Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = calcarenite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2245 KiB  
Article
XPS Monitoring of Calcarenite Building Walls Long Exposed Outdoors: Estimation of Deterioration Trend from the Time Sequence of Curve-Fitted Spectra and PCA Exploration of the Large Dataset
by Maria A. Acquavia, Francesco Cardellicchio, Mariangela Curcio, Fausto Langerame, Anna M. Salvi, Laura Scrano and Carmen Tesoro
Appl. Sci. 2025, 15(14), 7741; https://doi.org/10.3390/app15147741 - 10 Jul 2025
Viewed by 207
Abstract
A temporal monitoring of monumental buildings in calcarenite, exposed outdoors in the considered Mediterranean environment of Southern Italy, was performed using XPS, the surface-specific technique. The methodology adopted to monitor the surfaces interacting with atmospheric agents and biotic/abiotic pollutants involved progressive sampling, extended [...] Read more.
A temporal monitoring of monumental buildings in calcarenite, exposed outdoors in the considered Mediterranean environment of Southern Italy, was performed using XPS, the surface-specific technique. The methodology adopted to monitor the surfaces interacting with atmospheric agents and biotic/abiotic pollutants involved progressive sampling, extended to about five years, from the walls of a new building, specifically installed in the immediate vicinity of an ancient farmhouse in an advanced state of degradation. Taking the ancient building as the final temporal reference, the aim was to obtain adequate information on the degradation processes of calcarenitic stones, from the initial and evolving phases of the new building towards those representative of the old reference. A large set of XPS data was obtained by resolving, through curve-fitting, the acquired spectra into component peaks, identified as ‘indicator’ chemical groups, which trend as a function of time, supported by PCA, demonstrates a close compositional similarity between the samples of the new building analyzed after 52 months from its installation and those of the ancient building dating back to over a century ago. The results obtained can be considered in the diagnostic strategy of the ongoing PNRR programs dedicated to the care of historical monuments and ecosystem sustainability. Full article
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 758
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

23 pages, 8131 KiB  
Article
Marés Stone and Structural Slenderness: A Material-Based Diagnostic Study of Palma Cathedral
by Rubén Rodríguez Elizalde
Constr. Mater. 2025, 5(2), 41; https://doi.org/10.3390/constrmater5020041 - 18 Jun 2025
Viewed by 354
Abstract
The Palma Cathedral, a landmark of Mediterranean Gothic architecture, features some of the most structurally daring slender piers in European ecclesiastical design. This study examines the role of marés stone—a local marine calcarenite—in enabling such architectural feats despite its inherent fragility. A multi-technique, [...] Read more.
The Palma Cathedral, a landmark of Mediterranean Gothic architecture, features some of the most structurally daring slender piers in European ecclesiastical design. This study examines the role of marés stone—a local marine calcarenite—in enabling such architectural feats despite its inherent fragility. A multi-technique, non-invasive diagnostic campaign was conducted, including visual inspection, portable microscopy, and infrared thermography, to evaluate the physical condition and behavior of the stone under structural and environmental stress. The results reveal widespread deterioration processes—granular disintegration, alveolization, biological colonization, and structural cracking—exacerbated by the stone’s high porosity and exposure to marine aerosols and thermal fluctuations. Thermographic analysis highlighted moisture retention zones and hidden material discontinuities, while crack monitoring confirmed long-standing, localized structural strain. These findings demonstrate that the Cathedral’s formal audacity was grounded in a refined empirical understanding of marés’ properties. The study underscores the importance of material-based diagnostics for the sustainable conservation of Gothic heritage architecture. Full article
Show Figures

