Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,581)

Search Parameters:
Keywords = building construction technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1748 KiB  
Article
Between Text and Form: Expanded Textuality in Contemporary Architecture
by Manuel Iglesias-Vázquez
Humanities 2025, 14(8), 163; https://doi.org/10.3390/h14080163 (registering DOI) - 6 Aug 2025
Abstract
This article explores the concept of textuality as embedded within contemporary architecture, understood as the capacity of buildings to generate meanings, narratives, and interpretations that transcend their physical and functional dimensions. An interdisciplinary approach is adopted, integrating architectural theory, semiotics, hermeneutics, and cultural [...] Read more.
This article explores the concept of textuality as embedded within contemporary architecture, understood as the capacity of buildings to generate meanings, narratives, and interpretations that transcend their physical and functional dimensions. An interdisciplinary approach is adopted, integrating architectural theory, semiotics, hermeneutics, and cultural studies, positioning architecture as a form of symbolic production deeply intertwined with current social and technological contexts. The primary aim is to demonstrate how certain paradigmatic buildings operate as open texts that engage in dialogue with their users, urban surroundings, and cultural frameworks. The methodology combines theoretical analysis with an in-depth study of three emblematic cases: the Guggenheim Museum in Bilbao, the Centre Pompidou in Paris, and the Seattle Public Library. The findings reveal that these buildings articulate multiple layers of meaning, fostering rich and participatory interpretive experiences that influence both the perception and construction of public space. The study concludes that contemporary architecture functions as a narrative and symbolic device that actively contributes to the shaping of collective imaginaries. The article also identifies the study’s limitations and proposes future research directions concerning architectural textuality within the context of emerging digital technologies. Full article
(This article belongs to the Special Issue Beyond and in the Margins of the Text and Textualities)
Show Figures

Figure 1

25 pages, 3529 KiB  
Article
Measuring Erlang-Based Scalability and Fault Tolerance on the Edge
by Daniel Ferenczi, Gergely Ruda and Melinda Tóth
Sensors 2025, 25(15), 4843; https://doi.org/10.3390/s25154843 - 6 Aug 2025
Abstract
Embedded systems in IoT are expected to be run by reliable, resource-efficient software. Devices on the edge are typically required to communicate with central nodes, and in some setups with each other, constituting a distributed system. The Erlang language, favored for its constructs [...] Read more.
Embedded systems in IoT are expected to be run by reliable, resource-efficient software. Devices on the edge are typically required to communicate with central nodes, and in some setups with each other, constituting a distributed system. The Erlang language, favored for its constructs that support building fault-tolerant, distributed systems, offers solutions to these challenges. Its dynamic type system and higher-level abstractions enable fast development, while also featuring tools for building highly available and fault-tolerant applications. To study the viability of using Erlang in embedded systems, we analyze the solutions the language offers, contrasting them with the challenges of developing embedded systems, with a particular focus on resource use. We measure the footprint of the language’s constructs in executing tasks characteristic of end devices, such as gathering, processing and transmitting sensor data. We conduct our experiments with constructs and data of varying sizes to account for the diversity in software complexity of real-world applications. Our measured data can serve as a basis for future research, supporting the design of the software stack for embedded systems. Our results demonstrate that Erlang is an ideal technology for implementing software on embedded systems and a suitable candidate for developing a prototype for a real-world use case. Full article
Show Figures

Figure 1

19 pages, 541 KiB  
Article
Export-Led Growth Under the Digital Economy: Evidence from China’s 31 Provinces
by Xiaomei Li, Radziah Adam and Ningjun Deng
Sustainability 2025, 17(15), 7111; https://doi.org/10.3390/su17157111 - 6 Aug 2025
Abstract
Under the rapid development of the digital economy, the interactive relationship between exports and the digital economy has become an important issue for promoting regional economic growth. Based on the panel data of 31 provinces and municipalities in China from 2012 to 2022, [...] Read more.
Under the rapid development of the digital economy, the interactive relationship between exports and the digital economy has become an important issue for promoting regional economic growth. Based on the panel data of 31 provinces and municipalities in China from 2012 to 2022, this paper systematically examines the impact of exports on economic growth and the moderating role of the digital economy, and it introduces research and development (R&D) investment to test its mediating mechanism. The research finds that exports significantly promote regional economic growth. The digital economy has a negative moderating effect on the export growth effect, and it is significant in the eastern region but not significant in the central and western regions, showing obvious regional heterogeneity. R&D investment has played a partial mediating role between exports and economic growth. This paper suggests that the government should focus on regional differences, promote the deep integration of the digital economy and exports, enhance technological innovation capabilities, formulate differentiated policies based on local conditions, strengthen the construction of digital infrastructure, optimize the export structure, support the development of R&D-driven enterprises, and build a digital export system that promotes regional coordination and high-quality growth, so as to achieve high-quality coordinated sustainable regional development. This paper also has certain reference value for other developing economies, in promoting the integration of the digital economy and trade. Full article
Show Figures

Figure 1

27 pages, 917 KiB  
Article
Information Sharing Barriers of Construction Projects Toward Circular Economy: Review and Framework Development
by Yuhui Sun, Raufdeen Rameezdeen, Christopher W. K. Chow and Jing Gao
Buildings 2025, 15(15), 2744; https://doi.org/10.3390/buildings15152744 - 4 Aug 2025
Viewed by 50
Abstract
The construction industry is transitioning towards the circular economy, an approach that effectively reduces the industry’s environmental impact and promotes sustainability. However, realising the circular economy goal requires adequate information sharing among stakeholders and across the building lifecycle stages. This research examines the [...] Read more.
The construction industry is transitioning towards the circular economy, an approach that effectively reduces the industry’s environmental impact and promotes sustainability. However, realising the circular economy goal requires adequate information sharing among stakeholders and across the building lifecycle stages. This research examines the barriers that impede the information-sharing process in construction projects for the circular economy. This research adopts the framework of the information-sharing process, which suggests four essential components: context, content, people, and media. This study systematically searches and analyses the literature to identify and classify the information sharing barriers in the circular economy context, as well as their interaction. This study also conducts a case study to validate the information barrier framework and the findings. The findings suggest that information barriers are interlinked and require comprehensive solutions from the aspects of technology, organisation, and people, instead of single-aspect solutions. As this study provides insights into the systemic complexities of how information flows within the circular economy implementation system, it consequently contributes to the improvement of sustainable construction practices. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

23 pages, 3940 KiB  
Article
Recovery Strategies for Combined Optical Storage Systems Based on System Short-Circuit Ratio (SCR) Thresholds
by Qingji Yang, Baohong Li, Qin Jiang and Qiao Peng
Energies 2025, 18(15), 4112; https://doi.org/10.3390/en18154112 - 3 Aug 2025
Viewed by 205
Abstract
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a [...] Read more.
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a photovoltaic storage joint system based on the system’s short-circuit ratio threshold. Firstly, the principles and control modes of the photovoltaic (PV) system, energy storage system (ESS), and high-voltage direct current (DC) transmission system are studied separately to build an overall model; secondly, computational determinations of the short-circuit ratio under different scenarios are introduced to analyze the strength of the system, and the virtual inertia and virtual damping of the PV system are configured based on this; finally, the change trend of the storage system’s state of charge (SOC) is computed and observed, and the limits of what the system can support in each stage are determined. An electromagnetic transient simulation model of a black start system is constructed in PSCAD/EMTDC, and according to the proposed recovery strategy, the system frequency is maintained in the range of 49.4~50.6 Hz during the entire black start process; the fluctuation in maximum frequency after the recovery of the DC transmission system is no more than 0.1%; and the fluctuation in photovoltaic power at each stage is less than 3%. In addition, all the key indexes meet the requirements for black start technology, which verifies the validity of the strategy and provides theoretical support and a practical reference for the black start of a grid with variable energy sources. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
Show Figures

Figure 1

16 pages, 11765 KiB  
Article
The European Influence on Qing Dynasty Architecture: Design Principles and Construction Innovations Across Cultures
by Manuel V. Castilla
Heritage 2025, 8(8), 311; https://doi.org/10.3390/heritage8080311 - 2 Aug 2025
Viewed by 208
Abstract
The design and planning of Western-style constructions during the early Qing Dynasty in China constituted a significant multicultural encounter that fused technological advancement with aesthetic innovation. This cultural interplay is particularly evident in the imperial garden and pavilion projects commissioned by the Qing [...] Read more.
The design and planning of Western-style constructions during the early Qing Dynasty in China constituted a significant multicultural encounter that fused technological advancement with aesthetic innovation. This cultural interplay is particularly evident in the imperial garden and pavilion projects commissioned by the Qing court, which served as physical and symbolic sites of cross-cultural dialogue. Influenced by the intellectual and artistic movements of the European Renaissance, Western architectural concepts gradually found their way into the spatial and visual language of Chinese architecture, especially within the royal gardens and aristocratic buildings of the time. These structures were not simply imitative but rather represented a selective adaptation of Western ideas to suit Chinese imperial tastes and principles. This article examines the architectural language that emerged from this encounter between Chinese and European cultures, analysing symbolic motifs, spatial design, ornamental aesthetics, the application of linear perspective, and the integration of foreign architectural forms. These elements collectively functioned as tools to construct a unique visual discourse that communicated both political authority and cultural hybridity. The findings underscore that this architectural phenomenon was not merely stylistic imitation, but rather a dynamic convergence of technological knowledge and artistic vision across cultural boundaries. Full article
Show Figures

Figure 1

24 pages, 1380 KiB  
Article
Critical Smart Functions for Smart Living Based on User Perspectives
by Benjamin Botchway, Frank Ato Ghansah, David John Edwards, Ebenezer Kumi-Amoah and Joshua Amo-Larbi
Buildings 2025, 15(15), 2727; https://doi.org/10.3390/buildings15152727 - 1 Aug 2025
Viewed by 268
Abstract
Smart living is strongly promoted to enhance the quality of life via the application of innovative solutions, and this is driven by domain specialists and policymakers, including designers, urban planners, computer engineers, and property developers. Nonetheless, the actual user, whose views ought to [...] Read more.
Smart living is strongly promoted to enhance the quality of life via the application of innovative solutions, and this is driven by domain specialists and policymakers, including designers, urban planners, computer engineers, and property developers. Nonetheless, the actual user, whose views ought to be considered during the design and development of smart living systems, has received little attention. Thus, this study aims to identify and examine the critical smart functions to achieve smart living in smart buildings based on occupants’ perceptions. The aim is achieved using a sequential quantitative research method involving a literature review and 221 valid survey data gathered from a case of a smart student residence in Hong Kong. The method is further integrated with descriptive statistics, the Kruskal–Walli’s test, and the criticality test. The results were validated via a post-survey with related experts. Twenty-six critical smart functions for smart living were revealed, with the top three including the ability to protect personal data and information privacy, provide real-time safety and security, and the ability to be responsive to users’ needs. A need was discovered to consider the context of buildings during the design of smart living systems, and the recommendation is for professionals to understand the kind of digital technology to be integrated into a building by strongly considering the context of the building and how smart living will be achieved within it based on users’ perceptions. The study provides valuable insights into the occupants’ perceptions of critical smart features/functions for policymakers and practitioners to consider in the construction of smart living systems, specifically students’ smart buildings. This study contributes to knowledge by identifying the critical smart functions to achieve smart living based on occupants’ perceptions of smart living by considering the specific context of a smart student building facility constructed in Hong Kong. Full article
Show Figures

Figure 1

31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 - 1 Aug 2025
Viewed by 155
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

33 pages, 1619 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 - 1 Aug 2025
Viewed by 255
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
Show Figures

Figure 1

25 pages, 771 KiB  
Article
Parental Involvement in Youth Sports: A Phenomenological Analysis of the Coach–Athlete–Parent Relationship
by Kallirroi Ntalachani, Aspasia Dania, Konstantinos Karteroliotis and Nektarios Stavrou
Youth 2025, 5(3), 81; https://doi.org/10.3390/youth5030081 - 1 Aug 2025
Viewed by 183
Abstract
Participation in organized sport is widely encouraged for youth development, yet positive outcomes are not guaranteed. Parents play a pivotal role in shaping young athletes’ experiences, requiring emotional support, interpersonal skills, and self-regulation. This study examines the meanings parents attribute to their children’s [...] Read more.
Participation in organized sport is widely encouraged for youth development, yet positive outcomes are not guaranteed. Parents play a pivotal role in shaping young athletes’ experiences, requiring emotional support, interpersonal skills, and self-regulation. This study examines the meanings parents attribute to their children’s sports participation and how young athletes construct their experiences under parental and coaching influences. An interpretive phenomenological methodology involved semi-structured interviews with coaches, focus groups with parents, and open-ended questionnaires to young athletes. Seventeen players (M = 11.2 years, SD = 0.59), nineteen parents (M = 47.6 years, SD = 3.61), and two coaches from the same football club volunteered to participate in the study. Participants were selected through purposive sampling to ensure a homogeneous experience. The findings reveal that parental involvement balances support and pressure, while trust-building between parents and coaches significantly impacts the athletes’ experiences. The evolving role of technology and the importance of social dynamics within teams also emerged as critical factors. Intrinsic motivation, fostering emotional bonding through the sport, and adopting a developmental rather than purely competitive framework were emphasized factors identified as supporting positive youth sport experiences. These findings offer insights into how interconnected relationships among parents, coaches, and athletes influence children’s sports engagement and development. Full article
Show Figures

Figure 1

20 pages, 994 KiB  
Article
Analyzing Influencing Factors of Low-Carbon Technology Adoption in Hospital Construction Projects Based on TAM-TOE Framework
by Lei Jin, Dezhi Li, Yubin Zhang and Yi Zhao
Buildings 2025, 15(15), 2703; https://doi.org/10.3390/buildings15152703 - 31 Jul 2025
Viewed by 169
Abstract
Hospitals rank among the most energy-intensive public building typologies and offer substantial potential for carbon mitigation. However, their construction phase has received limited scholarly attention within China’s ‘dual carbon’ agenda. To address this research gap, this study develops and empirically validates an integrated [...] Read more.
Hospitals rank among the most energy-intensive public building typologies and offer substantial potential for carbon mitigation. However, their construction phase has received limited scholarly attention within China’s ‘dual carbon’ agenda. To address this research gap, this study develops and empirically validates an integrated Technology Acceptance Model and Technology-Organization-Environment framework tailored for hospital construction projects. The study not only identifies 12 critical adoption factors but also offers recommendations and discusses the relevance to multiple Sustainable Development Goals. This research provides both theoretical and practical insights for promoting sustainable hospital construction practices. Full article
(This article belongs to the Special Issue Urban Infrastructure and Resilient, Sustainable Buildings)
Show Figures

Figure 1

17 pages, 3595 KiB  
Article
Sensor-Based Monitoring of Fire Precursors in Timber Wall and Ceiling Assemblies: Research Towards Smarter Embedded Detection Systems
by Kristian Prokupek, Chandana Ravikumar and Jan Vcelak
Sensors 2025, 25(15), 4730; https://doi.org/10.3390/s25154730 - 31 Jul 2025
Viewed by 230
Abstract
The movement towards low-emission and sustainable building practices has driven increased use of natural, carbon-based materials such as wood. While these materials offer significant environmental advantages, their inherent flammability introduces new challenges for timber building safety. Despite advancements in fire protection standards and [...] Read more.
The movement towards low-emission and sustainable building practices has driven increased use of natural, carbon-based materials such as wood. While these materials offer significant environmental advantages, their inherent flammability introduces new challenges for timber building safety. Despite advancements in fire protection standards and building regulations, the risk of fire incidents—whether from technical failure, human error, or intentional acts—remains. The rapid detection of fire onset is crucial for safeguarding human life, animal welfare, and valuable assets. This study investigates the potential of monitoring fire precursor gases emitted inside building structures during pre-ignition and early combustion stages. The research also examines the sensitivity and effectiveness of commercial smoke detectors compared with custom sensor arrays in detecting these emissions. A representative structural sample was constructed and subjected to a controlled fire scenario in a laboratory setting, providing insights into the integration of gas sensing technologies for enhanced fire resilience in sustainable building systems. Full article
Show Figures

Figure 1

28 pages, 8824 KiB  
Article
Platform Approaches in the AEC Industry: Stakeholder Perspectives and Case Study
by Layla Mujahed, Gang Feng and Jianghua Wang
Buildings 2025, 15(15), 2684; https://doi.org/10.3390/buildings15152684 - 30 Jul 2025
Viewed by 232
Abstract
The architecture, engineering, and construction (AEC) industry faces challenges related to inefficiencies and fragmentation that highlight the need for advanced construction technologies and drive interest in innovative solutions such as the platform approach to design. This study assessed platform-based building design through (1) [...] Read more.
The architecture, engineering, and construction (AEC) industry faces challenges related to inefficiencies and fragmentation that highlight the need for advanced construction technologies and drive interest in innovative solutions such as the platform approach to design. This study assessed platform-based building design through (1) interviews with practitioners from China, Jordan, and the UK, which helped to define the platform approach in the AEC industry and the challenges involved, and (2) a residential building design simulation conducted to evaluate the potential of the platform approach. The simulated design’s materials costs, energy efficiency, and construction time were compared with those of the traditional building design. The results of the comparison corroborate the interview findings concerning practitioners’ perspectives on platform definition, benefits, challenges, and implementation. The findings also demonstrate the potential of the platform approach to enhance productivity and scalability through modularization, kit-of-parts configuration, and standardization. This research bridges the gap between theory and practice by supporting shareholder perspectives on building design and construction with the results of a simulated platform approach to a real-world design project. This research addresses the urgent need to better understand and test the platform approach to achieve material, energy, and construction time savings through collaborative and practice-informed design. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 11697 KiB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 185
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

30 pages, 78202 KiB  
Article
Climate-Adaptive Architecture: Analysis of the Wei Family Compound’s Thermal–Ventilation Environment in Ganzhou, China
by Xiaolong Tao, Xin Liang and Wenjia Liu
Buildings 2025, 15(15), 2673; https://doi.org/10.3390/buildings15152673 - 29 Jul 2025
Viewed by 462
Abstract
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature [...] Read more.
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature environment. The Ganzhou Wei family compound from China’s wind–heat environmental regulation systems are examined in this study. We statistically evaluate the synergy between spatial morphology, material qualities, and microclimate using field data with Thsware and Ecotect software in a multiscale simulation framework. The findings indicate that the compound’s special design greatly controls the thermal and wind conditions. Cold alleyways and courtyards work together to maximize thermal environment regulation and encourage natural ventilation. According to quantitative studies, courtyards with particular depths (1–4 m) and height-to-width ratios (e.g., 1:1) reduce wind speed loss. A cool alley (5:1 height–width ratio) creates a dynamic wind–speed–temperature–humidity balance by lowering summer daytime temperatures by 2.5 °C. It also serves as a “cold source area” that moderates temperatures in the surrounding area by up to 2.1 °C. This study suggests a quantitative correlation model based on “spatial morphology–material performance–microclimate response,” which offers a technical route for historic building conservation renovation and green renewal, as well as a scientific foundation for traditional buildings to maintain thermal comfort under low energy consumption. Although based on a specific geographical case, the innovative analytical methods and strategies of this study are of great theoretical and practical significance for promoting the modernization and transformation of traditional architecture, low-carbon city construction, and sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop