Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = bulk-rock and mineral geochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 11891 KB  
Article
Cyclic Changes in Sea Level and Sequence Stratigraphy During the Latest Pliensbachian–Early Toarcian (Early Jurassic) in the Southern Qiangtang Basin (Eastern Tethys): Geochemical and Mineralogical Perspectives
by Changjun Ji, Ahmed Mansour, Yun Chen, Zhenhan Wu and Michael Wagreich
Minerals 2025, 15(5), 440; https://doi.org/10.3390/min15050440 - 24 Apr 2025
Cited by 1 | Viewed by 843
Abstract
The Pliensbachian–Toarcian boundary and early Toarcian events indicate significant environmental and oceanographic instabilities attributed to the emplacement of the Karoo–Ferrar large igneous province and subsequent greenhouse gas emissions. These geologic processes influenced carbon cycle perturbations and global warming, consistent with phases of a [...] Read more.
The Pliensbachian–Toarcian boundary and early Toarcian events indicate significant environmental and oceanographic instabilities attributed to the emplacement of the Karoo–Ferrar large igneous province and subsequent greenhouse gas emissions. These geologic processes influenced carbon cycle perturbations and global warming, consistent with phases of a sea level rise. This study presents a high-resolution dataset of total organic carbon (TOC) and bulk rock geochemistry and mineralogy from a complete upper Pliensbachian–Toarcian interval of the Quse Formation at the Qixiangcuo section in the Southern Qiangtang Basin. The Qixiangcuo section consists of carbonate and siliciclastic organic carbon-poor sediments deposited in a shallow-shelf setting in the eastern Tethys Ocean. Chemostratigraphic data, including Ti, Zr, U, Ca, Mn, and Sr and their ratios normalized to Al, record characteristic changes linked to sea level evolution and resulting depositional sequences. Trends in these geochemical data allow for the subdivision of the Quse Formation into nine complete third-order transgressive–regressive sequences, referred to as Pliensbachian sequences PSQ1 and PSQ2, Toarcian sequences TSQ1 to TSQ7, and one incomplete sequence. Elemental proxies indicative of terrigenous detrital input and sediment grain size along with a mineralogical composition of quartz, plagioclase, and clay minerals exhibit similar trends. Increased values of these proxies suggest a sea level fall and the deposition of regressive systems tract (RST) sediments, with peak values indicating a maximum regressive surface (MRS), and vice versa for transgressive systems tract (TST) sediments and the maximum flooding surface (MFS). On the contrary, rising trends in calcite content and carbonate-bound elements indicate phases of a relative sea level transgression, reaching maximum values at the MFS, while declining trends mark a sea level regression. The Sr/Ca ratio exhibited inverse patterns to the carbonate proxies, in part, with rising values indicating a sea level fall and vice versa. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

23 pages, 14722 KB  
Article
Origin of Early Triassic Hornblende Gabbro from the Yunkai Massif, South China: Constraints from Mineral and Bulk-Rock Geochemistry
by Yaqian Wen, Feng Guo and Liang Zhao
Geosciences 2024, 14(6), 147; https://doi.org/10.3390/geosciences14060147 - 29 May 2024
Cited by 2 | Viewed by 2207
Abstract
The early Triassic (~250 Ma) hornblende gabbro from the Tengxian area of Yunkai Massif, South China, contains a mineral assemblage of clinopyroxene, hornblende, biotite, plagioclase, K-feldspar and quartz and accessory apatite, and zircon and ilmenite. Based on mineral association and crystallization sequence, two [...] Read more.
The early Triassic (~250 Ma) hornblende gabbro from the Tengxian area of Yunkai Massif, South China, contains a mineral assemblage of clinopyroxene, hornblende, biotite, plagioclase, K-feldspar and quartz and accessory apatite, and zircon and ilmenite. Based on mineral association and crystallization sequence, two generations of the mineral assemblage have been identified: clinopyroxene + plagioclase + apatite (zircon) in Generation I and ilmenite + hornblende + biotite + K-feldspar + quartz in Generation II. The high crystallization temperature (T = 999–1069 °C) of clinopyroxene and its coexistence with labradorite (An = 52–58) indicate that Generation I crystallized in a basaltic magma, while the hornblende’s relatively low crystallization temperature (T = 780–820 °C) and coexistence with K-feldspar and quartz suggest that Generation II formed in an evolved alkaline melt. The mineralogical records are likely attributed to pulsed intrusion of the late-stage evolved magma into a crystal mush, like in Generation I. The bulk-rock geochemical data include a sub-alkaline affinity, arc-type trace element features, and highly enriched Sr-Nd-Pb-Hf isotopic compositions, consistent with the isotopic records from the accessory minerals, e.g., the very high δ18O values in both zircon and apatite and significantly negative εHf(t) in zircon. The combined mineral and bulk-rock geochemical data suggest that the primary magma for the Tengxian hornblende gabbro was derived from a mantle wedge that had been metasomatized by voluminous subducted terrigenous sediment-derived melts in response to subduction of the Paleo-Tethys Ocean. Full article
Show Figures