Figure 1

11 pages, 1669 KiB  
Article
Predicting the Influence of Climate Change on the Deterioration of Heritage Building Materials Using Photogrammetric Observations
by Luisa Hdz-Gil, Luisa María Gil-Martín, Paz Fernández and Enrique Hernández-Montes
Appl. Sci. 2025, 15(11), 6232; https://doi.org/10.3390/app15116232 - 1 Jun 2025
Viewed by 395
Abstract
This study presents a predictive model for the surface deterioration of construction materials exposed to climatic conditions. The model is applied to Santa Pudia calcarenite, the primary construction material used in the heritage buildings of Granada, Spain. Input data on material recession was [...] Read more.
This study presents a predictive model for the surface deterioration of construction materials exposed to climatic conditions. The model is applied to Santa Pudia calcarenite, the primary construction material used in the heritage buildings of Granada, Spain. Input data on material recession was obtained by using photogrammetric observations. Deterioration was measured in three heritage buildings located in different climatic zones. The methodology proposed enables the deterioration rate of building materials under specific climate conditions to be estimated by exclusively using photogrammetric data. The method was also validated in laboratory tests. The results can be applied to structural analysis and the long-term assessment of cultural heritage vulnerability in the context of future climate change. Notably, the findings indicate that in the case of Santa Pudia calcarenite, global warming slows down the deterioration process. Full article
(This article belongs to the Special Issue Application of Digital Technology in Cultural Heritage)
Show Figures

Figure 1

20 pages, 10940 KiB  
Article
Evaluating Urban Heat Island Mitigation Policies in Heritage Settings: An Integrated Analysis of Matera
by Juana Perlaza, Vito D. Porcari and Carmen Fattore
Sustainability 2025, 17(10), 4374; https://doi.org/10.3390/su17104374 - 12 May 2025
Viewed by 655
Abstract
This study investigates the environmental parameters that contribute to the Urban Heat Island (UHI) effect in historic environments, with a particular focus on the UNESCO World Heritage City of Matera. The complex urban morphology of Matera, with its narrow streets and underground buildings, [...] Read more.
This study investigates the environmental parameters that contribute to the Urban Heat Island (UHI) effect in historic environments, with a particular focus on the UNESCO World Heritage City of Matera. The complex urban morphology of Matera, with its narrow streets and underground buildings, generates distinctive microclimates that intensify the UHI phenomenon, posing challenges for urban planning and heritage conservation. The main objective of the research is to identify which environmental parameters interact with Matera’s architectural and urban characteristics to intensify the UHI, and to propose mitigation strategies that balance heritage conservation with environmental sustainability. The research follows a mixed methodological approach in two phases. The first phase consisted of a comprehensive literature review, identifying gaps in previous studies and developing a methodological framework combining quantitative and qualitative techniques. The second phase involved empirical analysis using advanced techniques such as 3D laser scanning to model urban morphology, satellite image analysis to map the spatial distribution of the UHI, and the integration of historical and real-time meteorological data. The results show significant correlations between urban morphology and UHI intensity, suggesting strategic interventions such as green roofs and reflective materials to mitigate the effects. These findings provide valuable information for urban planners and policy makers, and highlight the importance of integrating sustainable approaches into heritage conservation. Full article
Show Figures

Figure 1

17 pages, 3451 KiB  
Article
Assessing Stone Material Recession of Cultural Heritage: New Approach Based on Satellite-Based Rainfall Data and Dose-Response Functions—Case of UNESCO Site of Matera
by Francesca Visone, Nicodemo Abate, Maria Sileo and Nicola Masini
Remote Sens. 2025, 17(8), 1443; https://doi.org/10.3390/rs17081443 - 17 Apr 2025
Cited by 1 | Viewed by 690
Abstract
The deterioration of stone materials due to atmospheric factors is a growing global concern, affecting the integrity and preservation of numerous UNESCO World Heritage Sites around the world. This study provides an estimate of the long-term impact of the climate on the degradation [...] Read more.
The deterioration of stone materials due to atmospheric factors is a growing global concern, affecting the integrity and preservation of numerous UNESCO World Heritage Sites around the world. This study provides an estimate of the long-term impact of the climate on the degradation of carbonate stone materials in the UNESCO site of Matera, in southern Italy. Focusing on Gravina calcarenite, a lithotype susceptible to weathering, the research integrates satellite-derived precipitation data from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) with a dose-response model. The method involves the calibration of CHIRPS precipitation records against ground-based meteorological data, and the use of year-specific recession coefficients Ky dynamically computed as a function of atmospheric CO2 concentration and temperature. These coefficients were applied within a Lipfert-based equation to estimate annual surface recession from 1981 to 2040 (near future). The results reveal a continuous increase in surface degradation over time, with the cumulative material loss reaching approximately 0.75 mm by 2040. These findings underscore the relevance of climate-responsive models in estimating stone decay and provide a critical basis for adaptive conservation planning. Incorporating future climate projections into risk assessments is essential for the sustainable preservation of carbonate-based cultural heritage exposed to atmospheric and hydrological stressors. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

