Petrophysical and Mechanical Properties of the Piromafo Stone Used in the Built Heritage of Apulia (SE Italy): A Comprehensive Laboratory Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Material Classification
3.2. Physical and Mechanical Properties
4. Discussion
5. Conclusions
- (a)
- At the study sites, the Piromafo facies is represented, principally, by packed glauconitic biomicrites (Strudà-Acaja) and poorly washed glauconitic biosparites (Cursi-Melpignano), in which the total porosity (n) ranges from 37 to 42% and from 35 to 40%, respectively. The determination of water absorption and the degree of saturation of specimens completely immersed and suspended in distilled water under vacuum has shown that the porosity for both the materials coming from the two study sites is almost all open with intercommunicating voids.
- (b)
- The presence of both large and medium capillary pores and entrained air pores has demonstrated a wide pore size distribution and dual porosity, which can be responsible for the weathering susceptibility of the Piromafo stone.
- (c)
- The experimental data demonstrated that the Piromafo stone is better as a refractory and heat insulation material with respect to other varieties of the Pietra Leccese Fm. This is due to the chemical and mineralogical composition of the insoluble residue content (12%), which is comprised of glauconite, apatite, rare quartz grains, and clayey minerals finely distributed in the matrix, rather than to the differences in total porosity, pore network topology, and pore size distribution.
- (d)
- The results obtained from mechanical testing allowed for the acquisition of important relationships between the strength of the material evaluated for different loading conditions. Thus, Piromafo can be classified as a moderately soft rock with medium stiffness and medium brittleness. Furthermore, the strength and elastic properties of the material decrease in the presence of water in the pores due to the decrease in the surface energy of crack faces and dissolution processes which involve both the neomorphic calcite microcrystals and clay minerals dispersed in the micrite matrix.
- (e)
- New equations were obtained for estimating compressive strength and tangent modulus using Schmidt hammer rebound values and are quite different from those available in the literature for similar materials.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicotera, P. La Pietra leccese. In L’Industria Mineraria; Lega: Faenza, Italy, 1953; anno IV; pp. 449–458. [Google Scholar]
- Palmentola, G. Lineamenti geologici e morfologici del Salento leccese. Quad. Ric. Cent. Studi Geotec. E Ing. 1989, 11, 7–30. [Google Scholar]
- Margiotta, S.; Varola, A. Nuovi dati geologici e paleontologici su alcuni affioramenti nel Territorio di Lecce. Atti Della Soc. Toscana Sci. Nat.—Mem. Ser. A 2004, 109, 1–12. [Google Scholar]
- Andriani, G.F.; Walsh, N. Petrophysical and mechanical properties of soft and porous building rocks used in Apulian monuments (south Italy). In Natural Stone Resources for Historical Monuments; Přikryl, R., Török, Á., Eds.; The Geological Society, Special Publications: London, UK, 2010; Volume 333, pp. 129–141. [Google Scholar]
- Bossio, A.; Foresi, M.L.; Margiotta, S.; Mazzei, R.; Salvatorini, G.; Donia, F. Stratigrafia neogenico—Quaternaria del settore nord—Orientale della provincia di Lecce (con rilevamento geologico alla scala 1:25.000). Geol. Romana 2006, 39, 63–88. [Google Scholar]
- Arditi, G. La Corografia Fisica e Storica Della Provincia di Terra d’Otranto; Tip. Scipione Ammirato: Otranto, Italy, 1879; pp. 1–652. [Google Scholar]
- Sammarco, M.; Margiotta, S.; Foresi, L.M.; Ceraudo, G. Characterization and provenance of building materials from the Roman pier at San Cataldo (Lecce, Southern Apulia, Italy): A lithostratigraphical and Micropaleonthological approach. Mediterr. Archaeol. Archaeom. 2015, 15, 101–112. [Google Scholar]
- Tadolini, T.; Tazioli, S.; Tulipano, L. Idrogeologica delle sorgenti Idume. Geol. Appl. Idrogeol. 1971, 6, 41–64. [Google Scholar]
- Mongelli, F. Un metodo per la determinazione in laboratorio della conducibilità termica delle rocce. Boll. Geof. Teor. Appl. 1968, 10, 51–58. [Google Scholar]
- Mongelli, F.; Loddo, M.; Tramacere, A. Thermal conductivity, diffusivity and specific heat variation of some Travale field (Tuscany) rocks versus temperature. Tectonophysics 1982, 83, 33–43. [Google Scholar] [CrossRef]