Figure 1

6 pages, 1181 KB  
Proceeding Paper
Mineral Exploration at the Kimmeria Fe-Cu Skarn Deposit, N. Greece: Reassessment and New Perspectives Focusing on the CRMs
by Michalis Fitros, Constantinos Mavrogonatos, Marianthi Anastasatou, Adamantia Chatziapostolou, Konstantinos Laskaridis, Petros Karmis, Magdalini Angeli, Dimitrios Tsouvalas, Alexandros Liakopoulos, Dimitrios Tarenidis and Vasiliki Angelatou
Mater. Proc. 2023, 15(1), 75; https://doi.org/10.3390/materproc2023015075 - 12 Jan 2024
Viewed by 1974
Abstract
Following the worldwide increasing demand for Critical Raw Materials (CRMs), the Hellenic Geological Survey (HSGME) implemented a national project focused on the re-evaluation of certain Public Mining Areas in Greece. In this framework, exploration activities, including geological mapping, and mineralogical, geochemical, and geophysical [...] Read more.
Following the worldwide increasing demand for Critical Raw Materials (CRMs), the Hellenic Geological Survey (HSGME) implemented a national project focused on the re-evaluation of certain Public Mining Areas in Greece. In this framework, exploration activities, including geological mapping, and mineralogical, geochemical, and geophysical studies, revealed significant mineralization targets which possibly host elevated contents of certain CRMs in the Kimmeria Fe skarn deposit. The mineralization is related to the contact metamorphic aureole of the Oligocene Xanthi pluton. Various skarn minerals form the following paragenetic zones in order of decreasing temperature: (i) garnet–wollastonite, (ii) garnet–clinopyroxene, (iii) garnet–epidote, and (iv) vesuvianite–scapolite. The skarn deposit consists of magnetite-rich ore occurring along with sulfides (chalcopyrite, pyrite, bismuthinite, and molybdenite), scheelite, minor sulfosalts (aikinite, wittichenite, and cubanite) and native elements (Au and Bi). Bulk-rock geochemical analyses yielded significant values, as follows: Fe2O3, up to 58 wt%; Cu, up to 6.6 wt%; Bi, up to 1100 ppm; W, up to 670 ppm; V, up to 200 ppm; Mo, up to 200 ppm; and Au, up to 2.1 g/t. Soil and stream sediment geochemistry reveals spatial and linear trends for certain groups of associated elements (i.e., Fe2O3-Cu-Bi-W and Mo-W-Zn). These trends reflect the surficial distribution of mineralized zones and imply the existence of partially unexposed mineralization in the western part of the study area, a fact also supported by geophysical evidence. A preliminary drilling project has been proposed to evaluate the qualitative characteristics of the deeper parts of the mineralization, investigate buried ore zones in the western part, and overall, reassess the economic potential of the deposit. Full article
Show Figures