19 pages, 11295 KiB  
Article
Toward Smart Urban Management: Integrating Geographic Information Systems and Geology for Underground Bearing Capacity Prediction in Casablanca City, Morocco
by Ikram Loukili, Omar Inabi, Mustapha El Ghorfi, Saida El Moutaki and Abdessamad Ghafiri
Land 2024, 13(11), 1826; https://doi.org/10.3390/land13111826 - 3 Nov 2024
Viewed by 1756
Abstract
To effectively manage the sustainable urban development of cities, it is crucial to quickly understand the geological and geotechnical attributes of the underground. Carrying out such studies entails significant investments and focused reconnaissance efforts, which might not align seamlessly with large-scale territorial planning [...] Read more.
To effectively manage the sustainable urban development of cities, it is crucial to quickly understand the geological and geotechnical attributes of the underground. Carrying out such studies entails significant investments and focused reconnaissance efforts, which might not align seamlessly with large-scale territorial planning initiatives within a city accommodating more than 3 million inhabitants, like Casablanca in Morocco. Additionally, various specific investigations have been conducted by municipal authorities in recent times. The primary aim of this study is to furnish city managers and planners with a tool for informed decision-making, enabling them to explore the geological and geotechnical properties of soil foundations using Geographic Information Systems (GISs) and geostatistics. This database, initially intended for utilization by developers and construction engineers, stands to economize a substantial amount of time and resources. During the urban planning of cities and prior to determining land usage (five- or seven-floor structures), comprehending the mechanical traits (bearing capacity, water levels, etc.) of the soil is crucial. To this end, geological and geotechnical maps, along with a collection of 100 surveys, were gathered and incorporated into a GIS system. These diverse data sources converged to reveal that the underlying composition of the surveyed area comprises silts, calcarenites, marls, graywackes, and siltstones. These formations are attributed to the Middle Cambrian and the Holocene epochs. The resultant geotechnical findings were integrated into the GIS and subjected to interpolation using ordinary kriging. This procedure yielded two distinct maps: one illustrating bearing capacity and the other depicting the substratum. The bearing capacity of the soil in the study zone is rated as moderate, fluctuating between two and four bars. The depth of the foundation remains relatively shallow, ranging from 0.8 m to 4.5 m. The outcomes are highly promising, affirming that the soil in Casablanca boasts commendable geotechnical attributes capable of enduring substantial loads and stresses. Consequently, redirecting future urban planning in the region toward vertical expansion seems judicious, safeguarding Casablanca’s remaining green spaces and the small agricultural belt. The results of this work help to better plan the urban development of the city of Casablanca in a smarter way, thus preserving space, agriculture, and the environment while promoting sustainability. In addition, the databases and maps created through this paper aim for a balanced financial management of city expenditures in urban planning. Full article
Show Figures

