Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = bypass flue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3968 KiB  
Article
Optimum Conditions and Maximum Capacity of Amine-Based CO2 Capture Plant at Technology Centre Mongstad
by Shahin Haji Kermani, Koteswara Rao Putta and Lars Erik Øi
ChemEngineering 2024, 8(6), 114; https://doi.org/10.3390/chemengineering8060114 - 7 Nov 2024
Cited by 1 | Viewed by 2063
Abstract
Using amine-based solutions is a mature method for CO2 capture. This study simulates this process at Technology Centre Mongstad (TCM) using a rate-based model in Aspen Plus. The main purpose is to develop a rigorous model for TCM and find the operation [...] Read more.
Using amine-based solutions is a mature method for CO2 capture. This study simulates this process at Technology Centre Mongstad (TCM) using a rate-based model in Aspen Plus. The main purpose is to develop a rigorous model for TCM and find the operation limits, maximum utilization capacity, and maximum achievable CO2 removal efficiency at the plant. The model accuracy is verified by using different scenarios from the test campaign reports at TCM with three main configurations: Combined Heat and Power flue gas, Refinery Residue Fluid Catalytic Cracker flue gas, and cold rich-solvent bypass. The deviation between the experimental data and simulation results is compared. The model shows better accuracy with more detailed input data and accurate practical parameters. The verified model is used with all the TCM configurations to simulate the plant. Aspen Exchanger Design and Rating is also used to design real heat exchangers. To avoid flooding, the maximum gas flow to the absorber column is 52,000 Sm3/h. There is a maximum reboiler duty of 8.4 and 3.4 MW for the Residue Fluid Catalytic Cracker and the Combined Heat and Power flue gas strippers, respectively. The optimum operating condition to achieve a CO2 removal efficiency of 90% after amine lean loading adjustment, using maximum gas flow, both strippers, and 15% rich-solvent bypass, gives a total specific reboiler duty of 3.0 MJ/kgCO2. By using a maximum amine flow rate of 230 ton/h, a CO2 removal efficiency of 98% can be achieved. The optimum modification gives a bypass fraction of 19% and a specific reboiler duty of 3.63 MJ/kgCO2. Full article
Show Figures

