Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = cable tension measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3583 KiB  
Article
Bridge Cable Performance Warning Method Based on Temperature and Displacement Monitoring Data
by Yan Shi, Yan Wang, Lu-Nan Wang, Wei-Nan Wang and Tao-Yuan Yang
Buildings 2025, 15(13), 2342; https://doi.org/10.3390/buildings15132342 - 3 Jul 2025
Viewed by 325
Abstract
Cable-stayed bridge cables experience significant tension over time, making the bridge cables prone to corrosion and fatigue. The direct measurement of cable length is not a standard capability in most current structural health monitoring systems, nor is long-term monitoring of cable changes. Bridge [...] Read more.
Cable-stayed bridge cables experience significant tension over time, making the bridge cables prone to corrosion and fatigue. The direct measurement of cable length is not a standard capability in most current structural health monitoring systems, nor is long-term monitoring of cable changes. Bridge displacements are caused by both dynamic loads (wind and traffic) and quasi-static factors, primarily temperature. This study filtered out dynamic responses by the three-sigma rule, multiple linear regression, interpolation method, and not-a-number calibration. Monitoring data were used to analyze the bridge’s thermal field distribution and the time-dependent variation of tower displacements. Correlation analysis revealed a strong linear correlation between air temperature and quasi-static tower-girder displacements. This research proposes to use the tower-girder distance (effective cable length) to represent the length of the cable, take the thermal expansion coefficient of the effective length of the cable as the quantitative index for long-term monitoring, and take its error as the performance early warning indicator. This method effectively monitors cable health and provides damage warnings. Full article
Show Figures

Figure 1

31 pages, 9138 KiB  
Article
Tension Force Estimation of Cable-Stayed Bridges Based on Computer Vision Without the Need for Direct Measurement of Mechanical Parameters of the Cables
by German Michel Guzman-Acevedo, Juan A. Quintana-Rodriguez, Guadalupe Esteban Vazquez-Becerra, Luis Alvaro Martinez-Trujano, Francisco J. Carrion-Viramontes and Jorge Garcia-Armenta
Sensors 2025, 25(13), 3910; https://doi.org/10.3390/s25133910 - 23 Jun 2025
Viewed by 542
Abstract
Commonly, accelerometers are used to determine the tension force in cables through an indirect process; however, it is necessary to know the mechanical parameters of each element, such as mass and length. Typically, obtaining or measuring these parameters is not feasible. Therefore, this [...] Read more.
Commonly, accelerometers are used to determine the tension force in cables through an indirect process; however, it is necessary to know the mechanical parameters of each element, such as mass and length. Typically, obtaining or measuring these parameters is not feasible. Therefore, this research proposed an alternative methodology to indirectly estimate them based on historical information about the so-called classic instruments (accelerometers and hydraulic jack). This case study focused on the Rio Papaloapan Bridge located in Veracruz, Mexico, a structure that has experienced material casting issues due to inadequate heat treatment in some cable top anchor over its lifespan. Thirteen cables from the structure were selected to evaluate the proposed methodology, yielding results within 3.8% of difference compared to direct tension estimation generated by a hydraulic jack. Furthermore, to enhance data collection, this process was complemented using a computer vision methodology. This involved remotely measuring the vibration frequency of cables from high-resolution videos recorded with a smartphone. The non-contact method was validated in a laboratory using a vibrating table, successfully estimating oscillation frequencies from video-recording with a fixed camera. A field test on eight cables of a bridge was also conducted to assess the performance and feasibility of the proposed method. The results demonstrated an RMS Error of approximately 2 mHz and a percentage difference in the tension force estimation below 3% compared to an accelerometer measurement approach. Finally, it was determined that this composed methodology for indirect tension force determination is a viable option when: (1) cables are challenging to access; (2) there is no line of sight between the camera and cables outside the bridge; (3) there is a lack of information about the mechanical parameters of the cables. Full article
(This article belongs to the Special Issue Recent Advances in Structural Health Monitoring of Bridges)
Show Figures

Figure 1

24 pages, 6857 KiB  
Article
Modal Identification and Finite Element Model Updating of Flexible Photovoltaic Support Structures Using Multi-Sensor Data
by Mingfeng Huang, Chen Yang, Kang Cai and Xianzhe Li
Appl. Sci. 2025, 15(11), 5919; https://doi.org/10.3390/app15115919 - 24 May 2025
Viewed by 416
Abstract
Flexible photovoltaic (PV) support structures are widely used due to their large span, high land-use efficiency, low construction cost, and short construction periods. However, they exhibit low stiffness, light weight, and low damping, making them wind-sensitive and prone to wind-induced vibrations. Evaluating their [...] Read more.
Flexible photovoltaic (PV) support structures are widely used due to their large span, high land-use efficiency, low construction cost, and short construction periods. However, they exhibit low stiffness, light weight, and low damping, making them wind-sensitive and prone to wind-induced vibrations. Evaluating their dynamic performance remains challenging due to two critical limitations: the lack of field-measured modal properties and the absence of reliably validated finite element (FE) models. In this study, field modal testing of a flexible PV support structure was conducted, and high-order modal properties were identified from multi-sensor data. Subsequently, a response surface model was constructed, and the optimal combination of metal frame mass, cable initial tension, and column modeling was obtained through particle swarm optimization (PSO), leading to an updated FE model. The results show that the damping ratios of the first and second torsional modes is only 0.7% and 0.4%, respectively, highlighting the need to consider low damping properties. Besides, the deviation between the design and actual values of structural parameters cannot be ignored. Full article
Show Figures

Figure 1

16 pages, 2135 KiB  
Article
A Numerical Study on the Pullback Process of a Submarine Cable Based on Trenchless Directional Drilling Technology
by Gang Qian, Wei Kang, Yun Cong and Zhen Liu
Water 2025, 17(10), 1517; https://doi.org/10.3390/w17101517 - 17 May 2025
Viewed by 447
Abstract
Horizontal directional drilling (HDD) can be utilized in a submarine cable landing operation to solve the problems of a deficient buried depth and a limited route. In this study, a numerical model of the pullback process of a submarine cable using HDD technology [...] Read more.
Horizontal directional drilling (HDD) can be utilized in a submarine cable landing operation to solve the problems of a deficient buried depth and a limited route. In this study, a numerical model of the pullback process of a submarine cable using HDD technology is established based on the commercial finite element method platform OrcaFlex 11.3, which is validated using the in situ measured data of an HDD operation project for a pipeline. The effects of the crossing length, incident angle, and pullback velocity of the cable on the effective tension in the cable are investigated and analyzed. The results indicate that an increase in the crossing length and incident angle can significantly enhance the tension in the cable. Under the specific conditions in the Zhoushan islands, the maximum crossing length and incident angle are 1700 m and 35°, respectively. The pullback velocity has a minor influence on the tension in the cable, and an extremely large velocity might lock the cable during its pullback operation. The permissible values derived in this study can provide valuable information to similar engineering cases and projects. Full article
(This article belongs to the Special Issue Coastal Engineering and Fluid–Structure Interactions)
Show Figures

Figure 1

20 pages, 9590 KiB  
Article
Data-Based Modeling and Control of a Single Link Soft Robotic Arm
by David Abraham Morales-Enríquez, Jaime Guzmán-López, Raúl Alejandro Aguilar-Ramírez, Jorge Luis Lorenzo-Martínez, Daniel Sapién-Garza, Ricardo Cortez, Norma Lozada-Castillo and Alberto Luviano-Juárez
Biomimetics 2025, 10(5), 294; https://doi.org/10.3390/biomimetics10050294 - 6 May 2025
Cited by 1 | Viewed by 490
Abstract
In this work, the position control of a cable-driven soft robot is proposed through the approximation of its kinematic model. This approximation is derived from artificial learning rules via neural networks and experimentally observed data. To improve the learning process, a combination of [...] Read more.
In this work, the position control of a cable-driven soft robot is proposed through the approximation of its kinematic model. This approximation is derived from artificial learning rules via neural networks and experimentally observed data. To improve the learning process, a combination of active sampling and Model Agnostic Meta Learning is carried out to improve the data based model to be used in the control stage through the inverse velocity kinematics derived from the data based modeling along with a self differentiation procedure to come up with the pseudo inverse of the robot Jacobian. The proposal is verified in a designed and constructed cable-driven soft robot with three actuators and position measurement through a vision system with three-dimensional motion. Some preliminary assessments (tension and repeatability) were performed to validate the robot movement generation, and, finally, a 3D reference trajectory was tracked using the proposed approach, achieving competitive tracking errors. Full article
Show Figures

Figure 1

20 pages, 22376 KiB  
Article
Constrained Optimization for the Buckle and Anchor Cable Forces Under One-Time Tension in Long Span Arch Bridge Construction
by Xiaoyu Zhang, Xuming Ma, Wei Chen, Wei Xu, Yuan Kang and Yonghong Wu
Buildings 2025, 15(9), 1529; https://doi.org/10.3390/buildings15091529 - 2 May 2025
Viewed by 493
Abstract
During long-span arch bridge construction, repeated adjustments of large cantilevered segments and nonuniform cable tensions can lead to deviations from the desired arch profile, reducing structural efficiency and increasing labor and material costs. To precisely control the process of cable-stayed buckle construction in [...] Read more.
During long-span arch bridge construction, repeated adjustments of large cantilevered segments and nonuniform cable tensions can lead to deviations from the desired arch profile, reducing structural efficiency and increasing labor and material costs. To precisely control the process of cable-stayed buckle construction in long-span arch bridges and achieve an optimal arch formation state, a constrained optimization for the buckle and anchor cable forces under one-time tension is developed in this paper. First, by considering the coupling effect of the cable-stayed buckle system with the buckle tower and arch rib structure, the control equations between the node displacement and cable force after tensioning are derived based on the influence matrix method. Then, taking the cable force size, arch rib closure joint alignment, upstream and downstream side arch rib alignment deviation, tower deviation, and the arch formation alignment displacement after loosening the cable as the constraint conditions, the residual sum of squares between the arch rib alignment and the target alignment during the construction stage is regarded as the optimization objective function, to solve the cable force of the buckle and anchor cables that satisfy the requirements of the expected alignment. Applied to a 310 m asymmetric steel truss arch bridge, the calculation of arch formation alignment is consistent with the ideal arch alignment, with the largest vertical displacement difference below 5 mm; the maximum error between the measured and theoretical cable forces during construction is 4.81%, the maximum difference between the measured and theoretical arch rib alignments after tensioning is 3.4 cm, and the maximum axial deviation of the arch rib is 5 cm. The results showed the following: the proposed optimization method can effectively control fluctuations of arch rib alignment, tower deviation, and cable force during construction to maintain the optimal arch shape and calculate the buckle and anchor cable forces at the same time, avoiding iterative calculations and simplifying the analysis process. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 6412 KiB  
Article
Experimental Study of Smart Steel Cables with Tubular Spot-Welded Grating Sensors
by Nianchun Deng, Zhongqing Han, Zhiqian Chen and Zhaotao Chen
Sensors 2025, 25(7), 2148; https://doi.org/10.3390/s25072148 - 28 Mar 2025
Viewed by 364
Abstract
In this study, a tubular spot-welded grating sensor composed of a stainless-steel tube fixed to a substrate surface by welding is developed, and the tube is filled with high-performance epoxy resin components after the grating sensor is passed through it. A smart steel [...] Read more.
In this study, a tubular spot-welded grating sensor composed of a stainless-steel tube fixed to a substrate surface by welding is developed, and the tube is filled with high-performance epoxy resin components after the grating sensor is passed through it. A smart steel strand cable is created by spot welding steel strands using portable spot-welding equipment. This method generates a small current during spot welding, with a voltage of only 3 V to 5 V, and does not damage the internal structure of the steel strand. An equation related to the temperature, tension force, and wavelength fluctuation is presented in this article. A method with a transverse temperature coordinate and a longitudinal wavelength coordinate is used. A formula for the standard temperature calibration of the force values and a procedure for temperature adjustment of the force values are presented. The correlation coefficient between the stress on the steel strand and the wavelength of the tubular spot-welded grating sensor is as high as 0.999 according to static tensile testing, demonstrating good repeatability. The temperature adjustment coefficient for varying temperatures is 0.0264 nm/°C, and the test error is essentially limited to 3.0% F.S. When subjected to a 120 h relaxation test, the steel strand with the tubular spot-welded grating sensor exhibits a relaxation rate of 4.44%. The force value obtained after the relaxation test is 1.2% off from the standard load. A tubular spot-welded grating sensor is welded onto a steel strand within a cable sealing cylinder to create an extruded anchor epoxy-coated steel strand cable. The measured cable force is compared with the standard load. The maximum error is 0.5% F.S. The discrepancy between the measured cable force and the acceleration sensor value is 1.5% in one instance involving an arch bridge employing six smart suspension cables to detect cable forces onsite. The findings provide theoretical and engineering references for smart cables and demonstrate the high accuracy, dependability, and fixation performance of the tubular spot-welded grating sensor smart cable. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

18 pages, 7357 KiB  
Article
Validation of Cable-Driven Experimental Setup to Assess Movements Made with Elbow Joint Assistance
by Sreejan Alapati, Deep Seth, Sanjeevi Nakka and Yannick Aoustin
Appl. Sci. 2025, 15(4), 1892; https://doi.org/10.3390/app15041892 - 12 Feb 2025
Cited by 1 | Viewed by 825
Abstract
This article investigates a cable-driven experimental setup to simulate elbow joint assistance in the sagittal plane provided by an exosuit. Cable-driven exosuits, particularly fabric-based designs, significantly enhance rehabilitation by enabling targeted joint exercises and promoting functional recovery. To achieve an optimal design, these [...] Read more.
This article investigates a cable-driven experimental setup to simulate elbow joint assistance in the sagittal plane provided by an exosuit. Cable-driven exosuits, particularly fabric-based designs, significantly enhance rehabilitation by enabling targeted joint exercises and promoting functional recovery. To achieve an optimal design, these devices require an analysis of the cable tension, reaction forces, and moments and their dependency on the anchor position. This study presents a cable-driven experimental setup with two rigid bars and variable anchor positions, designed to mimic the human forearm, upper arm, and elbow joint, to evaluate the performance of a potential cable-driven exosuit. Based on the experimental setup, a static model was developed to validate the measured cable tension and estimate the reaction force at the joint and the moments at the anchor positions. Furthermore, based on the observations, an optimization problem was defined to identify optimal anchor positions to improve the exosuit’s design. The optimal position on the forearm and upper arm is studied between 15% and 50% distance from the elbow joint. Our findings suggest that prioritizing user comfort requires both anchor points to be as far away from the elbow joint as possible, i.e., 50% distance, whereas, for optimal exosuit performance, the forearm anchor position can be adjusted based on the joint angle while keeping the upper arm anchor position at the farthest point. The findings in the current work can be used to decide the anchor point position for designing an elbow exosuit. Full article
(This article belongs to the Special Issue New Trends in Exoskeleton Robot)
Show Figures

Figure 1

15 pages, 4793 KiB  
Article
Dynamic Simulation of Underground Cable Laying for Digital Three-Dimensional Transmission Lines
by Chunhua Fang, Wenqi Lu, Jialiang Liu, Xiuyou Yang and Jin Zhang
Appl. Sci. 2025, 15(2), 979; https://doi.org/10.3390/app15020979 - 20 Jan 2025
Viewed by 1105
Abstract
In light of the issues associated with the laying process of transmission line cables, including concealed security risks and contact collisions between pulleys and cables, which primarily stem from reliance on drawings, this paper introduces a simulation methodology for the cable laying construction [...] Read more.
In light of the issues associated with the laying process of transmission line cables, including concealed security risks and contact collisions between pulleys and cables, which primarily stem from reliance on drawings, this paper introduces a simulation methodology for the cable laying construction process utilizing Building Information Modeling (BIM) technology. Initially, two-dimensional DWG graphic data are employed to develop a model of the target equipment and construction environment using BIM software (Solid works 2020). Subsequently, the cable is accurately modeled by applying ADAMS virtual prototype technology, the bushing force connection method, and the macro command language. This allows for the construction of a three-dimensional real cable laying system for transmission lines, enabling the simulation of the dynamic cable laying process in the field. Subsequently, an error analysis is conducted to compare the axial tension and laying speed of the cable with theoretical calculation values. The study then proceeds to analyze tension fluctuations during the cable laying process and assess the load-bearing capacity of the pulleys, thus facilitating effective control of the construction process and enhancing safety measures. The findings indicate that the proposed method can accurately and efficiently simulate the on-site cable laying construction process, with numerical errors maintained below 5%, thereby validating the integrity of the model. Furthermore, the traction overload safety protection amplification coefficient is determined to be α = 1.5. It is highlighted that the bearing capacity of the block must exceed 60% of the load carried by the conductor at constant speed. This research provides a theoretical foundation for addressing safety hazards in cable laying engineering and holds certain engineering value. Full article
Show Figures

