Origin of Early Triassic Hornblende Gabbro from the Yunkai Massif, South China: Constraints from Mineral and Bulk-Rock Geochemistry
Abstract
:1. Introduction
2. Geological Setting and Petrology
3. Analytical Techniques
3.1. Electron Probe Microanalyses (EPMA)
3.2. LA-(MC)ICP-MS Analyses
3.2.1. Zircon U-Pb Age and Hf Isotope Analyses
3.2.2. Trace Element Analyses of Major Rock-Forming Minerals
3.3. SIMS Analyses of Zircon and Apatite O Isotopes
3.4. Bulk-Rock Major and Trace Element Analyses
3.5. Bulk-Rock Sr-Nd-Pb-Hf Isotope Analyses
4. Results
4.1. Zircon U-Pb Age and Hf-O Isotopes
4.2. Mineral Chemistry
4.2.1. Clinopyroxene
4.2.2. Hornblende
4.2.3. Plagioclase
4.2.4. Fe-Ti Oxides
4.2.5. Apatite
4.3. Bulk-Rock Geochemistry
4.3.1. Major and Trace Element Geochemistry
4.3.2. Sr-Nd-Pb-Hf Isotope Geochemistry
5. Discussion
5.1. Magmatic Evolution
5.2. Magma–Mineral Interaction
5.3. Source Characteristics
5.4. Implications for Subduction of the Paleo-Tethys Ocean
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shu, L.S.; Yao, J.L.; Wang, B.; Faure, M.; Charvet, J.; Chen, Y. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Sci. Rev. 2021, 216, 103596. [Google Scholar] [CrossRef]
- Cawood, P.A.; Zhao, G.C.; Yao, J.L.; Wang, W.; Xu, Y.J.; Wang, Y.J. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Sci. Rev. 2018, 186, 173–194. [Google Scholar] [CrossRef]
- Faure, M.; Shu, L.S.; Wang, B.; Charvet, J.; Choulet, F.; Monie, P. Intracontinental subduction: A possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova 2009, 21, 360–368. [Google Scholar] [CrossRef]
- Guo, F.; Wu, Y.M.; Zhang, B.; Zhang, X.B.; Zhao, L.; Liao, J. Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: An overview. Earth-Sci. Rev. 2021, 212, 103448. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhao, G.C.; Ji, S.C.; Peng, T.P. Zircon U–Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Res. 2007, 12, 404–416. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, A.M.; Fan, W.M.; Zhang, Y.H.; Zhang, Y.Z. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: Geochronological and geochemical evidence. Lithos 2013, 160–161, 37–54. [Google Scholar] [CrossRef]
- Shu, L.S.; Wang, B.; Cawood, P.A.; Santosh, M.; Xu, Z.Q. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China. Tectonics 2015, 34, 1600–1621. [Google Scholar] [CrossRef]
- Matthews, K.J.; Maloney, K.T.; Zahirovic, S.; Williams, S.E.; Seton, M.; Müller, R.D. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Chang. 2016, 146, 226–250. [Google Scholar] [CrossRef]
- Qing, L.; Jiang, Y.H.; Du, F.G. Geodynamics of Late Paleozoic to Early Mesozoic Magmatism in South China: Insights from the Genesis of the Late Permian S-type Granites in the Yunkai Massif. J. Geol. 2020, 128, 275–301. [Google Scholar] [CrossRef]
- Xu, W.C.; Luo, B.J.; Xu, Y.J.; Wang, L.; Chen, Q. Geochronology, geochemistry, and petrogenesis of late Permian to early Triassic mafic rocks from Darongshan, South China: Implications for ultrahigh-temperature metamorphism and S-type granite generation. Lithos 2018, 308–309, 168–180. [Google Scholar] [CrossRef]
- Guo, F.; Li, H.X.; Fan, W.M.; Li, J.Y.; Zhao, L.; Huang, M.W. Variable sediment flux in generation of Permian subduction-related mafic intrusions from the Yanbian region, NE China. Lithos 2016, 261, 195–215. [Google Scholar] [CrossRef]
- Kay, R.; Kay, S.M. Delamination and delamination magmatism. Tectonophysics 1993, 219, 177–189. [Google Scholar] [CrossRef]