Figure 1

12 pages, 282 KB  
Technical Note
87Sr/86Sr Isotope Ratio as a Tool in Archaeological Investigation: Limits and Risks
by Mattia Rossi, Paola Iacumin and Gianpiero Venturelli
Quaternary 2024, 7(1), 6; https://doi.org/10.3390/quat7010006 - 11 Jan 2024
Cited by 4 | Viewed by 3710
Abstract
During the last forty years, the use of strontium isotopes in archaeology and biogeochemical research has spread widely. These isotopes, alone or in combination with others, can contribute to trace past and present environmental conditions. However, the interpretation of the isotopic values of [...] Read more.
During the last forty years, the use of strontium isotopes in archaeology and biogeochemical research has spread widely. These isotopes, alone or in combination with others, can contribute to trace past and present environmental conditions. However, the interpretation of the isotopic values of strontium is not always simple and requires good knowledge of geochemistry and geology. This short paper on the use of strontium isotopes is aimed at those who use this tool (archaeologists, but not only) but who do not have a thorough knowledge of mineralogy, geology, and geochemistry necessary for a good understanding of natural processes involving these isotopes. We report basic knowledge and suggestions for the correct use of these isotopes. The isotopic characteristics of bio-assimilable strontium depend not so much on the isotopic characteristics of the bulk rock as, rather, on those of its more soluble minerals. Before studying human, animal and plant remains, the state of conservation and any conditions of isotopic pollution should be carefully checked. Samples should be collected according to random sampling rules. The data should be treated by a statistical approach. To make comparisons between different areas, it should be borne in mind that the study of current soils can be misleading since the mineralogical modification of soil over time can be very rapid. Full article
(This article belongs to the Special Issue Advances in Geoarchaeology and Cultural Heritage)
18 pages, 5065 KB  
Article
Petrography, Geochemistry and Mineralogy of Serpentinite Rocks Exploited in the Ophiolite Units at the Calabria-Basilicata Boundary, Southern Apennine (Italy)
by Giovanna Rizzo, Roberto Buccione, Marilena Dichicco, Rosalda Punturo and Giovanni Mongelli
Fibers 2023, 11(10), 81; https://doi.org/10.3390/fib11100081 - 23 Sep 2023
Cited by 4 | Viewed by 4237
Abstract
A multi-analytical study on serpentinites in the ophiolite units (Calabria-Basilicata boundary, southern Apennines) was carried out on samples collected from a serpentinite quarry, locally called “Pietrapica”, which sitsin the Pollino UNESCO Global Geopark. Optical microscopy observations revealed the petrographic characteristics, ICP-MS was used [...] Read more.
A multi-analytical study on serpentinites in the ophiolite units (Calabria-Basilicata boundary, southern Apennines) was carried out on samples collected from a serpentinite quarry, locally called “Pietrapica”, which sitsin the Pollino UNESCO Global Geopark. Optical microscopy observations revealed the petrographic characteristics, ICP-MS was used to assess the chemical composition while EMPA mineral chemistry, Raman spectroscopy and X-Ray Powder Diffraction and were used altogether to trace the mineral composition of the rocks. Petrography revealed that serpentinites from Pietrapica quarry are essentially composed of serpentine group minerals, amphibole and carbonate minerals with lower abundances of talc and Cr-spinel. Raman spectroscopy and X-ray powder diffraction analysis clearly allowed to establish that carbonate minerals, serpentine and amphibole-like minerals, are the dominant phases, followed by 2:1 phyllosilicate. Electron probe microanalyses were carried out on different minerals in serpentinites samples including serpentine, amphibole, chlorite, clinopyroxene, magnetite, talc, quartz and titanite which are often associated with carbonate veins. Bulk geochemistry is dominated by major oxides SiO2, MgO and Fe2O3 while the most abundant trace elements are Ni and Cr. Chemical analysis showed that some heavy metals in the studied serpentinites such as Ni and Cr, are beyond the maximum admissible limits for Italian normative for public, private and residential green as well as for commercial and industrial use representing a potential environmental concern. Anyway, some of these heavy metals have been recently listed by Europe as critical raw materials and therefore, the Pietrapica abandoned quarry could represent a new resource considering their economic potentiality. Full article
Show Figures

Graphical abstract

20 pages, 9894 KB  
Article
Neoproterozoic Aksu Diabase Dyke, Chinese South Tianshan: Magma Sources and Implications for Regional Gold Metallogeny
by Guoxiong Ma, Xiaobo Zhao, Chunji Xue and Renke Wang
Minerals 2023, 13(3), 326; https://doi.org/10.3390/min13030326 - 25 Feb 2023
Cited by 2 | Viewed by 2948
Abstract
Tianshan is one of the world’s largest gold provinces; however, the relationship between gold mineralization and metasomatized subcontinental lithospheric mantle (SCLM) remains poorly understood. To improve our understanding, we present new bulk-rock geochemistry and platinum group element (PGE) concentrations of the SCLM-sourced Aksu [...] Read more.
Tianshan is one of the world’s largest gold provinces; however, the relationship between gold mineralization and metasomatized subcontinental lithospheric mantle (SCLM) remains poorly understood. To improve our understanding, we present new bulk-rock geochemistry and platinum group element (PGE) concentrations of the SCLM-sourced Aksu Neoproterozoic diabase dykes in Chinese South Tianshan. These data, combined with in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of hydrothermal pyrite grains in the diabase dykes, are used to discuss the SCLM source characteristics in the region and their potential links to formation of gold deposits. The diabase dykes exhibit high Th/Yb (0.47–0.62) and low Nb/U (13.4–16.3) ratios, indicating that magma evolution involves subduction-related fluid metasomatism and limited contamination of the continental crust. This is consistent with little variation in whole-rock Pd/Zr, Cu/Zr, and Ni/MgO ratios, suggesting that no sulfide segregation was caused by crustal contamination and magma mixing. In addition, the diabase dykes show low PGE and Au contents, with high Cu/Pd (>105) and low Cu/Zr (<0.5) ratios, indicating that magmas were derived from low-degree partial melting of the SCLM under S-saturated conditions. Such source characteristics indicate residual sulfides and chalcophile elements (e.g., PGEs, Au, and Cu) were concentrated at the SCLM reservoir in South Tianshan. Hydrothermal pyrite in the studied dykes has similar Au/Ag ratios and trace element distribution patterns to gold-bearing pyrite of lode gold deposits in Chinese South Tianshan, indicating that metasomatized SCLM may have contributed ore metals during the formation of these gold deposits. Adding to the available data, our study highlights that the SCLM may be a potential metal source reservoir, and it may have contributed to formation of the lode gold deposits in Chinese South Tianshan. Full article
Show Figures