Figure 1

19 pages, 5637 KiB  
Article
Gel Cleaning in Heritage: Comparison of the Water Release among Gels and Traditional Pads
by Antonio Sansonetti, Cristiano Riminesi, Sónia Mironiouk, Noemi Proietti, Valeria Di Tullio, Roberto Nisticò, Barbara Sacchi and Carmen Canevali
Gels 2024, 10(11), 708; https://doi.org/10.3390/gels10110708 - 2 Nov 2024
Cited by 1 | Viewed by 1452
Abstract
Water release is a crucial aspect when considering cleaning effects on water-sensitive materials. In conservation practice, a water-based cleaning method which limits water release is very often needed. Unfortunately, this is not accompanied by an appropriate measure of the effectively released water. In [...] Read more.
Water release is a crucial aspect when considering cleaning effects on water-sensitive materials. In conservation practice, a water-based cleaning method which limits water release is very often needed. Unfortunately, this is not accompanied by an appropriate measure of the effectively released water. In this paper, water release has been measured by comparing traditional cleaning formulations, such as paper pulp and sepiolite, with several gar gel formulations, used by both Italian and European conservators. The assessment has been carried out by the gravimetric method, using three different stone material specimens as reference: Noto calcarenite, Manciano sandstone and Black Bergamo limestone, whose porosity values and distributions are known. Moreover, water distribution has been evaluated by portable NMR tests. Different commercial agar gel products (Bresciani, CTS, Sigma), having different concentrations (3, 4, and 5%), application modes (rigid at room T or fluid warm gels, with and without inserting Japanese tissue paper), and geometry (horizontal in gravity force direction or vertical), have been compared to obtain a full scenario among different water release mechanisms present in real conservation works. The paper faces the important issue of preparing reproducible chemical or water pads as well, useful for further research aimed at comparing cleaning effects in heritage conservation. The most interesting quantitative results can be summarized as follows. The water release measured from paper pulp and sepiolite was found to be 2 to 4 times higher than from any tested agar gel. Water release decreases by increasing agar concentration; an increase in the agar concentration by 1% induces a decrease in water release in the range 16.98–66.88 g depending on the stone; the increase from 4% to 5% is more obvious with respect to that from 3% to 4%. It is possible to assess the effect of the presence of Japanese paper, which is able to reduce the water release from 18 to 76%, depending on the stone and on the agar used. The gravimetric results were also used in the preliminary calibration tests of a contact probe named System Unit Salinity Index (SUSI), recently patented and useful in providing humidity and salinity indexes in a given porous material. Full article
(This article belongs to the Special Issue Gel Materials for Heritage Conservation)
Show Figures

Figure 1

14 pages, 2308 KiB  
Article
Petrophysical and Mechanical Properties of the Piromafo Stone Used in the Built Heritage of Apulia (SE Italy): A Comprehensive Laboratory Study
by Gioacchino Francesco Andriani
Geosciences 2024, 14(8), 201; https://doi.org/10.3390/geosciences14080201 - 29 Jul 2024
Viewed by 1247
Abstract
Many historic buildings and monuments on the Salento Peninsula (Apulia, southern Italy) were built from locally quarried Miocene calcarenites belonging to the Pietra Leccese Formation (Late Burdigalian–early Messinian). The main facies consists of a homogeneous and porous biomicrite, pale yellow in colour and [...] Read more.
Many historic buildings and monuments on the Salento Peninsula (Apulia, southern Italy) were built from locally quarried Miocene calcarenites belonging to the Pietra Leccese Formation (Late Burdigalian–early Messinian). The main facies consists of a homogeneous and porous biomicrite, pale yellow in colour and fine- to medium-grained, very rich in planktonic Foraminifera and massive or thick-bedded in outcrop. Additionally, there are other facies, among which Piromafo stands out for its aesthetic appearance, enhanced by its greenish-brown or greenish-grey colours. Piromafo occurs in the upper part of the Pietra Leccese Fm. and is represented by a fine- to medium-grained glauconitic and phosphatic biomicrite with macrofossils, especially Bivalves and Gastropods. Despite its important historical use as a building and ornamental material, especially in Roman and Baroque architecture, a research gap exists in the scientific literature describing the properties of the stone and their correlation. Therefore, the aim of this paper is to present a wide range of properties useful in explaining the in situ behaviour and damage susceptibility of the stone in monuments and buildings, but also to assist in selecting preservation treatments and strategies. An overall assessment of the main petrophysical and mechanical properties, especially for restoration/conservation purposes, was performed using both standard and unconventional techniques. Starting with rock fabric inspection, particular attention was given to the relationship between the pore size distribution and the hydraulic and thermal properties of the material. Unconfined compressive strength, flexural strength, and indirect tensile strength were also estimated. The findings reveal a significant correlation between the pore size distribution and the hydraulic and thermal properties of Piromafo, impacting its durability and suitability for use in conservation. Specifically, the thermal properties, influenced by the mineral composition and fabric, indicate the potential for using Piromafo as an effective refractory and insulation material, which justifies the origin of its name and confirms what is already stated in the specific literature. Additionally, correlations were proposed among the various mechanical parameters evaluated, including the Schmidt hammer rebound values with compressive strength and tangent modulus. The mechanical analysis shows that the material possesses adequate properties for structural applications. Full article
(This article belongs to the Section Geoheritage, Geoparks and Geotourism)
Show Figures

