted following CONSORT guidelines (ClinicalTrials.gov ID: NCT06228534). Participants were randomly assigned to receive either TUN + CTG or CAF + CTG. Clinical parameters, including gingival recession depth (REC) and KTW, were assessed at baseline as well as 6 months and 12 months postoperatively using a calibrated periodontal probe. Statistical analysis was performed using descriptive statistics and linear mixed models to compare outcomes over time, with a significance level set at 5%. Results: Both techniques demonstrated significant clinical improvements. At 6 months, mean root coverage was 100% in CAF + CTG cases and 97% in TUN + CTG cases, while complete root coverage (REC = 0) was observed in 100% and 89% of cases, respectively. At 12 months, root coverage remained stable, at 99% in the CAF + CTG group and 97% in the TUN + CTG group. KTW increased in both groups, with higher values observed in the CAF + CTG group (3.53 mm vs. 3.11 mm in TUN + CTG at 12 months). No significant postoperative complications were reported. Conclusions: Both TUN + CTG and CAF + CTG are safe and effective techniques for treating RT1 and RT2 gingival recession, offering high percentages of root coverage and increased KTW. While CAF + CTG achieved slightly superior coverage and tissue gain, the TUN was associated with better aesthetic outcomes and faster recovery, making it a valuable alternative in clinical practice. Full article
(This article belongs to the Special Issue Biomaterials and Technology for Oral and Dental Health)
Show Figures

Figure 1

35 pages, 8044 KiB  
Article
Transboundary Water–Energy–Food Nexus Management in Major Rivers of the Aral Sea Basin Through System Dynamics Modelling
by Sara Pérez Pérez, Iván Ramos-Diez and Raquel López Fernández
Water 2025, 17(15), 2270; https://doi.org/10.3390/w17152270 - 30 Jul 2025
Abstract
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the [...] Read more.
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the Aral Sea Basin (ASB), including the Amu Darya and Syr Darya river basins and their sub-basins. Different downscaling strategies based on the area, population, or land use have been applied to process open-access databases at the national level in order to match the scope of the study. Climate and socio-economic assumptions were introduced through the integration of already defined Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). The resulting SDM incorporates more than 500 variables interacting through mathematical relationships to generate comprehensive outputs to understand the WEF Nexus concerns. The SDM was successfully calibrated and validated across three key dimensions of the WEF Nexus: final water discharge to the Aral Sea (Mean Absolute Error, MAE, <5%), energy balance (MAE = 4.6%), and agricultural water demand (basin-wide MAE = 1.2%). The results underscore the human-driven variability of inflows to the Aral Sea and highlight the critical importance of transboundary coordination to enhance future resilience. Full article
Show Figures

Figure 1

25 pages, 2761 KiB  
Article
Leveraging Deep Learning, Grid Search, and Bayesian Networks to Predict Distant Recurrence of Breast Cancer
by Xia Jiang, Yijun Zhou, Alan Wells and Adam Brufsky
Cancers 2025, 17(15), 2515; https://doi.org/10.3390/cancers17152515 - 30 Jul 2025
Abstract
Background: Unlike most cancers, breast cancer poses a persistent risk of distant recurrence—often years after initial treatment—making long-term risk stratification uniquely challenging. Current tools fall short in predicting late metastatic events, particularly for early-stage patients. Methods: We present an interpretable machine [...] Read more.
Background: Unlike most cancers, breast cancer poses a persistent risk of distant recurrence—often years after initial treatment—making long-term risk stratification uniquely challenging. Current tools fall short in predicting late metastatic events, particularly for early-stage patients. Methods: We present an interpretable machine learning (ML) pipeline to predict distant recurrence-free survival at 5, 10, and 15 years, integrating Bayesian network-based causal feature selection, deep feed-forward neural network models (DNMs), and SHAP-based interpretation. Using electronic health record (EHR)-based clinical data from over 6000 patients, we first applied the Markov blanket and interactive risk factor learner (MBIL) to identify minimally sufficient predictor subsets. These were then used to train optimized DNM classifiers, with hyperparameters tuned via grid search and benchmarked against models from 10 traditional ML methods and models trained using all predictors. Results: Our best models achieved area under the curve (AUC) scores of 0.79, 0.83, and 0.89 for 5-, 10-, and 15-year predictions, respectively—substantially outperforming baselines. MBIL reduced input dimensionality by over 80% without sacrificing accuracy. Importantly, MBIL-selected features (e.g., nodal status, hormone receptor expression, tumor size) overlapped strongly with top SHAP contributors, reinforcing interpretability. Calibration plots further demonstrated close agreement between predicted probabilities and observed recurrence rates. The percentage performance improvement due to grid search ranged from 25.3% to 60%. Conclusions: This study demonstrates that combining causal selection, deep learning, and grid search improves prediction accuracy, transparency, and calibration for long-horizon breast cancer recurrence risk. The proposed framework is well-positioned for clinical use, especially to guide long-term follow-up and therapy decisions in early-stage patients. Full article
(This article belongs to the Special Issue AI-Based Applications in Cancers)
Show Figures

Figure 1

13 pages, 777 KiB  
Article
Nomogram Development and Feature Selection Strategy Comparison for Predicting Surgical Site Infection After Lower Extremity Fracture Surgery
by Humam Baki and Atilla Sancar Parmaksızoğlu
Medicina 2025, 61(8), 1378; https://doi.org/10.3390/medicina61081378 - 30 Jul 2025
Abstract
Background and Objectives: Surgical site infections (SSIs) are a frequent complication after lower extremity fracture surgery, yet tools for individualized risk prediction remain limited. This study aimed to develop and internally validate a nomogram for individualized SSI risk prediction based on perioperative [...] Read more.
Background and Objectives: Surgical site infections (SSIs) are a frequent complication after lower extremity fracture surgery, yet tools for individualized risk prediction remain limited. This study aimed to develop and internally validate a nomogram for individualized SSI risk prediction based on perioperative clinical parameters. Materials and Methods: This retrospective cohort study included adults who underwent lower extremity fracture surgery between 2022 and 2025 at a tertiary care center. Thirty candidate predictors were evaluated. Feature selection was performed using six strategies, and the final model was developed with logistic regression based on bootstrap inclusion frequency. Model performance was assessed by area under the curve, calibration slope, Brier score, sensitivity, and specificity. Results: Among 638 patients undergoing lower extremity fracture surgery, 76 (11.9%) developed SSIs. Of six feature selection strategies compared, bootstrap inclusion frequency identified seven predictors: red blood cell count, preoperative C-reactive protein, chronic kidney disease, operative time, chronic obstructive pulmonary disease, body mass index, and blood transfusion. The final model demonstrated an AUROC of 0.924 (95% CI, 0.876–0.973), a calibration slope of 1.03, and a Brier score of 0.0602. Sensitivity was 86.2% (95% CI, 69.4–94.5) and specificity was 89.5% (95% CI, 83.8–93.3). Chronic kidney disease (OR, 88.75; 95% CI, 5.51–1428.80) and blood transfusion (OR, 85.07; 95% CI, 11.69–619.09) were the strongest predictors of infection. Conclusions: The developed nomogram demonstrates strong predictive performance and may support personalized SSI risk assessment in patients undergoing lower extremity fracture surgery. Full article
(This article belongs to the Special Issue Evaluation, Management, and Outcomes in Perioperative Medicine)
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Hydrological Responses to Territorial Spatial Change in the Xitiaoxi River Basin: A Simulation Study Using the SWAT Model Driven by China Meteorological Assimilation Driving Datasets
by Dongyan Kong, Huiguang Chen and Kongsen Wu
Water 2025, 17(15), 2267; https://doi.org/10.3390/w17152267 - 30 Jul 2025
Abstract
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined [...] Read more.
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined multi-source data such as DEM, soil texture and land use type, in order to construct scenarios of territorial spatial change (TSC) across distinct periods. Based on the CMADS-L40 data and the SWAT model, it simulated the runoff dynamics in the Xitiaoxi River Basin, and analyzed the hydrological response characteristics under different TSCs. The results showed that The SWAT model, driven by CMADS-L40 data, demonstrated robust performance in monthly runoff simulation. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the absolute value of percentage bias (|PBIAS|) during the calibration and validation period all met the accuracy requirements of the model, which validated the applicability of CMADS-L40 data and the SWAT model for runoff simulation at the watershed scale. Changes in territorial spatial patterns are closely correlated with runoff variation. Changes in agricultural production space and forest ecological space show statistically significant negative correlation with runoff change, while industrial production space change exhibits a significant positive correlation with runoff change. The expansion of production space, particularly industrial production space, leads to increased runoff, whereas the enlargement of agricultural production space and forest ecological space can reduce runoff. This article contributes to highlighting the role of land use policy in hydrological regulation, providing a scientific basis for optimizing territorial spatial planning to mitigate flood risks and protect water resources. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

14 pages, 17389 KiB  
Article
A Distortion Image Correction Method for Wide-Angle Cameras Based on Track Visual Detection
by Quanxin Liu, Xiang Sun and Yuanyuan Peng
Photonics 2025, 12(8), 767; https://doi.org/10.3390/photonics12080767 - 30 Jul 2025
Abstract
Regarding the distortion correction problem of large field of view wide-angle cameras commonly used in railway visual inspection systems, this paper proposes a novel online calibration method for non-specially made cooperative calibration objects. Based on the radial distortion divisor model, first, the spatial [...] Read more.
Regarding the distortion correction problem of large field of view wide-angle cameras commonly used in railway visual inspection systems, this paper proposes a novel online calibration method for non-specially made cooperative calibration objects. Based on the radial distortion divisor model, first, the spatial coordinates of natural spatial landmark points are constructed according to the known track gauge value between two parallel rails and the spacing value between sleepers. By using the image coordinate relationships corresponding to these spatial coordinates, the coordinates of the distortion center point are solved according to the radial distortion fundamental matrix. Then, a constraint equation is constructed based on the collinear constraint of vanishing points in railway images, and the Levenberg–Marquardt algorithm is used to found the radial distortion coefficients. Moreover, the distortion coefficients and the coordinates of the distortion center are re-optimized according to the least squares method (LSM) between points and the fitted straight line. Finally, based on the above, the distortion correction is carried out for the distorted railway images captured by the camera. The experimental results show that the above method can efficiently and accurately perform online distortion correction for large field of view wide-angle cameras used in railway inspection without the participation of specially made cooperative calibration objects. The whole method is simple and easy to implement, with high correction accuracy, and is suitable for the rapid distortion correction of camera images in railway online visual inspection. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

Back to TopTop