Figure 1

15 pages, 3323 KiB  
Article
Relaxation Behavior of Cerclage Cables and Its Effect on Bone Clamping Force
by Audrey Moffat, Wonsuk Kim, Tahsin Rahman, Kayla Podlewski, Craig Silverton and Alan Argento
Bioengineering 2024, 11(12), 1289; https://doi.org/10.3390/bioengineering11121289 - 19 Dec 2024
Viewed by 1126
Abstract
Cerclage is an orthopedic surgical fixation technique using a cable wrapped, tensioned, and secured around a bone’s circumference. It is important to minimize the loss in cable tension that often occurs due to stress relaxation. The purpose of this work was to study [...] Read more.
Cerclage is an orthopedic surgical fixation technique using a cable wrapped, tensioned, and secured around a bone’s circumference. It is important to minimize the loss in cable tension that often occurs due to stress relaxation. The purpose of this work was to study the effect of tensioning protocols on the long-term loss of tension due to stress relaxation. The native mechanical properties and relaxation behavior of the cables were determined using traditional mechanical testing machines and methods. Four step-wise cable tensioning protocols were then trialed to compare the cable tension losses. A testing apparatus was developed to simultaneously measure cable tension and the resulting clamping force on a real bone. A five-parameter linear viscoelastic model was used to fit relaxation data to estimate the long-term relaxation of the cables beyond the time of the experiment. The four cables were found to have similar mechanical and viscoelastic behaviors. A two-step cable-tightening protocol was found to significantly reduce cable tension loss when compared to a one-step protocol for all cables. The benefit of the two-step protocol was reinforced by the relaxation results of the cable wrapped and tightened around a pig femoral bone. These results indicate that one retightening step should be conducted during the surgical placement of a cerclage cable to reduce the loss of cable tension resulting from relaxation. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

15 pages, 3633 KiB  
Article
Rib Alignment Control of Long-Span Arch Bridge in Cable-Stayed Buckle by Multi-Objective Optimization
by Mengsheng Yu, Xinyu Yao, Longlin Wang, Tianzhi Hao and Nianchun Deng
Buildings 2024, 14(10), 3281; https://doi.org/10.3390/buildings14103281 - 17 Oct 2024
Viewed by 1226
Abstract
The construction duration of long-span arch bridges is excessively prolonged due to insufficient closing precision and the non-convergence of traditional cable adjustment calculation methods. This study investigates cable force management in long-span concrete-filled steel tubular (CFST) arch bridges during cable-stayed buckle construction, aiming [...] Read more.
The construction duration of long-span arch bridges is excessively prolonged due to insufficient closing precision and the non-convergence of traditional cable adjustment calculation methods. This study investigates cable force management in long-span concrete-filled steel tubular (CFST) arch bridges during cable-stayed buckle construction, aiming to improve construction safety and precision in arch rib alignment. Using the Pingnan Third Bridge and Tian’e Longtan Bridge as practical examples, the research develops a multi-objective optimization method for cable forces that integrates influence matrices, constrained minimization, and a forward iterative approach. This method offers a robust strategy for tensioning and cable-stayed buckling, enabling real-time monitoring, calculation, and adjustment during the construction of large-span CFST arch bridges. The results reveal that the iterative approach notably enhances calculation efficiency compared to conventional methods. For instance, field measurements at the Pingnan Third Bridge show a minimal arch closure error of only 3 mm. Additionally, the study addresses concerns about excessive stress in exposed steel tubes during concrete casting. By optimizing the sequence of main arch closure and concrete casting, stress in the exposed steel tube is reduced from 373 MPa to 316 MPa, thus meeting specification requirements. In summary, the multi-objective cable force optimization method demonstrates superior efficiency in determining cable tension and controlling rib alignment during cable-stayed buckle construction of long-span CFST arch bridges. Full article
Show Figures