Figure 1

17 pages, 5541 KiB  
Article
Experimental Characterization of Fabric-Reinforced Cementitious Matrix (FRCM) Systems Applied on Calcarenite Stone: Adoption of Non-Standard Setup for Double-Shear Bond Tests
by Maria Concetta Oddo, Liborio Cavaleri, Catherine Papanicolaou and Lidia La Mendola
J. Compos. Sci. 2024, 8(6), 206; https://doi.org/10.3390/jcs8060206 - 31 May 2024
Cited by 2 | Viewed by 1187
Abstract
The use of Fabric-Reinforced Cementitious Matrix (FRCM) systems is an innovative method for strengthening structures, particularly masonry, while addressing environmental and economic concerns. Despite their widespread use, characterizing FRCM composites poses challenges due to their complex mechanical behavior and considerable variability in properties. [...] Read more.
The use of Fabric-Reinforced Cementitious Matrix (FRCM) systems is an innovative method for strengthening structures, particularly masonry, while addressing environmental and economic concerns. Despite their widespread use, characterizing FRCM composites poses challenges due to their complex mechanical behavior and considerable variability in properties. The available standardized testing methods exhibit some inconsistencies, underscoring the need for reliable characterization procedures. This paper presents an experimental study on the bond behavior between FRCM materials and calcarenite stone using a non-standard setup for double shear bond tests. Different FRCM systems are considered, varying the matrix composition and fabric nature. The experimental results are evaluated in terms of maximum stress, slip and data dispersion, alongside comparisons with double shear tests on larger samples and single-lap shear. These findings provide insights into how the mortar nature influences the stress-slip curves, strength, ductility and failure modes. The experimental study demonstrates the repeatability and robustness, particularly in terms of peak strength, of the non-standard setup configuration utilized in the study. The study highlights the importance of reliable characterization procedures for FRCM materials, especially in bond behavior assessments, emphasizing the need for further research to enhance our understanding of their application in structural reinforcement. Full article
Show Figures

Figure 1

18 pages, 5368 KiB  
Article
Evaluation of Calcarenite Degradation by X-ray Photoelectron Spectroscopy Analysis inside the Rupestrian Church of San Pietro Barisano (Matera, Southern Italy)
by Francesco Cardellicchio, Maria Assunta Acquavia, Mariangela Curcio and Anna Maria Salvi
Sustainability 2024, 16(11), 4634; https://doi.org/10.3390/su16114634 - 29 May 2024
Cited by 3 | Viewed by 1513
Abstract
We report on the XPS analysis of degraded surfaces inside San Pietro Barisano, the rupestrian church carved into the calcarenite rock of ancient Matera, which has been a UNESCO World Heritage Site since 1993. As reported in previous works, the “Sassi” district and [...] Read more.
We report on the XPS analysis of degraded surfaces inside San Pietro Barisano, the rupestrian church carved into the calcarenite rock of ancient Matera, which has been a UNESCO World Heritage Site since 1993. As reported in previous works, the “Sassi” district and the park of rupestrian churches were available as open laboratories for the National Smart Cities SCN_00520 research project dedicated to the sustainable recovery of this remarkable architectural heritage. In that context, XPS functionality was shown to reside in the possibility of analyzing surfaces by feasible sampling, acquiring spectra without any preliminary sample treatment, and processing data using a well-established curve fitting procedure. The obtained results allowed us to identify the degradation products of the investigated surfaces, thus contributing to defining a diagnostic framework for subsequent actions. Accordingly, the samples here considered, collected from the internal wall surfaces of the church, were all analyzed in comparison with the reference calcarenite, and the XPS results were evaluated as a function of local environmental factors and the historical context of the church itself. The final aim was to provide, for each sample, the most representative indicator(s) of biotic and/or abiotic degradation for reliable use, in a multidisciplinary context, in planning care interventions for building heritage. Full article
(This article belongs to the Collection Sustainable Conservation of Urban and Cultural Heritage)
Show Figures

Figure 1

21 pages, 6365 KiB  
Article
Removing Aged Polymer Coatings from Porous Stone Surfaces Using the Gel Cleaning Method
by Maduka L. Weththimuni, Giacomo Fiocco, Alessandro Girella, Barbara Vigani, Donatella Sacchi, Silvia Rossi and Maurizio Licchelli
Coatings 2024, 14(4), 482; https://doi.org/10.3390/coatings14040482 - 14 Apr 2024
Cited by 3 | Viewed by 1669
Abstract
Acrylic polymers were extensively used in past restoration practices, usually as consolidants or protecting agents. Their removal is often required because polymer coatings can improve some decay processes of stone substrates and, after ageing, may generate undesirable materials on the surface of artifacts. [...] Read more.
Acrylic polymers were extensively used in past restoration practices, usually as consolidants or protecting agents. Their removal is often required because polymer coatings can improve some decay processes of stone substrates and, after ageing, may generate undesirable materials on the surface of artifacts. Therefore, the removal of old polymer coating from the surface of artifacts has become a common operation in the conservation of cultural heritage. As with other cleaning operations, it is a delicate process that may irreversibly damage the artifacts if not correctly carried out. The main aim of this study was to determine the appropriate cleaning procedure for efficiently removing old acrylic polymers (e.g., Paraloid B-72) from the surface of historical buildings. For this purpose, a polymer was applied to two different porous stone substrates (bio-calcarenite and arenaria stone). The hydrogel cleaning approach was used for the present study, as preliminary results suggested that it is the most promising polymer-removing method. The considered hydrogel (based on a semi-interpenetrating polymer network involving poly(2-hydroxyethyl methacrylate) and polyvinylpyrrolidone) was prepared and characterized using different techniques in order to assess the gel’s properties, including the gel content, equilibrium water content, retention capability, hardness, Young’s modulus, and morphology. After that, the hydrogel was loaded with appropriate amounts of nano-structured emulsions (NSEs) containing a surfactant (EcoSufTM), organic solvents, and H2O, then applied onto the coated surfaces. Moreover, plain EcoSurfTM in a water emulsion (EcoSurf/H2O) was also used to understand the polymer-removing behavior of the surfactant without any organic solvent. A comparative study was carried out on artificially aged and unaged polymer-coated samples to better understand the cleaning effectiveness of the considered emulsions for removing decayed polymer coatings. The experimental results showed that the NSE-loaded hydrogel cleaning method was more effective than other common cleaning procedures (e.g., cellulose pulp method). In fact, only one cleaning step was enough to remove the polymeric material from the stone surfaces without affecting their original properties. Full article
Show Figures

Figure 1

24 pages, 11999 KiB  
Article
Evaluation of Eco-Friendly Consolidating Treatments in Pugliese Tuff (Gravina Calcarenite) Used in Italian Heritage Buildings
by Jose Antonio Huesca-Tortosa, Yolanda Spairani-Berrio, Cristiano Giuseppe Coviello, Maria Francesca Sabbà, Fabio Rizzo and Dora Foti
Buildings 2024, 14(4), 940; https://doi.org/10.3390/buildings14040940 - 29 Mar 2024
Cited by 5 | Viewed by 1564
Abstract
This work evaluates the effectiveness of various consolidating treatments applied to Pugliese tuff (Gravina Calcarenite). This type of stone has been used in numerous historic buildings in the Puglia area (southeast of Italy), which presents durability problems due to high porosity, low cohesion [...] Read more.
This work evaluates the effectiveness of various consolidating treatments applied to Pugliese tuff (Gravina Calcarenite). This type of stone has been used in numerous historic buildings in the Puglia area (southeast of Italy), which presents durability problems due to high porosity, low cohesion between clasts, and low mechanical resistance. Eco-friendly treatments that generate CaCO3 have been selected, specifically bioconsolidant KBYO biological and lime water, which a priori are capable of consolidating without occluding the pores or reducing them excessively, thereby creating compounds similar to those contained in the stone and being respectful of the environment. Nano-sized treatments have also been tested, including nanosilica and nanolime, to compare results with eco-friendly treatments. The bioconsolidating treatment has been applied in two different ways, the usual way consisting of two applications a day for 7 days, as well as a double treatment that is applied in two batches of 7 days with a rest of 7 days between applications. Double treatment has shown a great improvement in consolidation compared to the usual 7-day application; this treatment has obtained the best results in both mechanical and petrophysical properties. This study not only demonstrates the effectiveness of the bioconsolidant but also expands eco-friendly conservation strategies to improve the preservation of historical structures built in calcarenite. Full article
Show Figures