Figure 1

11 pages, 4899 KiB  
Article
Recovering Low-Grade Heat from Flue Gas in a Coal-Fired Thermal Power Unit
by Linbin Huang, Guoqing Chen, Xiang Xu, Rui Tan, Xinglong Gao, Haifeng Zhang and Jie Yu
Energies 2024, 17(20), 5204; https://doi.org/10.3390/en17205204 - 19 Oct 2024
Cited by 1 | Viewed by 1314
Abstract
To achieve the goals of carbon peaking and carbon neutrality, the retrofitting of existing coal-fired power plants is crucial to achieving energy-saving and emission reduction goals. A conventional recovery system of waste heat typically occurs downstream of the air preheater, where the energy [...] Read more.
To achieve the goals of carbon peaking and carbon neutrality, the retrofitting of existing coal-fired power plants is crucial to achieving energy-saving and emission reduction goals. A conventional recovery system of waste heat typically occurs downstream of the air preheater, where the energy quality in flue gas is low, resulting in limited coal-saving benefits. This study proposes a scheme involving a flue gas exchanger bypassing the air preheater and low-temperature economizers, which is used to transfer the waste heat from flue gas to primary and secondary air (System I). Additionally, a heat pump can be introduced to provide supplementary energy for primary and secondary air, as well as the condensate from the steam turbine (System II). The coal consumption rate and exergy efficiency are used to evaluate the two schemes. The results show that both waste heat recovery systems can increase the power output of the coal-fired unit by recovering waste heat. System II can boost power output by approximately 13.98 MW. The power increase in both waste heat recovery systems show a declining trend as the unit load decreases. This increased power is primarily attributed to the medium- and low-pressure cylinders, while the contributions from ultra-high-pressure and high-pressure cylinders are negligible. The increased power output for the medium-pressure cylinder ranges from approximately 3.49 to 3.58 MW, while the low-pressure cylinder has an increased power output of around 10.10 to 10.19 MW. The coal consumption rate is decreased from 250.3 g/(kW·h) to 247.5 g/(kW·h) under a full load condition for both systems, which can be augmented at lower load conditions. System II outperforms System I at 30% load condition, achieving a reduced coal consumption rate of 3.36 g/(kW·h). System I has an exergy efficiency of 40%, while System II shows a higher efficiency of 44%. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 3257 KiB  
Article
Continuous DeNOx Technology for Improved Flexibility and Reliability of 1000 MW Coal-Fired Power Plants: Engineering Design, Optimization, and Environmental Benefits
by Xinrong Yan, Jianle He, Dong Guo, Yang Zhang, Xiwei Ke, Hongliang Xiao, Chenghang Zheng and Xiang Gao
Processes 2024, 12(1), 56; https://doi.org/10.3390/pr12010056 - 26 Dec 2023
Viewed by 2003
Abstract
This study endeavors to enhance the operational efficiency of extant coal-fired power plants to mitigate the adverse environmental impact intrinsic to the prevalent utilization of coal-fired power generation, which is particularly dominant in China. It focuses on the assessment and optimization of continuous [...] Read more.
This study endeavors to enhance the operational efficiency of extant coal-fired power plants to mitigate the adverse environmental impact intrinsic to the prevalent utilization of coal-fired power generation, which is particularly dominant in China. It focuses on the assessment and optimization of continuous denitrification systems tailored for a 1000 MW ultra-supercritical pulverized coal boiler. The extant denitrification framework encounters challenges during startup phases owing to diminished selective catalytic reduction (SCR) inlet flue gas temperatures. To ameliorate this, three retrofit schemes were scrutinized: direct mixing of high-temperature flue gas, bypass flue gas mixing, and high-temperature flue gas mixing with cold air. Each option underwent meticulous thermodynamic computations and comprehensive cost analyses. The findings elucidated that bypass flue gas mixing, involving the extraction and blending of high-temperature flue gas, emerged as the most financially prudent and practical recourse. This scheme optimizes fuel combustion heat utilization, significantly curtails fuel consumption, and fosters efficient internal heat transfer mechanisms within the boiler. The evaluation process meticulously considered safety parameters and equipment longevity. The insights derived from this investigation offer valuable guidance for implementing continuous denitrification system retrofits in industrial coal-fired power plants. Full article
(This article belongs to the Special Issue Modeling and Optimization of Gas-Solid Reaction Vessels)
Show Figures

Figure 1

23 pages, 4115 KiB  
Article
Energy Recovery Maximisation Modelling Subject to Constrained Cooling
by Johannes Petrus Bester, Martin Van Eldik and Philip van Zyl Venter
Energies 2024, 17(1), 131; https://doi.org/10.3390/en17010131 - 25 Dec 2023
Viewed by 1204
Abstract
The primary heat rejection cycle, which is critical for the stability and integrity of the metal production process and equipment, involves the transfer of heat from flue gas to a fluid circulated through a gas-cooler. The rate of heat transfer from the flue [...] Read more.
The primary heat rejection cycle, which is critical for the stability and integrity of the metal production process and equipment, involves the transfer of heat from flue gas to a fluid circulated through a gas-cooler. The rate of heat transfer from the flue gas is influenced by several parameters, including the temperature of the cooling fluid. Heat transfer rates that are too high or too low can negatively impact equipment’s life, emphasising the need for a temperature operational envelope in the cooling fluid prior to entering the gas-cooler. Rejected heat is used for power generation, transferred to the environment, or both. This study examines the impact of control philosophies on both temperature and power generation, while maintaining the exit temperature within the desired range as the highest priority. A more advanced philosophy that combines bypass control with feedforward parameters can maintain temperatures within safe operating limits at all times, while improving the power generation, compared to a typical works approach which is used as a baseline. This study presents a formulation that increased power generation from an average of 6.11 MW for a typical works philosophy to 10.68 MW, while maintaining the temperature within the operating temperature envelope. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