- Xu, Y.G.; He, B.; Chung, S.L.; Menzies, M.A.; Frey, F.A. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 2004, 32, 917–920. [Google Scholar] [CrossRef]
- Mandal, A.; Ray, A.; Debnath, M.; Paul, S.P. Petrology, geochemistry of hornblende gabbro and associated dolerite dyke of Paharpur, Puruliya, West Bengal: Implication for petrogenetic process and tectonic setting. J. Earth Syst. Sci. 2012, 121, 793–812. [Google Scholar] [CrossRef]
- Beard, J.S. Characteristic mineralogy of arc-related cumulate gabbros: Implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 1986, 14, 848–851. [Google Scholar] [CrossRef]
- Hickey-Vargas, R.; Abdollahi, M.J.; Parada, M.A.; López-Escobar, L.; Frey, F.A. Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone: Implications for crustal composition and magma-crust interaction. Contrib. Mineral. Petrol. 1995, 119, 331–344. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, F.; Fan, W.M.; Li, C.W.; Qin, X.F.; Li, H.X. Origin of the granulite enclaves in Indo-Sinian peraluminous granites, South China and its implication for crustal anatexis. Lithos 2012, 150, 209–226. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Qin, X.F.; Wang, Z.Q.; Gong, J.H.; Yang, W.; Zhu, A.H.; Shi, H.; Zhan, J.Y. Geochronology, geochemistry and geological significance of gabbros from Xindi-Anping area, southeastern Guangxi. Acta Petrol. Mineral. 2016, 35, 791–803, (In Chinese with English Abstract). [Google Scholar]
- Zhou, D.; Ke, X.Z.; Wang, X.D.; Wang, L.; Wang, J. Geochronology, Geochemistry and Petrogenesis of Late Permian Fe-Ti-P-Rich Ultramafic Rocks in Yunkai Terrane, South China. Earth Sci. J. China Univ. Geosci. 2021, 46, 1295–1310, (In Chinese with English Abstract). [Google Scholar]
- Li, D.X.; Kang, Z.Q.; Liu, D.; Chen, H.; Cao, Y.; Wei, N.S.; Wei, T.W.; Wang, R.; Liu, D.M.; Zhou, T.; et al. Geochronological, Geochemical and Geological Significance of Huilong Gabbroic Pluton in Southeastern Guangxi. Geoscience 2020, 34, 1015–1027, (In Chinese with English Abstract). [Google Scholar]
- Chen, C.H.; Hsieh, P.S.; Lee, C.Y.; Zhou, H.W. Two episodes of the Indosinian thermal event on the South China Block: Constraints from LA-ICPMS U–Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite. Gondwana Res. 2011, 19, 1008–1023. [Google Scholar] [CrossRef]
- Li, Y.J.; Wei, J.H.; Santosh, M.; Tan, J.; Fu, L.B.; Zhao, S.Q. Geochronology and petrogenesis of Middle Permian S-type granitoid in southeastern Guangxi Province, South China: Implications for closure of the eastern Paleo-Tethys. Tectonophysics 2016, 682, 1–16. [Google Scholar] [CrossRef]
- Charvet, J.; Shu, L.S.; Faure, M.; Choulet, F.; Wang, B.; Lu, H.F.; Breton, N.L. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen. J. Asian Earth Sci. 2010, 39, 309–330. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H.; Wartho, J.A.; Clark, C.; Li, W.X.; Zhang, C.L.; Bao, C.M. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geol. Soc. Am. Bull. 2010, 122, 772–793. [Google Scholar] [CrossRef]
- Lin, W.; Wang, Q.C.; Chen, K. Phanerozoic tectonics of south China block: New insights from the polyphase deformation in the Yunkai massif. Tectonics 2008, 27, TC6004. [Google Scholar] [CrossRef]