Figure 1

23 pages, 6804 KB  
Article
Mineralogy, Geochemistry and Fluid Inclusion Study of the Stibnite Vein-Type Mineralization at Rizana, Northern Greece
by Christos L. Stergiou, Grigorios-Aarne Sakellaris, Vasilios Melfos, Panagiotis Voudouris, Lambrini Papadopoulou, Nikolaos Kantiranis and Evaggelos Skoupras
Geosciences 2023, 13(2), 61; https://doi.org/10.3390/geosciences13020061 - 17 Feb 2023
Cited by 7 | Viewed by 4617
Abstract
The stibnite mineralization at Rizana (Kilkis ore district; Serbo-Macedonian metallogenic province; northern Greece) occurs along a NE–SW-trending brittle shear-zone, which transects a two-mica and an augen-gneiss of the Vertiskos Unit. Barren Triassic A-type granites and satellite pegmatites and aplites, as well as Oligocene-Miocene [...] Read more.
The stibnite mineralization at Rizana (Kilkis ore district; Serbo-Macedonian metallogenic province; northern Greece) occurs along a NE–SW-trending brittle shear-zone, which transects a two-mica and an augen-gneiss of the Vertiskos Unit. Barren Triassic A-type granites and satellite pegmatites and aplites, as well as Oligocene-Miocene plutonic, subvolcanic and volcanic rocks that are variably hydrothermally altered and mineralized, outcrop in the broader region. The mineralization appears as veins, discordant lodes and disseminations. Veins and discordant lodes exhibit massive and brecciated textures. Historic underground mining (1930s–1950s) produced 9000 t of stibnite ore, grading 40% Sb on average. The main ore mineral assemblage includes stibnite + berthierite + sphalerite + pyrite + chalcopyrite + native antimony and traces of wolframite, galena, tetrahedrite, marcasite, pyrrhotite, arsenopyrite, realgar, native arsenic and native gold. Quartz, minor barite and ankerite are the gangue minerals. Sericitization and silicification developed along the shear-zone, forming hydrothermal halos of moderate intensity in the two-mica gneiss. Locally, valentinite, goethite and claudetite are present due to the supergene oxidation of the stibnite mineralization. Bulk ore geochemistry shows enrichments in specific elements including As, Au, Cd, Se, Tl and W. Fluid inclusion microthermometry showed that the mineralization was formed under a limited range of temperatures and salinities. The fluids had low to slightly moderate salinities (6.6–8.1 wt% equiv. NaCl) with low homogenization temperatures (217–254 °C, with a maximum at 220 °C). Full article
(This article belongs to the Collection Geological Features on Magmatic–Hydrothermal Mineralization)
Show Figures

Figure 1

20 pages, 8597 KB  
Article
The System KCl–CaCO3–MgCO3 at 3 GPa
by Anton Shatskiy, Ivan V. Podborodnikov, Anton V. Arefiev and Konstantin D. Litasov
Minerals 2023, 13(2), 248; https://doi.org/10.3390/min13020248 - 9 Feb 2023
Cited by 1 | Viewed by 2150
Abstract
Inclusions in mantle minerals and xenoliths from kimberlites worldwide derived from depths exceeding 100 km vary in composition from alkali-rich saline to carbonatitic. Despite the wide distribution of these melts and their geochemical importance as metasomatic agents that altered the mineralogy and geochemistry [...] Read more.
Inclusions in mantle minerals and xenoliths from kimberlites worldwide derived from depths exceeding 100 km vary in composition from alkali-rich saline to carbonatitic. Despite the wide distribution of these melts and their geochemical importance as metasomatic agents that altered the mineralogy and geochemistry of mantle rocks, the P-T range of stability of these melts remains largely undefined. Here we report new experimental data on phase relations in the system KCl–CaCO3–MgCO3 at 3 GPa obtained using a multianvil press. We found that the KCl–CaCO3 and KCl–MgCO3 binaries have the eutectic type of T-X diagrams. The KCl-calcite eutectic is situated at K2# 56 and 1000 °C, while the KCl-magnesite eutectic is located at K2# 79 and 1100 °C, where K2# = 2KCl/(2KCl + CaCO3 + MgCO3) × 100 mol%. Just below solidus, the KCl–CaCO3–MgCO3 system is divided into two partial ternaries: KCl + magnesite + dolomite and KCl + calcite–dolomite solid solutions. Both ternaries start to melt near 1000 °C. The minimum on the liquidus/solidus surface corresponds to the KCl + Ca0.73Mg0.27CO3 dolomite eutectic situated at K2#/Ca# 39/73, where Ca# = 100∙Ca/(Ca + Mg) × 100 mol%. At bulk Ca# ≤ 68, the melting is controlled by a ternary peritectic: KCl + dolomite = magnesite + liquid with K2#/Ca# 40/68. Based on our present and previous data, the KCl + dolomite melting reaction, expected to control solidus of KCl-bearing carbonated eclogite, passes through 1000 °C at 3 GPa and 1200 °C at 6 GPa and crossovers a 43-mW/m2 geotherm at a depth of 120 km and 37-mW/m2 geotherm at a depth of 190 km. Full article
Show Figures

Figure 1

25 pages, 14027 KB  
Article
Isotope Geochemistry of the Shenshuitan Gold Deposit within the Wulonggou Gold Field in the Eastern Kunlun Orogen, Northwest China: Implications for Metallogeny
by Xuan Zhou, Tong Pan, Qing-Feng Ding, Long Cheng, Kai Song, Fei Liu and Yang Gao
Minerals 2022, 12(3), 339; https://doi.org/10.3390/min12030339 - 9 Mar 2022
Cited by 8 | Viewed by 3608
Abstract
The Shenshuitan gold deposit is located within the Eastern Kunlun Orogen in northwest China. The gold mineralization here occurs primarily within the ductile fault XI. The sulfide mineral assemblage is dominated by pyrite and arsenopyrite, with minor pyrrhotite, chalcopyrite, galena, and sphalerite. Host [...] Read more.
The Shenshuitan gold deposit is located within the Eastern Kunlun Orogen in northwest China. The gold mineralization here occurs primarily within the ductile fault XI. The sulfide mineral assemblage is dominated by pyrite and arsenopyrite, with minor pyrrhotite, chalcopyrite, galena, and sphalerite. Host rocks predominantly consist of Ordovician silicic slate and late Silurian granites, and their alterations include silicification and sericitization. The measured δD and δ18O values of quartz and sericite range from −113.9‰ to −93.1‰ and from 4.6‰ to 12.0‰, respectively. Bulk and in situ δ34S values of sulfides range from −7.3‰ to +9.6‰ and from −3.92‰ to 11.04‰, respectively. Lead isotope compositions of sulfides show 206Pb/204Pb ratios from 18.071 to 19.341, 207Pb/204Pb ratios from 15.530 to 15.67, and 208Pb/204Pb ratios from 37.908 to 38.702. Collectively, the isotope (H, O, S, and Pb) geochemistry suggests that the ore-forming fluids were of a metamorphic origin mixed with meteoric water and that the sulfur and lead were sourced from a mixture of host rocks and original ore-forming metamorphic fluids. Lastly, this deposit can be classified as an orogenic gold deposit associated with the final collision between the Bayan Har–Songpanganzi Terrane and the Eastern Kunlun Orogen during the Later Triassic. Full article
Show Figures

Figure 1

28 pages, 11880 KB  
Article
Zircon Chemistry and Oxidation State of Magmas for the Duobaoshan-Tongshan Ore-Bearing Intrusions in the Northeastern Central Asian Orogenic Belt, NE China
by Jian Wang, Keiko Hattori, Yanchen Yang and Haiqi Yuan
Minerals 2021, 11(5), 503; https://doi.org/10.3390/min11050503 - 10 May 2021
Cited by 7 | Viewed by 4485
Abstract
The Duobaoshan (DBS)-Tongshan (TS) porphyry Cu–(Mo) deposit (4.4 Mt Cu, 0.15 Mt Mo) is located in the northeastern part of the central Asian orogenic belt (CAOB) in northeastern China. It is hosted by early Ordovician dioritic to granodioritic intrusions which are characterized by [...] Read more.
The Duobaoshan (DBS)-Tongshan (TS) porphyry Cu–(Mo) deposit (4.4 Mt Cu, 0.15 Mt Mo) is located in the northeastern part of the central Asian orogenic belt (CAOB) in northeastern China. It is hosted by early Ordovician dioritic to granodioritic intrusions which are characterized by the subduction-related geochemical signatures including high concentrations of large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and low concentrations of heavy REEs (HREEs) and high-field -strength elements (HFSEs), such as Nb, Ta, Zr and Ti in bulk rock compositions. Furthermore, they show adakitic geochemical signatures of high Sr/Y ratios (29~55) due to high Sr (290~750 ppm) and low Y (<18 ppm). Zircon trace element abundances and published Sr-Nd-Hf isotope data of these rocks suggest that the parental magmas for these ore-bearing intrusions were rich in H2O and formed by partial melting of a juvenile lower crust/lithospheric mantle or metasomatized mantle wedge during the northwestward subduction of the Paleo-Asian Ocean before the collision of the Songnen block with the Erguna-Xing’an amalgamated block in the early Carboniferous. Values of Ce4+/Ce3+ and Ce/Nd in zircons are 307~461 and 14.1~20.3 for mineralized granodiorites, and 231~350 and 12.4~18.2 for variably altered diorite and granodiorites in DBS, whereas those for DBS-TS microgabbros are 174~357 and 7.4~22, and 45.9~62.6 and 5.0~5.8 for the early Mosozoic Qz-monzonites, respectively. Zircon Eu/Eu* values are high and similar among mineralized granodiorites (~0.6), altered diorite and granodiorites (~0.6) and the Mesozoic Qz-monzonites (~0.8), whereas the values are low and variable for the DBS-TS microgabbros (0.3~0.6). The magma oxidation state calculated from zircon chemistry and whole rock compositions are FMQ +1.0 to +1.5 in mineralized samples, and FMQ +2.4 to +4.2 in altered samples. The values are comparable to those for the fertile intrusions hosting porphyry Cu-Mo-(Au) deposits in the central and western CAOB and elsewhere in the world. Elevated oxidation state is also observed in the TS microgabbros, FMQ +1.4 to +1.9, and the early Mesozoic Qz-monzonites, FMQ +2.4 to +2.5. Comparison of zircon geochemistry data from porphyry deposists elsewhere suggests that positive Ce anomalies are generally associated with fertile intrusions, but not all igneous rocks with high Ce anomalies are Cu fertile. The findings in this study are useful in exploration work and evaluating oxidation state of magmas for porphyry Cu-(Mo) deposits in the region and elsewhere. Full article
(This article belongs to the Special Issue Geology, Palaeontology, Palaeogeography of the Western Tethys Realm)
Show Figures

Figure 1

36 pages, 23918 KB  
Article
Origin of the Moroccan Touissit-Bou Beker and Jbel Bou Dahar Supergene Non-Sulfide Biomineralization and Its Relevance to Microbiological Activity, Late Miocene Uplift and Climate Changes
by Mohammed Bouabdellah, Wissale Boukirou, Adriana Potra, Erik Melchiorre, Hassan Bouzahzah, Johan Yans, Khadra Zaid, Mohammed Idbaroud, Julien Poot, Augustin Dekoninck and Gilles Levresse
Minerals 2021, 11(4), 401; https://doi.org/10.3390/min11040401 - 11 Apr 2021
Cited by 17 | Viewed by 8537
Abstract
Through integration of Pb-Zn ± Cu non-sulfide mineralogy, texture, and stable isotope (C, O, S) geochemistry, the world-class Touissit- Bou Beker and Jbel Bou Dahar Mississippi Valley-type districts of the Moroccan Atlasic system have been investigated in order to gain insights into the [...] Read more.
Through integration of Pb-Zn ± Cu non-sulfide mineralogy, texture, and stable isotope (C, O, S) geochemistry, the world-class Touissit- Bou Beker and Jbel Bou Dahar Mississippi Valley-type districts of the Moroccan Atlasic system have been investigated in order to gain insights into the origin and processes that contributed to the formation of the base metal non-sulfide mineralization. In both districts, direct replacement (“red calamine”) and wallrock replacement (“white calamine”) ores are observed. Based on the mineral assemblages, ore textures, and crosscutting relations, three distinct mineralizing stages are recognized. The earliest, pre-non-sulfide gossanous stage was a prerequisite for the following supergene stages and constituted the driving force that ultimately promoted the leaching of most base metals such as Zn and Cu and alkalis from their rock sources. The following two stages, referred to as the main supergene “red calamine” and late “white calamine” ore stages, generated the bulk of mineable “calamine” ores in the Touissit-Bou Beker and Jbel Bou Dahar districts. Stable isotope compositions (δ13CV-PDB, δ18OV-SMOW, δ34SCDT) support a three-stage model whereby metals were released by supergene acidic fluids and then precipitated by bacteria and archaea-mediated metal-rich meteoric fluids due to a decrease in temperature and/or increase of fO2. Oxygen isotope thermometry indicates decreasing precipitation temperatures with advancing paragenetic sequence from 33° to 18 °C, with wet to semi-arid to arid climatic conditions. The close spatial relationships between coexisting sulfide and non-sulfide mineralization along with stable isotope constraints suggest that the oxidation of sulfides occurred concurrently after the main stage of the Alpine orogeny between 15 Ma and the present. More importantly, the current data show for the first time the involvement of biologically controlled activity as the major driving process that triggered both oxidation and deposition of supergene mineralization at Jbel Bou Dahar and Touissit-Bou Beker districts. Conclusions drawn from this study therefore have implications for supergene Mississippi Valley-type (MVT) -derived non-sulfide deposits worldwide and account for the prominent role of biological processes in the genesis of this category of ore deposits. Full article
Show Figures

Figure 1

21 pages, 2381 KB  
Review
Identifying Gaps in the Investigation of the Vredefort Granophyre Dikes: A Systematic Literature Review
by Matthew S. Huber and Elizaveta Kovaleva
Geosciences 2020, 10(8), 306; https://doi.org/10.3390/geosciences10080306 - 9 Aug 2020
Cited by 4 | Viewed by 6129
Abstract
The Vredefort impact structure is among the oldest and largest impact structures preserved on Earth. An understanding of its key features can serve as a guide for learning about the development of basin-sized impact structures on Earth and other planetary bodies. One of [...] Read more.
The Vredefort impact structure is among the oldest and largest impact structures preserved on Earth. An understanding of its key features can serve as a guide for learning about the development of basin-sized impact structures on Earth and other planetary bodies. One of these features is the so-called Vredefort granophyre dikes, which formed when molten material from the impact melt sheet was emplaced below the crater floor. The importance of these dikes has been recognized since the earliest studies of the Vredefort structure, nearly 100 years ago. The present study is a systematic literature review to determine the extent to which peer-reviewed scientific publications have generated unique data regarding the granophyre dikes and to investigate how scientific methods used to investigate the granophyre have changed over time. In total, 33 unique studies have been identified. Of those, more studies have been performed into the core-collar dikes than the core dikes. The majority of the studies have focused on field analyses, bulk geochemistry, and the studies of mineral components. The granophyre has long been recognized as a product of post-deformational processes and thus has been a target of age dating to constrain the minimum age of the impact event. In the last 25 years, studies of stable isotopes and shock deformation of minerals in lithic clasts within the dikes have taken place. A small number of geophysical studies relevant to the granophyre dikes have also been undertaken. Overall, there has been a relatively small number of studies on this important rock type, and the studies that have taken place tend to focus on two particular dikes. Several of the dikes have only been investigated by regional studies and have not been specifically targeted. The use of modern techniques has been lacking. More fieldwork, as well as geophysical, isotopic, microstructural studies, and application of novel techniques, are necessary for the granophyre dikes to be truly understood. Full article
Show Figures

Figure 1

16 pages, 6700 KB  
Article
Epithermal Mineralization in the Busang Southeast Zone, Indonesia: New Insight into the Au Prospect at the Center of the Bre-X Fraud
by Evan Slater, Jacob Hanley, Thomas Mulja, Marcos Zentilli and Corwin Trottier
Minerals 2020, 10(8), 698; https://doi.org/10.3390/min10080698 - 6 Aug 2020
Cited by 1 | Viewed by 7494
Abstract
The Busang mineral prospect in Kalimantan, Indonesia, was reported to host a large Au resource until 1997 when it was revealed that drill core samples had been deliberately and systematically contaminated (“salted”) with extraneous Au to falsify resource estimates. One month before the [...] Read more.
The Busang mineral prospect in Kalimantan, Indonesia, was reported to host a large Au resource until 1997 when it was revealed that drill core samples had been deliberately and systematically contaminated (“salted”) with extraneous Au to falsify resource estimates. One month before the fraud was uncovered, Dr. G. Milligan, then professor emeritus of geology, visited the site to collect a suite of core samples for academic study that was deemed representative of the host rocks, alteration, and mineralization of the Busang Southeast Zone. These samples were re-examined here by optical microscopy, electron microprobe (EMPA), whole-rock geochemistry, and fluid inclusion microthermometry to characterize the subsurface geology and hydrothermal mineralization, and to assess reasons why the system is of uneconomic character. The host rocks were variably altered calc-alkaline porphyritic subvolcanic diorites, typical of the lithological units along the mineralized trend in the Kalimantan Gold Belt. Early hydrothermal mineralization with quartz-sulfide (pyrite, chalcopyrite, Cu-sulfosalts) stockwork veinlets associated with pervasive phyllic and propylitic alteration was overprinted by crudely banded quartz-carbonate-sulfide/sulfosalt (pyrite, sphalerite, chalcopyrite, galena, tennantite-tetrahedrite, bournonite-seligmannite) veins. The stockwork veins were associated with up to 140 ppb bulk rock Au, some of which was hosted by Cu-sulfosalts. Microthermometry on quartz-hosted aqueous fluid inclusion assemblages (FIA; n = 13) and single inclusions (non-FIA; n = 20) in quartz-carbonate-sulfide/sulfosalt veins yielded an overall range in homogenization temperatures (Th) between 179 °C and 366 °C and bulk salinities between 1.1 wt.% to 8.6 wt.% NaCl equivalent, with much smaller data ranges for individual FIA (e.g., FIA 3; 239.1 °C to 240.5 °C and 0.5 wt.% to 1.4 wt.% NaCl equivalent). Primary FIA along growth zones in quartz were identified, providing constraints on fluid characteristics at the time of quartz growth. Carbonate-hosted FIA (n = 3) and single inclusions (non-FIA; n = 3) in the same veins yielded Th between 254 °C and 343 °C and bulk salinities of 1.1 wt.% to 11.6 wt.% NaCl equivalent. Likewise, data ranges for individual FIA were much smaller. Many of the geological characteristics of the Busang Southeast Zone were compatible with a telescoped, intermediate-sulfidation epithermal system, having formed from diluted magmatic fluids that precipitated weak base metal mineralization. However, the system was unproductive with respect to Au and Ag, at least within the studied area. Of note, vein textures and fluid inclusion characteristics indicative of boiling or efficient fluid mixing—processes both considered critical for the formation of economic lode gold deposits—were absent in the samples. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 17593 KB  
Article
Mineralogy, Geochemistry and Genesis of Zeolites in Cenozoic Pyroclastic Flows from the Asuni Area (Central Sardinia, Italy)
by Angela Mormone and Monica Piochi
Minerals 2020, 10(3), 268; https://doi.org/10.3390/min10030268 - 16 Mar 2020
Cited by 10 | Viewed by 5424
Abstract
Natural zeolite occurrences have been recognized in several Cenozoic pyroclastic deposits in central Sardinia. This study concerns the mineralogical and geochemical characterization of the zeolitized tuffites in the Asuni area (Oristano province) and aims to complement information regarding the zeolitization processes developed in [...] Read more.
Natural zeolite occurrences have been recognized in several Cenozoic pyroclastic deposits in central Sardinia. This study concerns the mineralogical and geochemical characterization of the zeolitized tuffites in the Asuni area (Oristano province) and aims to complement information regarding the zeolitization processes developed in the nearby Allai deposits. Optical and scanning electron microscopy, X-ray powder diffraction, qualitative vs. quantitative microanalyses and bulk-rock geochemistry were performed. Analytical results allow defining the mineral distribution, textural relationships and geochemical features of the zeolite-bearing rocks. The most abundant secondary minerals are Ca-Na mordenites. Contrarily to the most common worldwide clinoptilolite + mordenite paragenesis, mordenite is dominant and occurs in different morphologies, rarely coexisting with clinoptilolite in the studied volcanic tuffites. Glauconite and dioctahedral smectite complete the authigenic assemblages. The primary volcanic components mostly include plagioclase, quartz and glass shards, roughly retaining their original appearance. The tuffites range in composition from dacite to rhyolite. The collected dataset shows that zeolitization is most abundant in coarser-grained deposits and points to a genetic process that mainly involves an open hydrothermal environment governed by aqueous fluids with significant marine component, in post eruption conditions. Full article
Show Figures

Figure 1

29 pages, 7707 KB  
Article
The Chemical Evolution from Older (323–318 Ma) towards Younger Highly Evolved Tin Granites (315–314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany)
by Marion Tichomirowa, Axel Gerdes, Manuel Lapp, Dietmar Leonhardt and Martin Whitehouse
Minerals 2019, 9(12), 769; https://doi.org/10.3390/min9120769 - 11 Dec 2019
Cited by 16 | Viewed by 4676
Abstract
The sources and critical enrichment processes for granite related tin ores are still not well understood. The Erzgebirge represents one of the classical regions for tin mineralization. We investigated the four largest plutons from the Western Erzgebirge (Germany) for the geochemistry of bulk [...] Read more.
The sources and critical enrichment processes for granite related tin ores are still not well understood. The Erzgebirge represents one of the classical regions for tin mineralization. We investigated the four largest plutons from the Western Erzgebirge (Germany) for the geochemistry of bulk rocks and autocrystic zircons and relate this information to their intrusion ages. The source rocks of the Variscan granites were identified as high-grade metamorphic rocks based on the comparison of Hf-O isotope data on zircons, the abundance of xenocrystic zircon ages as well as Nd and Hf model ages. Among these rocks, restite is the most likely candidate for later Variscan melts. Based on the evolution with time, we could reconstruct enrichment factors for tin and tungsten starting from the protoliths (575 Ma) that were later converted to high-grade metamorphic rocks (340 Ma) and served as sources for the older biotite granites (323–318 Ma) and the tin granites (315–314 Ma). This evolution involved a continuous enrichment of both tin and tungsten with an enrichment factor of ~15 for tin and ~7 for tungsten compared to the upper continental crust (UCC). Ore level concentrations (>10–100 times enrichment) were achieved only in the greisen bodies and dykes by subsequent hydrothermal processes. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Geochemistry and Geochronology 2019)
Show Figures

Figure 1

Back to TopTop