22 pages, 3253 KiB  
Article
Simulation of a Thermal Recuperative Incinerator of VOCs with a Special Focus on the Heat Exchanger
by Francisco Zdanowski, Isabel Malico, Paulo Canhoto and Rui Pedro Lima
Math. Comput. Appl. 2024, 29(1), 1; https://doi.org/10.3390/mca29010001 - 23 Dec 2023
Viewed by 2145
Abstract
Simulation and modeling of thermal recuperative incinerators may play an important role in enhancing efficiency and ensuring compliance with environmental regulations. In this context, the primary objective of this study is to simulate and comprehensively understand the operation of a geometrically complex thermal [...] Read more.
Simulation and modeling of thermal recuperative incinerators may play an important role in enhancing efficiency and ensuring compliance with environmental regulations. In this context, the primary objective of this study is to simulate and comprehensively understand the operation of a geometrically complex thermal recuperative incinerator with an integrated preheater featuring varying levels of heat recovery. To achieve this objective, a simple yet effective 0D model was developed. This modeling approach allows for a holistic evaluation of the performance of the incinerator, enabling the assessment of key parameters, such as temperatures and heat transfer rates, under varying operating conditions. Successful validation of the model is established by comparing its results with measurements from an industrial thermal recuperative incinerator in operation at a vehicle assembly plant, with maximum relative differences of around 9%. Simulations for different percentages of flue gases bypassing the preheater were conducted, indicating a good compromise between heat transfer and pressure drop and a 22% heat recovery at around 50%. The model presented in this paper provides a robust foundation for comprehensively assessing and optimizing the performance of thermal recuperative incinerators and systems that comprise thermal recuperative incinerators, with implications for waste management and sustainable energy recovery systems. Full article
Show Figures

Figure 1

17 pages, 2799 KiB  
Article
Scheduling Optimization of IEHS with Uncertainty of Wind Power and Operation Mode of CCP
by Yuxing Liu, Linjun Zeng, Jie Zeng, Zhenyi Yang, Na Li and Yuxin Li
Energies 2023, 16(5), 2157; https://doi.org/10.3390/en16052157 - 23 Feb 2023
Cited by 2 | Viewed by 1486
Abstract
With the gradual depletion of fossil energy sources and the improvement in environmental protection attention, efficient use of energy and reduction in carbon emissions have become urgent issues. The integrated electricity and heating energy system (IEHS) is a significant solution to reduce the [...] Read more.
With the gradual depletion of fossil energy sources and the improvement in environmental protection attention, efficient use of energy and reduction in carbon emissions have become urgent issues. The integrated electricity and heating energy system (IEHS) is a significant solution to reduce the proportion of fossil fuel and carbon emissions. In this paper, a stochastic optimization model of the IEHS considering the uncertainty of wind power (WP) output and carbon capture power plants (CCPs) is proposed. The WP output in the IEHS is represented by stochastic scenarios, and the scenarios are reduced by fast scenario reduction to obtain typical scenarios. Then, the conventional thermal power plants are modified with CCPs, and the CCPs are equipped with flue gas bypass systems and solution storage to form the integrated and flexible operation mode of CCPs. Furthermore, based on the different load demand responses (DRs) in the IEHS, the optimization model of the IEHS with a CCP is constructed. Finally, the results show that with the proposed optimization model and shunt-type CCP, the integrated operation approach allows for a better reduction in carbon capture costs and carbon emissions. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy)
Show Figures