- Andriani, G.F.; Walsh, N. Thermal properties and their influence on strength and deformability of calcareous rocks. In Proceedings of the International Congress Quarry-Laboratory-Monument, Pavia, Italy, 26–30 September 2000; Calvi, G., Zezza, U., Eds.; pp. 81–90. [Google Scholar]
- Dell’Anna, L. La Glauconite nei sedimenti calcarei della Penisola Salentina (Puglia). Period. Mineral. 1966, 35, 273–314. [Google Scholar]
- Dell’Anna, L.; Laviano, R. Penisola Salentina: Stato delle conoscenze mineralogiche e geochimiche. In Proceedings of the Congress Conoscenze Geologiche del Territorio Salentino, Lecce, Italy, 12 December 1987; Volume 11, pp. 303–321. [Google Scholar]
- Mazzei, R. Età della Pietra leccese nell’area di Cursi-Melpignano (a Sud di Lecce, Puglia). Boll. Della Soc. Paleontol. Ital. 1994, 33, 243–248. [Google Scholar]
- Ehlmann, A.J.; Hulings, N.C.; Glover, E.D. Stages of glauconite formation in modern forminiferal sediments. J. Sediment. Res. 1963, 33, 87–96. [Google Scholar]
- Odin, G.S.; Matter, A. De glauconarium origine. Sedimentology 1981, 28, 611–641. [Google Scholar] [CrossRef]
- Amorosi, A. Detecting compositional, spatial, and temporal attributes of glaucony: A tool for provenance research. Sediment. Geol. 1997, 109, 135–153. [Google Scholar] [CrossRef]
- Kitamura, A. Glaucony and carbonate grains as indicators of the condensed section: Omna Formation, Japan. Sediment. Geol. 1998, 122, 151–163. [Google Scholar] [CrossRef]
- Kelly, J.C.; Webb, J.A. The genesis of glaucony in the Oligo-Miocene Torquay Group, southeastern Australia: Petrographic and geochemical evidence. Sediment. Geol. 1999, 125, 99–114. [Google Scholar] [CrossRef]
- Clauer, N.; Uysal, I.T.; Aubert, A. Elemental and K-Ar Isotopic Signatures of Glauconite/Celadonite Pellets from a Metallic Deposit of Missouri: Genetic Implications for the Local Deposits. Geosciences 2022, 12, 387. [Google Scholar] [CrossRef]
- Bossio, A.; Mazzei, R.; Monteforti, B.; Salvatorini, G. Nuovo modello stratigrafico del Miocene-Pleistocene inferiore del Salento in chiave geodinamica. In Proceedings of the 74th National Congress Società Geologica Italiana, Sorrento, Italy, 13–17 September 1988; pp. 35–38. [Google Scholar]
- Balenzano, F.; Margiotta, S.; Moresi, M. Genesi di un deposito glauconitico—Fosfatico appartenente ad una unità miocenica del Salento. Atti. Soc. Tosc. Sci. Nat. Mem. 2002, 109, 1–16. [Google Scholar]
- EN 13373; Natural Stone Test Methods. Determination of Geometric Characteristics on Units. European Committee for Standardization: Brussels, Belgium, 2020; p. 38.
- ASTM C25-19; Standard Test Methods for Chemical Analysis of Limestone, Quicklime, and Hydrated Lime. ASTM Standards: West Conshohocken, PA, USA, 2019; p. 40.
- Barton, N.R. ISRM Suggest methods for the quantitative descriptions of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 319–368. [Google Scholar]
- Brown, E.T. ISRM Suggest methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 99–103. [Google Scholar]
- Brown, E.T. ISRM Suggest methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 135–140. [Google Scholar]
- Franklin, J.A. ISRM Suggested methods for determining water-content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Part 1. Suggested methods for determining water-content, porosity, density, absorption and related properties. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 141–151. [Google Scholar]
- EN 1926; Natural Stone Test Methods. Determination of Compressive Strength. European Committee for Standardization: Brussels, Belgium, 2006; p. 17.
- EN 1925; Natural Stone Test Methods. Determination of Water Absorption Coefficient by Capillarity. European Committee for Standardization: Brussels, Belgium, 2000; p. 10.
- EN 12372; Natural Stone Test Methods. Determination of Flexural Strength under Concentrated Load. European Committee for Standardization: Brussels, Belgium, 2022; p. 18.
- Andriani, G.F.; Walsh, N. Physical properties and textural parameters of calcarenitic rocks: Qualitative and quantitative evaluations. Eng. Geol. 2002, 67, 5–15. [Google Scholar] [CrossRef]
- Andriani, G.F.; Walsh, N. Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. Bull. Eng. Geol. Environ. 2003, 62, 77–84. [Google Scholar] [CrossRef]
- ASTM D 4404; Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry. ASTM Standards: West Conshohocken, PA, USA, 2018; p. 8.
- Andriani, G.F.; Pastore, N.; Giasi, C.I.; Parise, M. Hydraulic properties of unsaturated calcarenites by means of a new integrated approach. J. Hydrol. 2021, 602, 126730. [Google Scholar] [CrossRef]
- EN 14581; Natural Stone Test Methods. Determination of Linear Thermal Expansion Coefficient. European Committee for Standardization: Brussels, Belgium, 2005; p. 16.
- Mongelli, F.; Sciruicchio, V.; Walsh, N. Proprietà termiche del Tufo calcareo pugliese. In Proceedings of the International Congress “La Pietra da Costruzione: Il Tufo Calcareo e la Pietra Leccese”, CNR-IRIS, Bari, Italy, 26–28 May 1993; pp. 329–349. [Google Scholar]
- EN ISO 12571; Hygrothermal Performance of Building Materials and Products—Determination of Hygroscopic Sorption Properties. European Committee for Standardization: Brussels, Belgium, 2013; p. 25.
- Aydin, A. ISRM Suggested Method for Determination of the Schmidt Hammer Rebound Hardness: Revised Version. Int. J. Rock Mech. Min. Sci. 2009, 46, 627–634. [Google Scholar] [CrossRef]
- Franklin, J.A. ISRM Suggested Method for Determining Point Load Strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1985, 22, 51–60. [Google Scholar] [CrossRef]
- Choquette, P.W.; Pray, L.C. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull. 1970, 54, 207–250. [Google Scholar]
- Dunham, R.J. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks; Ham, W.E., Ed.; Memoir; American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; Volume 1, pp. 108–121. [Google Scholar]
- Folk, R.L. Practical petrographic classification of limestones. AAPG Bull. 1962, 43, 1–38. [Google Scholar]
- Geological Society of London. The description of rock masses for engineering purposes: Report by the Geological Society Engineering Group Working Party. Q. J. Eng. Geol. 1977, 10, 355–388. [Google Scholar] [CrossRef]
- Přikryl, R. Durability assessment of natural stone. Q. J. Eng. Geol. Hydrogeol. 2013, 46, 377–390. [Google Scholar] [CrossRef]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete, 2nd ed.; Prentice Hall: Englewood Cliff, NJ, USA, 2002; p. 644. [Google Scholar]
- Zezza, U.; Veniale, F.; Zezza, F.; Moggi, G. Effetti dell’imbibizione sul decadimento meccanico della pietra leccese. In Proceedings of the First International Symposium on the Conservation of Monuments in the Mediterranean Basin, Grafo, Brescia, Italy, 7–10 June 1989; Zezza, F., Ed.; Volume 1, pp. 263–269. [Google Scholar]
- Calia, A.; Tabasso, M.L.; Mecchi, A.M.; Quarta, G. The study of stone for conservation purposes: Lecce stone (southern Italy). In Stone in Historic Buildings. Characterization and Performance; Cassar, J., Winter, M.G., Marker, B.R., Walton, N.R.G., Entwisle, D.C., Bromhead, E.N., Smith, J.W.N., Eds.; The Geological Society, Special Publications: London, UK, 2014; Volume 391, pp. 139–156. [Google Scholar]
- Pia, G.; Esposito Corcione, C.; Striani, R.; Casnedi, L.; Sanna, U. Coating’s influence on water vapour permeability of porous stones typically used in cultural heritage of Mediterranean area: Experimental tests and model controlling procedure. Prog. Org. Coat. 2017, 102, 239–246. [Google Scholar] [CrossRef]
- Francus, P. An image-analysis technique to measure grain-size variation in thin sections of soft clastic sediment. Sediment. Geol. 1998, 121, 289–298. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Structure, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2014; p. 660. Available online: https://www.accessengineeringlibrary.com/content/book/9780071797870 (accessed on 6 June 2024).