Figure 1

17 pages, 8471 KiB  
Article
Revealing Juan de Oviedo y de la Bandera’s Artworks: The Case of the Polychrome of a Stone-Carved Sculpture from the Madre de Dios Convent Façade in Seville
by José Luis Pérez-Rodríguez, María Dolores Robador, Garbiñe Larrea and Adrián Durán
Minerals 2024, 14(3), 225; https://doi.org/10.3390/min14030225 - 23 Feb 2024
Viewed by 1777
Abstract
The entrance of the Madre de Dios convent in Seville was carved in stone by Juan de Oviedo y de la Bandera, an important sculptor who made great artistic productions, highlighting his carvings in wood and stone. Several studies have been carried out [...] Read more.
The entrance of the Madre de Dios convent in Seville was carved in stone by Juan de Oviedo y de la Bandera, an important sculptor who made great artistic productions, highlighting his carvings in wood and stone. Several studies have been carried out on the carvings in wood, but no interest has been paid by experts to the carving pieces in stone. In this work, this polychrome made on stone around 1590 was studied for the first time. Micro-samples were taken and studied using micro-analytical techniques (optical microscopy, SEM-EDX, colourimetry, XRD, FTIR, and Raman spectroscopy). The pigments (smalt, atacamite, malachite, copper resinate, cinnabar, red earth, yellow ochre, carbon, and bone black) and the consolidation product (acrylic resin, very possibly Paraloid B72) were characterized. The experimental study indicated that the polychrome was applied on a layer of white lead (cerussite and hydrocerussite) that was laid on the substrate stone, constituted by calcarenite. This study also includes a comprehensive discussion on the use of these materials and techniques in other artworks within Seville’s cultural heritage. Full article
Show Figures

Figure 1

13 pages, 28954 KiB  
Article
The Lambousa (Cyprus) Fishtank in a Quasi-Stable Coastal Area of the Eastern Mediterranean, a Notable Marker for Testing GIA Models
by Fabrizio Antonioli, Stefano Furlani, Giorgio Spada, Daniele Melini and Zomenia Zomeni
Geosciences 2023, 13(9), 280; https://doi.org/10.3390/geosciences13090280 - 14 Sep 2023
Cited by 3 | Viewed by 1779
Abstract
The Lambousa fishtank, an archaeological structure entirely carved in bedrock, can be easily recognized and measured in the plan on Google Earth (GE). We surveyed in situ this excellent archaeological marker in 2016 through direct measurements using traditional field instruments, such as metric [...] Read more.
The Lambousa fishtank, an archaeological structure entirely carved in bedrock, can be easily recognized and measured in the plan on Google Earth (GE). We surveyed in situ this excellent archaeological marker in 2016 through direct measurements using traditional field instruments, such as metric tapes and invar rods, and terrestrial photogrammetry using Structure from Motion (SfM) methods. The bedrock on which the fishtank is founded is an Upper Pleistocene calcarenite also containing Persistrombus latus. The age of the studied fishtank has not been previously published, but on the basis of the construction technique and the interpretation provided by Archaelogist and references therein, we believe that it was built in the period between 2.1 and 1.8 ka BP, like similar fishtanks in the Mediterranean area. Architectural structures consist of evident foot walks (Crepido), a stone base, and a tunnel that allows for seawater exchange during high tides. The tunnel is at the same altitude as the Crepido, which lies around the fishtank. These architectural components allow us to evaluate the palaeo-sea level with significant precision during the time when the fishtank was active. MIS 5.5 coastal deposits that outcrop in the study area are located at a maximum altitude of a few meters, while the inner margin of the MIS 5.5 terrace allows us to hypothesize “quasi-tectonic stability”. We have also obtained several predictions of the contribution from Glacial Isostatic Adjustment (GIA) to relative sea level at Lambousa for the past 3.5 kyr, according to models ICE-6G (VM5a), ICE-7G (VM7), and one of the GIA models by the Australian National University ANU) Research group. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

Back to TopTop