Figure 1

14 pages, 4008 KiB  
Article
Numerical Analysis on the Flue Gas Temperature Maintenance System of a Solid Fuel-Fired Boiler Operating at Minimum Loads
by Michalina Kurkus-Gruszecka, Piotr Krawczyk and Janusz Lewandowski
Energies 2021, 14(15), 4420; https://doi.org/10.3390/en14154420 - 22 Jul 2021
Cited by 1 | Viewed by 3039
Abstract
Currently, energy policy is associated with the increase in the share of renewable sources in systemic energy production. Due to this trend, coal-fired power units must increase their work flexibility. Adapting a coal power plant to work with a lower load often causes [...] Read more.
Currently, energy policy is associated with the increase in the share of renewable sources in systemic energy production. Due to this trend, coal-fired power units must increase their work flexibility. Adapting a coal power plant to work with a lower load often causes the issue of maintaining the temperature before the selective catalytic reduction (SCR) installation at a sufficiently high level. This paper presents a CFD analysis of the mixing area of two flue gas streams before the SCR installation with various methods for mixing flue gas streams. The novelty of the work is mixing the flue gas streams of different temperatures using a flap shape developed by the authors. A series of numerical simulations were performed to develop the location and method of introducing the higher temperature gas, obtaining a uniform distribution of the exhaust gas temperature. The simulation scheme was applied to a series of geometrical modifications of the boundary conditions. The tested solution using only a single, straight flap in the flue gas duct allows the amplitude to be reduced from 298 K to 144 K. As a result of the research, a mixing flap design was developed to reduce the initial temperature amplitude of the flue gas streams from 298 K to 43 K. Full article
Show Figures

Figure 1

22 pages, 4085 KiB  
Article
Analysis of Gas Recirculation Influencing Factors of a Double Reheat 1000 MW Unit with the Reheat Steam Temperature under Control
by Meng Yue, Guoqian Ma and Yuetao Shi
Energies 2020, 13(16), 4253; https://doi.org/10.3390/en13164253 - 17 Aug 2020
Cited by 4 | Viewed by 3895
Abstract
In this paper, the simulation software EBSILON is used to simulate the reheat units, and the reheat temperature control mode is deeply explored. In the benchmark system, the influence of different load intermediate point temperature on the flue gas recirculation (FGR) is analyzed. [...] Read more.
In this paper, the simulation software EBSILON is used to simulate the reheat units, and the reheat temperature control mode is deeply explored. In the benchmark system, the influence of different load intermediate point temperature on the flue gas recirculation (FGR) is analyzed. Then, the effects of load, coal quality, excess air factor, and feed water temperature on FGR are studied under the premise of intermediate point temperature as design value, and the cause for FGR change is analyzed by comparing the cutoff bypass flue (CBF) system. The results show that under any load, the FGR decreases with the increase of the intermediate point temperature, while under low load, the change of the intermediate point temperature has a greater impact on the FGR rate. When the intermediate point temperature remains constant, the FGR plunge has an increase of load at low load and is almost unchanged at high load; the FGR rate of coal with low calorific value and high moisture content is low and the coal with low volatile and high ash content has great influence on reheat steam temperature; and the excess air factor and feed water temperature are inversely proportional to the flue gas recirculation rate. In the CBF system, the change trend is similar to the reference system, but under the same working condition, the FGR rate is higher than the latter. Full article
Show Figures

Figure 1

19 pages, 2774 KiB  
Article
Experimental Study on a Flue Gas Waste Heat Cascade Recovery System under Variable Working Conditions
by Jiayou Liu, Xiaoyun Gong, Wenhua Zhang, Fengzhong Sun and Qingbiao Wang
Energies 2020, 13(2), 324; https://doi.org/10.3390/en13020324 - 9 Jan 2020
Cited by 12 | Viewed by 4817
Abstract
Recovering flue gas waste heat is beneficial to improving the unit efficiency in power plants. To obtain the change rules of performance parameters of a flue gas waste heat cascade recovery system (FWCRS) under variable working conditions, an experiment bench was designed and [...] Read more.
Recovering flue gas waste heat is beneficial to improving the unit efficiency in power plants. To obtain the change rules of performance parameters of a flue gas waste heat cascade recovery system (FWCRS) under variable working conditions, an experiment bench was designed and built. The variation laws of the inlet temperature and exhaust flue gas temperature of a low temperature economizer (LTE), the inlet and outlet air temperature of an air preheater (AP), the heat exchange quantities of the AP, LTE, and front-located air heater and an additional economizer (AE), as well as the waste heat recovery efficiency, the system exergy efficiency, and the energy grade replacement coefficient were obtained as the flue gas flow, flue gas temperature, bypass flue gas ratio, air temperature, and circulating water flow in AE changed. Using an orthogonal test, the flue gas temperature, bypass flue gas ratio and air temperature were proved to be the significant factors affecting the performance parameters of FWCRS, and the bypass flue gas ratio was suggested as an adjusting parameter of FWCRS under variable working conditions. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