Figure 1

12 pages, 24771 KiB  
Article
Characterization of Friction within a Novel 3 mm Wristed Robotic Instrument
by Caitlin Ho, Thomas Looi, Glenn Maguire and Dale J. Podolsky
Actuators 2024, 13(9), 326; https://doi.org/10.3390/act13090326 - 27 Aug 2024
Cited by 1 | Viewed by 1178
Abstract
Surgical robotic tools are being developed for a variety of surgical procedures that are executed within small workspaces. Novel designs of miniaturized cable-actuated surgical tools for cleft palate repair have previously been developed. However, the behavior and significance of friction within these tools [...] Read more.
Surgical robotic tools are being developed for a variety of surgical procedures that are executed within small workspaces. Novel designs of miniaturized cable-actuated surgical tools for cleft palate repair have previously been developed. However, the behavior and significance of friction within these tools are largely unknown. A study was conducted to investigate the friction in a pulleyless 3 mm diameter wristed instrument. The wrist utilizes cable guide channels that allow for miniaturization at the cost of increased friction. An experimental rig was developed to measure friction within the wrist link mechanism when the tool is positioned at various pitch angles. A strong relationship between the cable tension and the tool’s pitch angle was found as a result of friction. The cable tension increased as the pitch angle approached extreme values (percent increases in the cable tension of 33% and 67.3% at a pitch of 90° and −90°, respectively). However, the resultant cable tension was below the failure strength of the cable, indicating that the design is feasible. The results of this study would be useful to those considering the design of miniature robotic surgical tools that are cable-driven. Significant tool reduction can be achieved by employing static guide channels for the cables, forgoing the use of additional moving components like pulleys while maintaining cable tension well within its break strength. Future work in the design and optimization of novel miniaturized wrist mechanisms should consider frictional effects and their impact on mechanism function. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

23 pages, 9583 KiB  
Article
Analysis of Construction Process and Configuration Automatic Monitoring for the Spoke-Type Single-Layer Cable Net Structure
by Fei Wang, Zenghui Di, Ningyuan Zhang, Yangjie Ruan, Bin Luo, Yiquan Wang and Xin Liu
Buildings 2024, 14(8), 2523; https://doi.org/10.3390/buildings14082523 - 16 Aug 2024
Cited by 2 | Viewed by 1321
Abstract
As a full tension structural system, the spoke-type single-layer cable net structure has a light graceful shape and superior mechanical properties. During construction, the structure will gradually be tensioned from the flexible unstressed state to the formed state with stiffness, and the structural [...] Read more.
As a full tension structural system, the spoke-type single-layer cable net structure has a light graceful shape and superior mechanical properties. During construction, the structure will gradually be tensioned from the flexible unstressed state to the formed state with stiffness, and the structural configuration changes greatly, making construction difficult. This study focused on the spoke-type single-layer cable net structure of the Linyi Olympic Sports Center Stadium. The structural finite element model was established in ANSYS, and the construction scheme was selected and simulated using the nonlinear dynamic finite element method (NDFEM). Most of the existing structural automatic measuring systems are suitable for measuring points with gentle deformation. However, there is the lack of a stable and reliable automatic configuration monitoring system for the construction of single-layer cable net structures. Based on the Lecia TS16 robotic total station (RTS), the configuration automatic monitoring system (CAMS) was developed to obtain the coordinate data of key nodes on the ring cable and compression ring during the construction process. The original finite element model of clamps was refined to obtain the corresponding data in ANSYS. The results indicate that the selected construction scheme has a rational mechanical response according to the finite element simulation. The radial cable force when anchoring the traction cables is smaller than or equal to that in the formed state, which proves that the construction method of anchoring in batches is safe. The results of the ANSYS simulation is basically consistent with those obtained by CAMS, proving that the simulation method is credible. CAMS has good stability and measurement accuracy and can achieve the automatic monitoring of large structural deformation. The research findings provide valuable guidance for practical construction and other similar projects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 6045 KiB  
Article
Static and Dynamic Response Analysis of Flexible Photovoltaic Mounts
by Yibing Lou, Jian Zhang and Yuxin Pan
Buildings 2024, 14(7), 2037; https://doi.org/10.3390/buildings14072037 - 4 Jul 2024
Cited by 5 | Viewed by 1662
Abstract
Traditional rigid photovoltaic (PV) support structures exhibit several limitations during operational deployment. Therefore, flexible PV mounting systems have been developed. These flexible PV supports, characterized by their heightened sensitivity to wind loading, necessitate a thorough analysis of their static and dynamic responses. This [...] Read more.
Traditional rigid photovoltaic (PV) support structures exhibit several limitations during operational deployment. Therefore, flexible PV mounting systems have been developed. These flexible PV supports, characterized by their heightened sensitivity to wind loading, necessitate a thorough analysis of their static and dynamic responses. This study involves the development of a MATLAB code to simulate the fluctuating wind load time series and the subsequent structural modeling in SAP2000 to evaluate the safety performance of flexible PV supports under extreme wind conditions. The research explores the critical wind speeds relative to varying spans and prestress levels within the system. Modal analysis reveals that the flexible PV support structures do not experience resonant frequencies that could amplify oscillations. The analysis also provides insights into the mode shapes of these structures. An analysis of the wind-induced vibration responses of the flexible PV support structures was conducted. The results indicated that the mid-span displacements and the axial forces in the wind-resistant cables are greater under wind-pressure conditions compared to wind-suction conditions. Conversely, for mid-span accelerations, the wind-suction conditions resulted in higher values than the wind-pressure conditions. Furthermore, the wind-induced vibration coefficients were computed, with findings suggesting a recommended coefficient range of 1.5 to 2.52. To mitigate wind-induced vibrations, structural reinforcement strategies were assessed. The results indicate that the introduction of support beams at the mid-span is the most effective measure to attenuate wind-induced vibrational responses. Conversely, increasing the diameter of the tensioned cables exhibited a negligible effect in reducing these responses. On the other hand, implementing stabilizing cables at the mid-span demonstrated a substantial reduction in wind-induced vibrational responses under suction wind-load conditions. Full article
(This article belongs to the Special Issue Advances in Research on Structural Dynamics and Health Monitoring)
Show Figures

Figure 1

16 pages, 14631 KiB  
Article
Finite-Element Analysis of Temperature Field and Effect on Steel-Concrete Composite Pylon of Cable-Stayed Bridge without Backstays
by Boxu Gong, Lianjun Feng, Jiang Liu, Shiming Liu, Zhuang Wang and Yongjian Liu
Buildings 2024, 14(6), 1731; https://doi.org/10.3390/buildings14061731 - 9 Jun 2024
Cited by 4 | Viewed by 1928
Abstract
The backless cable-stayed bridge has the advantages of beautiful shape and reasonable force, but due to the low overall stiffness of the bridge pylon during cantilever construction, it is susceptible to the effect of solar temperature. To reveal the temperature deformation laws and [...] Read more.
The backless cable-stayed bridge has the advantages of beautiful shape and reasonable force, but due to the low overall stiffness of the bridge pylon during cantilever construction, it is susceptible to the effect of solar temperature. To reveal the temperature deformation laws and achieve accurate alignment prediction during the installation process of steel–concrete composite pylons in complex environments, a refined numerical simulation model for the 3D bridge temperature field was established based on the proposed automatic sunshine-shadow recognition method. Subsequently, the optimal time periods for construction control are provided. The results of the study show that, during the cantilever construction of the bridge pylon, one pylon column will shade the other pylon column, resulting in asynchronous deformation that can reach 7.6 mm. The effect of solar temperature on the displacement of the bridge pylon is significant, where the maximum daily change in transverse displacement in the cantilevered state of the pylon can reach 33.6 mm, and the maximum change in cable force value can reach 52 kN. In order to mitigate the effect of solar radiation, the best construction time for the bridge pylon is 19:30~9:30, while the tensioning and measurement of the cable should be avoided from 6:00~18:00. This strategy ensures that the control of the pylon top displacement is maintained within 1/4000 of the pylon height, and the error in cable force is kept within 5%. Full article
(This article belongs to the Special Issue Advances in Steel–Concrete Composite Structures)
Show Figures

Figure 1

Back to TopTop