- Liu, S.F.; Peng, S.B.; Kusky, T.; Polat, A.; Han, Q.S. Origin and tectonic implications of an Early Paleozoic (460–440 Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China. Lithos 2018, 322, 104–128. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, X.S.; Zou, H.B.; Liu, L. Early Paleozoic crust–mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr–Nd–Hf isotopes of granites. Lithos 2014, 184–187, 416–435. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, X.L.; He, P.L.; Li, J. I-type granitoids associated with the early Paleozoic intracontinental orogenic collapse along pre-existing block boundary in South China. Lithos 2016, 248–251, 353–365. [Google Scholar] [CrossRef]
- Xu, H.; Huang, B.C.; Ni, Z.X.; Han, S.P.; Pan, Y.W.; Huang, Y. LA-ICP-MS zircon U-Pb ages, petrogeochemistry and tectonic significance of the Indosinian basic intrusive rocks in the Tengxian region, southeastern Guangxi. Sediment. Geol. Tethyan Geol. 2015, 35, 76–87, (In Chinese with English Abstract). [Google Scholar]
- Zhang, B.Y.; Zhang, H.X.; Zhao, Z.H.; Shi, M.Q.; Yang, S.F.; Chen, H.L. Permian island-arc basalt in West Guangdong and East Guangxi tectonic belt, South China: Implications for the Paleotethys. J. Nanjing Univ. (Nat. Sci.) 2003, 39, 46–54, (In Chinese with English Abstract). [Google Scholar]
- Jiao, S.J.; Li, X.H.; Huang, H.Q.; Deng, X.G. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China. Lithos 2015, 239, 217–233. [Google Scholar] [CrossRef]
- Qin, X.F.; Wang, Z.Q.; Zhang, Y.L.; Pan, L.Z.; Hu, G.A.; Zhou, F.S. Geochemistry of Permian Mafic Igneous Rocks from the Napo-Qinzhou Tectonic Belt in Southwest Guangxi, Southwest China: Implications for Arc-Back Arc Basin Magmatic Evolution. Acta Geol. Sin. 2012, 86, 1182–1199. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Triassic granites in South China: A geochemical perspective on their characteristics, petrogenesis, and tectonic significance. Earth-Sci. Rev. 2017, 173, 266–294. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, F.; Zhang, X.B.; Zhao, L. Magmatic degassing and fluid metasomatism promote compositional variation from I-type to peralkaline A-type granite in late Cretaceous Fuzhou felsic complex, SE China. Am. Mineral. 2023. [Google Scholar] [CrossRef]
- Norman, M.D.; Pearson, N.J.; Sharma, A.; Griffin, W.L. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses. Geostand. Newsl. 1996, 20, 247–261. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostand. Newsl. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Gao, S.; Liu, X.M.; Yuan, H.L.; Hattendorf, B.; Günther, D.; Chen, L.; Hu, S.H. Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostand. Newsl. 2002, 26, 181–196. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Tu, X.L.; Zhang, H.; Deng, W.F.; Ling, M.X.; Liang, H.Y.; Liu, Y.; Sun, W.D. Application of resolution in-situ laser ablation ICP-MS in trace element analyses. Geochimica 2011, 40, 83–98, (In Chinese with English Abstract). [Google Scholar]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Xu, P.; Wu, F.Y.; Xie, L.W.; Yang, Y.H. Hf isotopic compositions of the standard zircons for U-Pb dating. Chin. Sci. Bull. 2004, 49, 1642–1648. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostand. Geoanal. Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Wu, S.; Wörner, G.; Jochum, K.P.; Stoll, B.; Simon, K.; Kronz, A. The Preparation and Preliminary Characterisation of Three Synthetic Andesite Reference Glass Materials (ARM-1, ARM-2, ARM-3) for In Situ Microanalysis. Geostand. Geoanal. Res. 2019, 43, 567–584. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J.; Paton, C. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Chu, G.B.; Chen, H.Y.; Zhang, S.T.; Zhang, Y.; Cheng, J.M. Geochemistry and geochronology of multi-generation garnet: New insights on the genesis and fluid evolution of prograde skarn formation. Geosci. Front. 2023, 14, 101495. [Google Scholar] [CrossRef]
- Li, X.H.; Li, W.X.; Li, Q.L.; Wang, X.C.; Liu, Y.; Yang, Y.H. Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U–Pb dating, Hf–O isotopes and whole-rock geochemistry. Lithos 2010, 114, 1–15. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further Characterisation of the 91500 Zircon Crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Xia, X.P.; Cui, Z.X.; Li, W.; Zhang, W.F.; Yang, Q.; Hui, H.; Lai, C.K. Zircon water content: Reference material development and simultaneous measurement of oxygen isotopes by SIMS. J. Anal. At. Spectrom. 2019, 34, 1088–1097. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.C.; Li, X.H. Simultaneous and precise determination of 40 trace element elements using ICP-MS. Geochimica 1996, 25, 552–558, (In Chinese with English Abstract). [Google Scholar]
- White, W.M.; Albarède, F.; Télouk, P. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chem. Geol. 2000, 167, 257–270. [Google Scholar] [CrossRef]
- Wei, G.J.; Liang, X.R.; Li, X.H.; Liu, Y. Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC-ICPMS. Geochimica 2002, 31, 295–299, (In Chinese with English Abstract). [Google Scholar]
- Liang, X.R.; Wei, G.J.; Li, X.H.; Liu, Y. Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica 2003, 32, 91–96, (In Chinese with English Abstract). [Google Scholar]
- Li, X.H.; Li, Z.X.; Wingate, M.T.D.; Chung, S.L.; Liu, Y.; Lin, G.C.; Li, W.X. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Res. 2006, 146, 1–15. [Google Scholar] [CrossRef]
- Valley, J.W. Oxygen Isotopes in Zircon. Rev. Mineral. Geochem. 2003, 53, 343–385. [Google Scholar] [CrossRef]
- Guo, F.; Fan, W.M.; Li, C.W.; Miao, L.C.; Zhao, L. Early Paleozoic subduction of the Paleo-Asian Ocean: Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia. Sci. China Ser. D Earth Sci. 2009, 52, 940–951. [Google Scholar] [CrossRef]
- Garzanti, E.; Bayon, G.; Vermeesch, P.; Barbarano, M.; Pastore, G.; Resentini, A.; Dennielou, B.; Jouet, G. The Zambezi deep-sea fan: Mineralogical, REE, Zr/Hf, Nd-isotope, and zircon-age variability in feldspar-rich passive-margin turbidites. J. Sediment. Res. 2022, 92, 1022–1043. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhang, K.X.; Lin, S.F.; He, W.H.; Kou, X.H.; Zhou, X.H. Turbidite record of a middle Neoproterozoic active continental margin in the West Cathaysia terrane, South China: Implications for the relationships between the Yangtze and Cathaysia blocks and their positions in Rodinia. Precambrian Res. 2020, 337, 105457. [Google Scholar] [CrossRef]
- Bindeman, I. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Rev. Mineral. Geochem. 2008, 69, 445–478. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and Barometers for Volcanic Systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Putirka, K. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Mineral. 2016, 101, 841–858. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol. 2009, 160, 45–66. [Google Scholar] [CrossRef]
- Ridolfi, F. Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals 2021, 11, 324. [Google Scholar] [CrossRef]
- Hirschmann, M.M.; Ghiorso, M.S.; Davis, F.A.; Gordon, S.M.; Mukherjee, S.; Grove, T.L.; Krawczynski, M.; Medard, E.; Till, C.B. Library of Experimental Phase Relations (LEPR): A database and Web portal for experimental magmatic phase equilibria data. Geochem. Geophys. Geosyst. 2008, 9, Q03011. [Google Scholar] [CrossRef]
- Bruand, E.; Storey, C.; Fowler, M.; Heilimo, E. Oxygen isotopes in titanite and apatite, and their potential for crustal evolution research. Geochim. Cosmochim. Acta 2019, 255, 144–162. [Google Scholar] [CrossRef]
- Pearce, J.A. Immobile Element Fingerprinting of Ophiolites. Elements 2014, 10, 101–108. [Google Scholar] [CrossRef]
- Plank, T. The Chemical Composition of Subducting Sediments. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 4, pp. 607–629. [Google Scholar] [CrossRef]
- Latypov, R.M.; Chistyakova, S.Y.; Namur, O.; Barnes, S. Dynamics of evolving magma chambers: Textural and chemical evolution of cumulates at the arrival of new liquidus phases. Earth-Sci. Rev. 2020, 210, 103388. [Google Scholar] [CrossRef]
- Guo, F.; Nakamura, E.; Fan, W.M.; Kobayashi, K.; Li, C.W. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. J. Petrol. 2007, 48, 661–692. [Google Scholar] [CrossRef]
- Harada, H.; Tsujimori, T.; Kon, Y.; Aoki, S.; Aoki, K. Nature and timing of anatectic event of the Hida Belt (Japan): Constraints from titanite geochemistry and U-Pb age of clinopyroxene-bearing leucogranite. Lithos 2021, 398–399, 106256. [Google Scholar] [CrossRef]
- Marks, M. Quantification of Magmatic and Hydrothermal Processes in a Peralkaline Syenite-Alkali Granite Complex Based on Textures, Phase Equilibria, and Stable and Radiogenic Isotopes. J. Petrol. 2003, 44, 1247–1280. [Google Scholar] [CrossRef]
- Zartman, R.E.; Doe, B.R. Plumbotectonics—The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Kemp, A.I.S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol. 2006, 226, 144–162. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Plank, T.; Prytulak, J. The Hf–Nd isotopic composition of marine sediments. Geochim. Cosmochim. Acta 2011, 75, 5903–5926. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, F.; Fan, W.M.; Huang, M.W. Roles of Subducted Pelagic and Terrigenous Sediments in Early Jurassic Mafic Magmatism in NE China: Constraints on the Architecture of Paleo-Pacific Subduction Zone. J. Geophys. Res. Solid Earth 2019, 124, 2525–2550. [Google Scholar] [CrossRef]
- Plank, T.; Cooper, L.B.; Manning, C.E. Emerging geothermometers for estimating slab surface temperatures. Nat. Geosci. 2009, 2, 611–615. [Google Scholar] [CrossRef]
- Macdonald, R.; Hawkesworth, C.J.; Heath, E. The Lesser Antilles volcanic chain: A study in arc magmatism. Earth-Sci. Rev. 2000, 49, 1–76. [Google Scholar] [CrossRef]
- Hanyu, T.; Tatsumi, Y.; Nakai, S.I.; Chang, Q.; Miyazaki, T.; Sato, K.; Tani, K.; Shibata, T.; Yoshida, T. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry. Geochem. Geophys. Geosyst. 2006, 7, Q08002. [Google Scholar] [CrossRef]
- Guo, F.; Fan, W.M.; Wang, Y.J.; Li, C.W. When Did the Emeishan Mantle Plume Activity Start? Geochronological and Geochemical Evidence from Ultramafic-Mafic Dikes in Southwestern China. Int. Geol. Rev. 2004, 46, 226–234. [Google Scholar] [CrossRef]
- Ducea, M.N. Fingerprinting orogenic delamination. Geology 2011, 39, 191–192. [Google Scholar] [CrossRef]
- Karsli, O.; Dokuz, A.; Uysal, İ.; Aydin, F.; Kandemir, R.; Wijbrans, J. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: Implications for crustal thickening to delamination. Lithos 2010, 114, 109–120. [Google Scholar] [CrossRef]
- Ali, S.; Abart, R.; Sayyed, M.I.; Hauzenberger, C.A.; Sami, M. Petrogenesis of the Wadi El-Faliq Gabbroic Intrusion in the Central Eastern Desert of Egypt: Implications for Neoproterozoic Post-Collisional Magmatism Associated with the Najd Fault System. Minerals 2023, 13, 10. [Google Scholar] [CrossRef]
- Zhai, Q.G.; Hu, P.Y.; Tang, Y.; Liu, Y.M.; Wang, W. Early Jurassic lithospheric delamination in the Amdo microcontinent, central Tibet: Inferred from coeval OIB- and MORB-like gabbros. Lithos 2023, 456–457, 107314. [Google Scholar] [CrossRef]
- Yan, X.Y.; Yang, D.B.; Xu, W.L.; Yang, H.T.; Mu, M.S.; Wang, A.Q.; Quan, Y.K.; Hao, L.R. Modification of the lithospheric mantle induced by recycled crustal components: Insights from Early Cretaceous appinites from the Liaodong Peninsula, NE China. Geol. Soc. Am. Bull. 2022, 135, 233–248. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, D.C.; Wang, Q.; Weinberg, R.F.; Wang, R.; Li, S.M.; Zhang, L.L.; Zhao, Z.-D. Cumulate Mush Hybridization by Melt Invasion: Evidence from Compositionally Diverse Amphiboles in Ultramafic–Mafic Arc Cumulates within the Eastern Gangdese Batholith, Southern Tibet. J. Petrol. 2021, 62, egab073. [Google Scholar] [CrossRef]
- Zhou, J.S.; Yang, Z.S.; Hou, Z.Q.; Wang, Q. Amphibole-rich cumulate xenoliths in the Zhazhalong intrusive suite, Gangdese arc: Implications for the role of amphibole fractionation during magma evolution. Am. Mineral. 2020, 105, 262–275. [Google Scholar] [CrossRef]
- Liu, J.L.; Tran, M.D.; Tang, Y.; Nguyen, Q.L.; Tran, T.H.; Wu, W.B.; Chen, J.F.; Zhang, Z.C.; Zhao, Z.D. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications. Gondwana Res. 2012, 22, 628–644. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, F.; Zhang, X.B.; Wu, Y.M.; Wang, G.Q.; Zhao, L. Early Cretaceous subduction of Paleo-Pacific Ocean in the coastal region of SE China: Petrological and geochemical constraints from the mafic intrusions. Lithos 2019, 334–335, 8–24. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; He, B.; Li, W.X.; Li, Q.L.; Gao, Y.Y.; Wang, X.C. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U–Pb, Lu–Hf and O isotope analyses of detrital zircons. Chem. Geol. 2012, 328, 195–207. [Google Scholar] [CrossRef]
- Su, H.M.; Jiang, S.Y.; Zhang, D.Y.; Wu, X.K. Partial Melting of Subducted Sediments Produced Early Mesozoic Calc-alkaline Lamprophyres from Northern Guangxi Province, South China. Sci. Rep. 2017, 7, 4864. [Google Scholar] [CrossRef]
- Golovin, A.V.; Sharygin, I.S.; Kamenetsky, V.S.; Korsakov, A.V.; Yaxley, G.M. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites. Chem. Geol. 2018, 483, 261–274. [Google Scholar] [CrossRef]
- Cai, J.X.; Zhang, K.J. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics 2009, 467, 35–43. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Guo, F.; Zhao, L. Origin of Early Triassic Hornblende Gabbro from the Yunkai Massif, South China: Constraints from Mineral and Bulk-Rock Geochemistry. Geosciences 2024, 14, 147. https://doi.org/10.3390/geosciences14060147
Wen Y, Guo F, Zhao L. Origin of Early Triassic Hornblende Gabbro from the Yunkai Massif, South China: Constraints from Mineral and Bulk-Rock Geochemistry. Geosciences. 2024; 14(6):147. https://doi.org/10.3390/geosciences14060147
Chicago/Turabian StyleWen, Yaqian, Feng Guo, and Liang Zhao. 2024. "Origin of Early Triassic Hornblende Gabbro from the Yunkai Massif, South China: Constraints from Mineral and Bulk-Rock Geochemistry" Geosciences 14, no. 6: 147. https://doi.org/10.3390/geosciences14060147
APA StyleWen, Y., Guo, F., & Zhao, L. (2024). Origin of Early Triassic Hornblende Gabbro from the Yunkai Massif, South China: Constraints from Mineral and Bulk-Rock Geochemistry. Geosciences, 14(6), 147. https://doi.org/10.3390/geosciences14060147