- Deere, D.U.; Miller, R.P. Engineering Classification and Index Properties for Intact Rocks; Technical Report, AFNL-TR; Air Force Weapons Laboratory: Kirtland Air Force Base, NM, USA, 1966; pp. 65–116. [Google Scholar]
- Lollino, P.; Andriani, G.F. Role of brittle behaviour of soft calcarenites under low confinement: Laboratory observations and numerical investigation. Rock Mech. Rock Eng. 2017, 50, 1863–1882. [Google Scholar] [CrossRef]
- Andriani, G.F.; Lollino, P.; Perrotti, M.; Fazio, N.L. Incidence of saturation and fabric on the physical and mechanical behaviour of soft carbonate rocks. In Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, New York City, NY, USA, 23–26 June 2019; pp. 2044–2048. [Google Scholar]
- Rabat, Á.; Cano, M.; Tomás, R. Effect of water saturation on strength and deformability of building calcarenite stones: Correlations with their physical properties. Constr. Build. Mater. 2020, 232, 117259. [Google Scholar] [CrossRef]
- Singh, R.N.; Hassani, F.P.; Elkington, P.A.S. The application of strength and deformation index testing to the stability assessment of coal measures excavations. In Proceedings of the Texas A & M University, Balkema, Rotterdam, College Station, TX, USA, 20–23 June 1983; pp. 599–609. [Google Scholar]
- O’ Rourke, J.E. Rock index properties for geoengineering in underground development. Min. Eng. 1989, 106–110. [Google Scholar] [CrossRef]
- Katz, O.; Reches, Z.; Roegiers, J.C. Evaluation of mechanical rock properties using a Schmidt Hammer. Int. J. Rock Mech. Min. Sci. 2000, 37, 723–728. [Google Scholar] [CrossRef]
- Yagiz, S. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Eng. Geol. Environ. 2009, 68, 55–63. [Google Scholar] [CrossRef]
- Aydin, A.; Basu, A. The Schmidt hammer in rock material characterization. Eng. Geol. 2005, 81, 1–14. [Google Scholar] [CrossRef]
- Andriani, G.F.; Germinario, L. Thermal decay of carbonate dimension stones: Fabric, physical and mechanical changes. Environ. Earth Sci. 2014, 72, 2523–2539. [Google Scholar] [CrossRef]
Physical and Mechanical Properties | Extraction Sites of the Piromafo | |
---|---|---|
Strudà-Acaja | Cursi-Melpignano | |
Specific gravity, Gs | 2.72–2.75 | 2.70–2.75 |
Dry density, ρd (Mg/m3) | 1.60–1.73 | 1.64–1.71 |
Sat. density, ρsat (Mg/m3) | 2.00–2.11 | 2.07–2.10 |
Total porosity, n (%) | 37–42 | 35–40 |
Water absorption, wa (%) | 20–26 | 20–24 |
Degree of saturation, Sr (%) | 97–100 | 95–100 |
Hygroscopic moisture content, wh (%) | 0.5–0.8 | 0.6–0.8 |
Capillary water absorption Coeff., Aw (mg/cm2 s 1/2) | 8.8–9.2 | 10.6–11.1 |
Hydraulic conductivity (falling head test), k20 (10−5 m/s) | 0.5–7.8 | 0.8–7.2 |
Thermal linear expansion, αl (10−6 K−1) | 3.07–3.51 | 3.34–3.87 |
Thermal conductivity (dry),λd (W m−1 K−1) | 0.62–0.73 | 0.64–0.76 |
Thermal conductivity (sat), λsat (W m−1 K−1) | 0.84–1.13 | 0.82–1.19 |
Compr. strength (dry), σn (MPa) | 13.2–15.1 | 13.8–16.7 |
Tangent modulus (dry), Et (GPa) | 3.6–5.5 | 4.1–6.7 |
Compr. strength (sat), σsat (MPa) | 6.8–8.4 | 7.1–8.8 |
Flexural strength (dry) σf (MPa) | 1.8–3.1 | 2.1–3.4 |
Indirect tensile strength (dry), σt (MPa) | 1.1–2.2 | 1.4–2.2 |
Point Load Test index (dry), IS(50) (MPa) | 1.3–1.7 | 1.2–1.9 |
Schmidt Rebound Number (dry), Rl | 14–20 | 14–20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriani, G.F. Petrophysical and Mechanical Properties of the Piromafo Stone Used in the Built Heritage of Apulia (SE Italy): A Comprehensive Laboratory Study. Geosciences 2024, 14, 201. https://doi.org/10.3390/geosciences14080201
Andriani GF. Petrophysical and Mechanical Properties of the Piromafo Stone Used in the Built Heritage of Apulia (SE Italy): A Comprehensive Laboratory Study. Geosciences. 2024; 14(8):201. https://doi.org/10.3390/geosciences14080201
Chicago/Turabian StyleAndriani, Gioacchino Francesco. 2024. "Petrophysical and Mechanical Properties of the Piromafo Stone Used in the Built Heritage of Apulia (SE Italy): A Comprehensive Laboratory Study" Geosciences 14, no. 8: 201. https://doi.org/10.3390/geosciences14080201
APA StyleAndriani, G. F. (2024). Petrophysical and Mechanical Properties of the Piromafo Stone Used in the Built Heritage of Apulia (SE Italy): A Comprehensive Laboratory Study. Geosciences, 14(8), 201. https://doi.org/10.3390/geosciences14080201