20 pages, 3949 KiB  
Article
Experimental Study on Operation Regulation of a Coupled High–Low Energy Flue Gas Waste Heat Recovery System Based on Exhaust Gas Temperature Control
by Jiayou Liu and Fengzhong Sun
Energies 2019, 12(4), 706; https://doi.org/10.3390/en12040706 - 21 Feb 2019
Cited by 13 | Viewed by 4334
Abstract
Controlling the exhaust gas temperature (EGT) of coal–fired boilers at a reasonable value is beneficial to ensuring unit efficiency and preventing acid corrosion and fouling of tail heating surfaces in power plants. To obtain the operation regulation of coupled high–low energy flue gas [...] Read more.
Controlling the exhaust gas temperature (EGT) of coal–fired boilers at a reasonable value is beneficial to ensuring unit efficiency and preventing acid corrosion and fouling of tail heating surfaces in power plants. To obtain the operation regulation of coupled high–low energy flue gas waste heat recovery system (CWHRS) under a given EGT, experimental equipment was designed and built. Experiments were carried out to maintain the exhaust gas temperature under different flue gas flow, flue gas temperature and air temperature conditions. As the flue gas flows, the flue gas temperatures and air temperatures increased, and the bypass flue gas flow proportions or the water flows of the additional economizer were increased to maintain the EGT at about 85 °C. An improved low temperature economizer (LTE) and front located air heater (FAH) system were put forward. As the flow of the crossover pipe increased, the EGT and the inlet water temperature of the LTE increased. As the flow of the circulating loop increased, the EGT and the inlet water temperature of the LTE decreased. Operation regulations of LTE–FAH system under four cases were given. The operation regulations of CWHRS and LTE–FAH system can provide references for power plant operation. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

17 pages, 1712 KiB  
Article
Thermodynamic, Economic and Environmental Evaluation of an Improved Ventilation Air Methane-Based Hot Air Power Cycle Integrated with a De-Carbonization Oxy-Coal Combustion Power Plant
by Cheng Xu, Yachi Gao, Qiang Zhang, Guoqiang Zhang and Gang Xu
Energies 2018, 11(6), 1434; https://doi.org/10.3390/en11061434 - 4 Jun 2018
Cited by 4 | Viewed by 2896
Abstract
Efficient utilization of ventilation air methane (VAM) as well as improving the energy efficiency of de-carbonization oxy-coal combustion power plants are intensively studied for achieving energy savings and greenhouse gas (GHG) emission control. Here, an improved VAM-coal hybrid power generation system, which integrates [...] Read more.
Efficient utilization of ventilation air methane (VAM) as well as improving the energy efficiency of de-carbonization oxy-coal combustion power plants are intensively studied for achieving energy savings and greenhouse gas (GHG) emission control. Here, an improved VAM-coal hybrid power generation system, which integrates a VAM-based hot air power cycle with a de-carbonization oxy-coal combustion circulating fluid bed (CFB) power plant was proposed. In the proposed system, part of the boiler flue gas was bypassed to feed the VAM auto-oxidation, and the whole VAM oxidation heat was efficiently utilized to drive a hot air power cycle. Meanwhile, the turbine exhaust air was utilized to heat the feed/condensed water within the regenerative heating trains in a cascade way, which was in turn beneficial to de-carbonization oxy-coal combustion plant. The mass and energy balance of the proposed system were determined using the simulation process. The thermodynamic benefits, economic viability and the environmental impacts were discussed. Results showed that energy efficiency of the proposed system reached 27.1% with the energy saving ratio at 0.9%. The cost of electricity (COE) was $118.15/MWh with the specific CO2 emission as low as 17.46 kg CO2/MWh. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop