Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (743)

Search Parameters:
Keywords = building circular economy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 44478 KB  
Article
Development and Application of Building Circularity Assessment Tool Based on Building Information Modeling
by Shang-Yuan Chen and Kuo-Hsun Cheng
Appl. Sci. 2026, 16(2), 1121; https://doi.org/10.3390/app16021121 (registering DOI) - 22 Jan 2026
Abstract
The transition to a circular economy in Taiwan’s building sector is constrained by the lack of standardized, quantitative assessment methods. To address this, this study establishes a novel, localized theoretical framework integrating the Material Circularity Index (MCI) and the Madaster system, implemented via [...] Read more.
The transition to a circular economy in Taiwan’s building sector is constrained by the lack of standardized, quantitative assessment methods. To address this, this study establishes a novel, localized theoretical framework integrating the Material Circularity Index (MCI) and the Madaster system, implemented via an automated Building Information Modeling (BIM) computational tool. The framework structures assessment across three life cycle stages and four hierarchical levels. Its feasibility was validated through the Wafer Works Erlin Plant project. The results indicate that the BIM-based method effectively tracks material flows, demonstrating that structural design strategies and certified Green Building Materials significantly enhance circularity performance. This research provides a scalable, scientific instrument for quantitative evaluation, offering actionable insights to advance evidence-based sustainable design in the local construction industry. Full article
Show Figures

Figure 1

29 pages, 5451 KB  
Article
Machine Learning as a Tool for Sustainable Material Evaluation: Predicting Tensile Strength in Recycled LDPE Films
by Olga Szlachetka, Justyna Dzięcioł, Joanna Witkowska-Dobrev, Mykola Nagirniak, Marek Dohojda and Wojciech Sas
Sustainability 2026, 18(2), 1064; https://doi.org/10.3390/su18021064 - 20 Jan 2026
Abstract
This study contributes to the advancement of circular economy practices in polymer manufacturing by applying machine learning algorithms (MLA) to predict the tensile strength of recycled low-density polyethylene (LDPE) building films. As the construction and packaging industries increasingly seek eco-efficient and low-carbon materials, [...] Read more.
This study contributes to the advancement of circular economy practices in polymer manufacturing by applying machine learning algorithms (MLA) to predict the tensile strength of recycled low-density polyethylene (LDPE) building films. As the construction and packaging industries increasingly seek eco-efficient and low-carbon materials, recycled LDPE offers a valuable route toward sustainable resource management. However, ensuring consistent mechanical performance remains a challenge when reusing polymer waste streams. To address this, tensile tests were conducted on LDPE films produced from recycled granules, measuring tensile strength, strain, mass per unit area, thickness, and surface roughness. Three established machine learning algorithms—feed-forward Neural Network (NN), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost)—were implemented, trained, and optimized using the experimental dataset using R statistical software (version 4.4.3). The models achieved high predictive accuracy, with XGBoost providing the most robust performance and the highest level of explainability. Feature importance analysis revealed that mass per unit area and surface roughness have a significant influence on film durability and performance. These insights enable more efficient production planning, reduced raw material usage, and improved quality control, key pillars of sustainable technological innovation. The integration of data-driven methods into polymer recycling workflows demonstrates the potential of artificial intelligence to accelerate circular economy objectives by enhancing process optimization, material performance, and resource efficiency in the plastics sector. Full article
(This article belongs to the Special Issue Circular Economy and Sustainable Technological Innovation)
Show Figures

Figure 1

17 pages, 2700 KB  
Article
Trade in Scrap Materials: Looking Beyond Plastics
by Henrique Pacini, Jennifer Golbeck, Kweku Attafuah-Wadee and Elizabeth Dewar
Sustainability 2026, 18(2), 1017; https://doi.org/10.3390/su18021017 - 19 Jan 2026
Viewed by 45
Abstract
Evidence on the environmental and socio-economic harms linked to plastic pollution has prompted major governance responses, including the 2019 Basel Convention amendments on plastic waste and the start of negotiations on a global plastics treaty in 2022. In parallel, many jurisdictions have introduced [...] Read more.
Evidence on the environmental and socio-economic harms linked to plastic pollution has prompted major governance responses, including the 2019 Basel Convention amendments on plastic waste and the start of negotiations on a global plastics treaty in 2022. In parallel, many jurisdictions have introduced minimum recycled-content requirements to curb virgin-material demand and strengthen circularity in plastics. Yet trade statistics show that plastic scrap is only a small fraction of cross-border flows of secondary (recyclable) materials. Policy debates are also increasingly focused on non-plastic alternatives for packaging and other uses, but these substitutes can carry substantial upstream and downstream burdens that may match or exceed plastics depending on production pathways and end-of-life management. This article contrasts global trade patterns for secondary plastics, textiles, paper, and ferrous metals, and highlights how governance frameworks have centered disproportionately on plastics. We argue that the momentum from plastic-waste controls and recycled-content mandates should be used to build more systemic policies that also cover other material streams; otherwise, interventions may simply displace impacts to substitute materials and weaken circular-economy objectives. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

24 pages, 1959 KB  
Review
Licorice (Glycyrrhiza glabra): Botanical Aspects, Multisectoral Applications, and Valorization of Industrial Waste for the Recovery of Natural Fiber in a Circular Economy Perspective
by Luigi Madeo, Anastasia Macario, Federica Napoli and Pierantonio De Luca
Fibers 2026, 14(1), 14; https://doi.org/10.3390/fib14010014 (registering DOI) - 19 Jan 2026
Viewed by 18
Abstract
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. [...] Read more.
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. This review integrates botanical knowledge with engineering and industrial perspectives, highlighting the role of licorice fiber in advancing sustainable innovation. The natural fiber obtained from licorice roots exhibits notable physical and mechanical qualities, including lightness, biodegradability, and compatibility with bio-based polymer matrices. These attributes make it a promising candidate for biocomposites used in green building and other sectors of the circular economy. Developing efficient recovery processes requires collaboration across disciplines, combining expertise in plant science, materials engineering, and industrial technology. The article also examines the economic and regulatory context driving the transition toward more circular and traceable production models. Increasing interest from companies, research institutions, and public bodies in valorizing licorice fiber and its derivatives is opening new market opportunities. Potential applications extend to agroindustry, eco-friendly cosmetics, bioeconomy, and sustainable construction. By linking botanical insights with innovative waste management strategies, licorice emerges as a resource capable of supporting integrated, competitive, and environmentally responsible industrial practices. Full article
Show Figures

Figure 1

28 pages, 1032 KB  
Article
Consumer Attitudes and Knowledge Regarding Functional Food as an Element of the Circular Economy
by Klaudia Nowak-Marchewka, Wiktoria Stoma, Emilia Osmólska and Monika Stoma
Sustainability 2026, 18(2), 881; https://doi.org/10.3390/su18020881 - 15 Jan 2026
Viewed by 135
Abstract
Functional food plays an increasingly important role in shaping healthy dietary habits by integrating health-promoting components into consumers’ everyday diets and helping reduce food waste. Products developed using by-products and raw material streams from food processing can support the principles of the circular [...] Read more.
Functional food plays an increasingly important role in shaping healthy dietary habits by integrating health-promoting components into consumers’ everyday diets and helping reduce food waste. Products developed using by-products and raw material streams from food processing can support the principles of the circular economy (CE) by improving resource efficiency and lowering the environmental footprint of the food system. In Poland, as in many countries worldwide, functional food is a rapidly growing category that can contribute to public health and serve as a driver of economic development. However, the excessive and scientifically unsupported use of the term “functional food” for marketing purposes may mislead consumers and weaken trust in this product group. From a CE perspective, transparent communication and informed consumer choices are essential, as they promote environmentally responsible behaviors and support sustainable production models. The aim of this study was to assess the level of knowledge about functional food among residents of Eastern Poland, which is a less industrialized and predominantly agricultural region. The analysis focused on awareness of health benefits, consumption frequency, consumer attitudes, and interest in educational initiatives promoting functional food within CE principles. The study also examined whether consumers associate functional food with sustainability-oriented practices. The findings offer insights for educational and marketing strategies grounded in scientific evidence and highlight the potential of functional food in building a sustainable, resource-efficient food system. Full article
(This article belongs to the Special Issue Food Security, Food Recovery, Food Quality, and Food Safety)
Show Figures

Figure 1

21 pages, 3713 KB  
Article
The Potential of Material and Product Passports for the Circular Management of Heritage Buildings
by Antonella Violano, Roxana Georgiana Aenoai, Genesis Camila Cervantes Puma and Luís Bragança
Appl. Sci. 2026, 16(2), 865; https://doi.org/10.3390/app16020865 - 14 Jan 2026
Viewed by 169
Abstract
Interventions on Heritage Buildings (HBs) involve significant challenges due to their tangible (embodied in the material, architectural, physical and technical integrity of the cultural asset), and intangible values (linked to socio-historical–cultural and collective identity, memory, customs and symbols meanings), which must be preserved [...] Read more.
Interventions on Heritage Buildings (HBs) involve significant challenges due to their tangible (embodied in the material, architectural, physical and technical integrity of the cultural asset), and intangible values (linked to socio-historical–cultural and collective identity, memory, customs and symbols meanings), which must be preserved while also adapting to current sustainability and circular economy goals. However, current conservation and management practices often lack systematic tools to trace, assess, and organise material and component information, hindering the implementation of circular strategies. In line with the European Union’s objectives for climate neutrality and resource efficiency and sufficiency, Material and Product Passports (MPPs) have emerged as digital tools that enhance data traceability, interoperability and transparency throughout a building’s lifecycle. This paper examines the potential of MPPs to support circular management of HBs by analysing the structure of MPPs and outlining the information flows generated by rehabilitation, maintenance and adaptive reuse strategies. A mixed methods approach, combining literature review and data structure analysis, is adopted to identify how the different categories of data produced during maintenance, rehabilitation and adaptive reuse processes can be integrated into MPP modules. The research highlights the conceptual opportunities of MPPs to document and interlink historical, cultural, and technical data, thereby improving decision-making and transparency across intervention stages. The analysis suggests that adapting MPPs to the specificities of historic contexts, such as authenticity preservation, reversibility, and contextual sensitivity, can foster innovative, sustainable, and circular practices in the conservation and management of HBs. Full article
(This article belongs to the Special Issue Heritage Buildings: Latest Advances and Prospects)
Show Figures

Figure 1

27 pages, 4229 KB  
Article
The “New” Materiality of Reconstruction: On-Site Automated Recycling of Rubble Aggregates for Rebuilding Earthquake-Stricken Villages
by Roberto Ruggiero, Pio Lorenzo Cocco and Roberto Cognoli
Sustainability 2026, 18(2), 850; https://doi.org/10.3390/su18020850 - 14 Jan 2026
Viewed by 132
Abstract
Post-disaster reconstruction remains largely excluded from circular-economy approaches. This gap is particularly evident in earthquake-affected inner territories, where reconstruction is constrained by severe logistical challenges—especially in relation to rubble management—and where debris is often composed of materials closely tied to local building cultures [...] Read more.
Post-disaster reconstruction remains largely excluded from circular-economy approaches. This gap is particularly evident in earthquake-affected inner territories, where reconstruction is constrained by severe logistical challenges—especially in relation to rubble management—and where debris is often composed of materials closely tied to local building cultures and community identities. In these contexts, rebuilding still predominantly follows linear, emergency-driven models that treat rubble primarily as waste. This study introduces Rubble as a Material Bank (RMB), a digital–material framework that reconceptualises earthquake rubble as a traceable and programmable resource for circular reconstruction. RMB defines a rubble-to-component chain that integrates material characterisation, data-driven management, robotic fabrication, and reversible architectural design. Selected downstream segments of this chain are experimentally validated through the TRAP project, developed within the European TARGET-X programme. The experimentation focuses on extrusion-based fabrication of dry-assembled wall components using rubble-derived aggregates. The results indicate that digitally governed workflows can enable material reuse, while also revealing technical and regulatory constraints that currently limit large-scale implementation. Full article
Show Figures

Figure 1

47 pages, 3054 KB  
Article
Transformation Management of Heritage Systems
by Matthias Ripp, Rohit Jigyasu and Christer Gustafsson
Heritage 2026, 9(1), 28; https://doi.org/10.3390/heritage9010028 - 14 Jan 2026
Viewed by 399
Abstract
This paper develops a new conceptual and operational understanding of cultural heritage transformation, interpreting it as a systemic and dynamic process rather than a static state. It explores the realities and opportunities for action when cultural heritage is understood and managed as a [...] Read more.
This paper develops a new conceptual and operational understanding of cultural heritage transformation, interpreting it as a systemic and dynamic process rather than a static state. It explores the realities and opportunities for action when cultural heritage is understood and managed as a complex, adaptive system. The study builds on a critical review of contemporary literature to identify the multi-scalar challenges currently facing urban heritage systems, such as climate change, disaster risks, social fragmentation, and unsustainable urban development. To respond to these challenges, the paper introduces a metamodel for heritage-based urban transformation, designed to apply systems thinking to heritage management that was developed based on cases from the Western European context. This metamodel integrates key variables—actors, resources, tools, and processes—and is used to test the hypothesis that a systems-oriented approach to cultural heritage can enhance the capacity of stakeholders to connect, adapt, use, and safeguard heritage in the face of complex urban transitions. The hypothesis is operationalized through scenario-based applications in the fields of disaster risk management (DRM), circular economy, and broader sustainability transitions, demonstrating how the metamodel supports the design of cross-over resilience strategies. These strategies not only preserve heritage but activate it as a resource for innovation, cohesion, identity, and adaptive reuse. Thus, cultural heritage is reframed as a strategic investment—generating spillover benefits such as improved quality of life, economic opportunities, environmental mitigation, and enhanced social capital. In light of the transition toward a greener and more resilient society, this paper argues for embracing heritage as a driver of transformation—capable of engaging with well-being, behavior change, innovation, and education through cultural crossovers. Heritage is thus positioned not merely as something to be protected, but as a catalyst for systemic change and future-oriented urban regeneration. Full article
Show Figures

Figure 1

25 pages, 1398 KB  
Article
Circular Economy in Rammed Earth Construction: A Life-Cycle Case Study on Demolition and Reuse Strategies of an Experimental Building in Pasłęk, Poland
by Anna Patrycja Nowak, Michał Pierzchalski and Joanna Klimowicz
Sustainability 2026, 18(2), 790; https://doi.org/10.3390/su18020790 - 13 Jan 2026
Viewed by 176
Abstract
This study aims to evaluate the potential of circular economy principles in earth-based construction using an experimental rammed earth building located in Pasłęk, Poland as a case study. The research focuses on end-of-life scenarios for earth materials, with particular emphasis on rammed earth, [...] Read more.
This study aims to evaluate the potential of circular economy principles in earth-based construction using an experimental rammed earth building located in Pasłęk, Poland as a case study. The research focuses on end-of-life scenarios for earth materials, with particular emphasis on rammed earth, adobe, and compressed earth blocks stabilized with Portland cement. A scenario-based life-cycle assessment (LCA) was conducted to compare alternative demolition and reuse strategies, including manual and mechanical deconstruction, as well as on-site and off-site material reuse. Greenhouse gas emissions associated with demolition (Module C1) and transport (Module C2) were estimated for each scenario. The results indicate that manual deconstruction combined with local, on-site reuse leads to the lowest carbon footprint, whereas off-site reuse involving long-distance transport significantly increases greenhouse gas emissions. In addition, qualitative reuse pathways were identified for wood, glass, ceramics, and insulation materials. The study reveals a lack of standardized technical procedures for the recovery and reuse of stabilized earthen materials after demolition and highlights the importance of integrating end-of-life planning into the early design phase using digital tools such as material passports and BIM. The findings demonstrate that properly designed rammed earth systems can provide a viable low-tech solution for reducing construction waste and supporting circular material flows in the built environment. Full article
Show Figures

Figure 1

67 pages, 50243 KB  
Review
Alkali-Activated Materials and CDW for the Development of Sustainable Building Materials: A Review with a Special Focus on Their Mechanical Properties
by Luca Baldazzi, Andrea Saccani and Stefania Manzi
Buildings 2026, 16(2), 309; https://doi.org/10.3390/buildings16020309 - 11 Jan 2026
Viewed by 115
Abstract
Alkali-activated materials (AAMs) or geopolymers have been considered for many years as a sustainable substitution for the traditional ordinary Portland cement (OPC) binder. However, their production needs energy consumption and creates carbon emissions. Since construction and demolition waste (CDW) can become precursors for [...] Read more.
Alkali-activated materials (AAMs) or geopolymers have been considered for many years as a sustainable substitution for the traditional ordinary Portland cement (OPC) binder. However, their production needs energy consumption and creates carbon emissions. Since construction and demolition waste (CDW) can become precursors for manufacturing alkali-activated materials, their use as substitutes for traditional AAM (such as metakaolin, blast furnace slag, and fly ash) can solve both the problem of their disposal and the problem of sustainability. Furthermore, CDW can also be used as aggregate replacement, avoiding the exploitation of natural river sand and gravel. A new circular economy could be created based on CDW recycling, creating a new eco-friendly building practice. Unfortunately, this process is quite difficult owing to several variables that should be taken into consideration, such as the possibility of separating and sorting the CDW, the great variability of CDW composition, the cost of the mechanical and thermal treatment, the different parameters that compose an alkali-activated mix-design, and public opinion still being skeptical about the use of recycled materials in the construction sector. This review tries to describe all these aspects, summarizing the results of the most interesting studies performed on this subject. Today, thanks to a comprehensive protocol, the use of building information modeling (BIM) software and machine learning models, a large-scale reuse of CDW in the building industry appears more feasible. Full article
(This article belongs to the Special Issue Innovations in Building Materials and Infrastructure Design)
Show Figures

Graphical abstract

24 pages, 3118 KB  
Article
Mapping Stakeholder Perspectives for Sustainability Transitions: The Case of Lithium-Ion Battery Recycling
by Bettina Rutrecht, Susanne Rosskogler, Astrid Arnberger, Roland Pomberger and Thomas Nigl
Sustainability 2026, 18(2), 654; https://doi.org/10.3390/su18020654 - 8 Jan 2026
Viewed by 189
Abstract
Lithium-ion battery (LIB) recycling has become a key area where sustainability goals and circular economy ambitions meet practical challenges. While research often focuses on regulatory or technological solutions, real progress depends on stakeholder action and alignment. This paper combines a literature review and [...] Read more.
Lithium-ion battery (LIB) recycling has become a key area where sustainability goals and circular economy ambitions meet practical challenges. While research often focuses on regulatory or technological solutions, real progress depends on stakeholder action and alignment. This paper combines a literature review and a stakeholder survey (n = 26) to map risks, opportunities, barriers, and interventions, formulating a roadmap for sustainable LIB recycling from the stakeholder perspective. The literature identified 27 opportunities, 21 risks, 32 barriers, and 23 enablers across strategic, operational, institutional, cultural, and technical domains. The study confirms that an implementation gap persists between ambition and practice. Stakeholders know the opportunities, but structural barriers, limited resources, and insufficient attention to cultural enablers dampen progress. The barrier–intervention mapping and the derived roadmap show that interventions must be sequenced strategically: securing resources first, then building data infrastructures and strengthening know-how to finally reduce complexity. The findings show that sustainability progress depends less on technical capability than on sound resource management, reliable data, and institutional support offering a transferable framework to close implementation gaps, as presented in this study, and supports future research on how stakeholder alignment can accelerate sustainable transitions across industries. Full article
Show Figures

Figure 1

17 pages, 828 KB  
Article
Integrating Circular Economy Principles into Energy-Efficient Retrofitting of Post-1950 UK Housing Stock: A Pathway to Sustainable Decarbonisation
by Louis Gyoh, Obas John Ebohon, Juanlan Zhou and Deinsam Dan Ogan
Buildings 2026, 16(2), 262; https://doi.org/10.3390/buildings16020262 - 7 Jan 2026
Viewed by 194
Abstract
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and [...] Read more.
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and heating upgrades—while neglecting broader sustainability considerations. This research advocates systematically integrating Circular Economy (CE) principles into residential retrofit practices. CE approaches emphasise material circularity, waste minimisation, adaptive design, and a lifecycle assessment, delivering superior environmental and economic outcomes compared to conventional methods. The investigation employs mixed-methods research combining a systematic literature analysis, policy review, stakeholder engagement, and a retrofit implementation evaluation across diverse UK contexts. Key barriers identified include regulatory constraints, workforce capability gaps, and supply chain fragmentation, alongside critical transition enablers. An evidence-based decision-making framework emerges from this analysis, aligning retrofit interventions with CE principles. This framework guides policymakers, industry professionals, and researchers in the development of strategies that simultaneously improve energy-efficiency, maximise material reuse, reduce embodied emissions, and enhance environmental and economic sustainability. The findings advance a holistic, systems-oriented approach, positioning housing as a pivotal catalyst in the UK’s transition toward a circular, low-carbon built environment, moving beyond isolated technological fixes toward a comprehensive sustainability transformation. Full article
(This article belongs to the Special Issue Advancements in Net-Zero-Energy Buildings)
Show Figures

Figure 1

25 pages, 9547 KB  
Article
Industrial Validation and Mechanical Characterization of SMA Mixtures Stabilized with Recycled Polymeric Fibers from Waste Tires
by Alejandra Calabi-Floody, Gonzalo Valdés-Vidal, Cristian Mignolet-Garrido, Cristian Díaz-Montecinos and Claudio Fonseca-Ibarra
Polymers 2026, 18(2), 156; https://doi.org/10.3390/polym18020156 - 7 Jan 2026
Viewed by 145
Abstract
This study investigates the industrial validation of a granular additive derived from waste tire textile fibers (WTTF) developed to replace the conventional cellulose stabilizing additive in stone mastic asphalt (SMA) mixtures while enhancing their mechanical performance. Building on previous laboratory-scale findings, this work [...] Read more.
This study investigates the industrial validation of a granular additive derived from waste tire textile fibers (WTTF) developed to replace the conventional cellulose stabilizing additive in stone mastic asphalt (SMA) mixtures while enhancing their mechanical performance. Building on previous laboratory-scale findings, this work evaluates the feasibility and mechanical behavior of this recycled-fiber additive under real asphalt-plant production conditions, advancing a sustainable solution aligned with circular economy principles. Three asphalt mixtures were fabricated in a batch plant: a reference SMA (SMA-R) containing a commercial cellulose additive, an SMA incorporating the WTTF additive (SMA-F), and a reference hot mix asphalt (HMA-R). The WTTF additive was incorporated in a 1:1 proportion relative to the cellulose additive. Performance was assessed through tests of cracking resistance (Fénix test), stiffness modulus, fatigue resistance (four-point bending test), moisture susceptibility (ITSR), and resistance to permanent deformation (Hamburg wheel tracking). Industrial validation results showed that the SMA-F mixture met the design criteria and achieved superior mechanical performance relative to the reference mixtures. In particular, SMA-F exhibited greater ductility and toughness at low temperatures, reduced susceptibility to moisture-induced damage, and higher fatigue resistance, with an increase in fatigue durability of up to 44% compared to SMA-R. The results confirm that the WTTF additive is both feasible and scalable for industrial production, offering a solution that not only improves pavement mechanical performance but also promotes the valorization of a challenging waste material. Full article
Show Figures

Figure 1

24 pages, 3087 KB  
Review
Research Topic Identification and Trend Forecasting of Blockchain in the Construction Industry: Based on LDA-ARIMA Combined Method
by Yongshun Xu, Zhongyuan Zhang, Cen-Ying Lee, Heap-Yih Chong and Mengyuan Cheng
Buildings 2026, 16(2), 254; https://doi.org/10.3390/buildings16020254 - 7 Jan 2026
Viewed by 204
Abstract
Driven by the urgent need for industrial transformation and emerging technologies, the construction engineering market is rapidly evolving toward intelligent building systems. This study employs latent Dirichlet allocation (LDA) methodology to analyze 474 blockchain-related research abstracts from Web of Science and Scopus databases, [...] Read more.
Driven by the urgent need for industrial transformation and emerging technologies, the construction engineering market is rapidly evolving toward intelligent building systems. This study employs latent Dirichlet allocation (LDA) methodology to analyze 474 blockchain-related research abstracts from Web of Science and Scopus databases, identifying eight key research topics: (1) industry adoption and implementation challenges; (2) smart contracts and payment mechanisms; (3) emerging technologies and digital transformation; (4) construction supply chain integration and optimization; (5) building modeling and technology integration; (6) modular integrated construction (MIC) applications; (7) project data and security management; and (8) construction industry sustainability and circular economy (CE). Using the autoregressive integrated moving average (ARIMA) model, the study forecasts trends for the top three research topics over the next 36 months. The results indicate strong positive growth trajectories for industry adoption and implementation challenges (Topic 1) and project data and security management (Topic 7), while emerging technologies and digital transformation (Topic 3) demonstrate sustained growth. This study offers a thorough examination of the present landscape and emerging research trends of blockchain in construction, and establishes an overall framework to comprehensively summarize its research and application in the construction industry. The results provide actionable insights for both practitioners and researchers, facilitating a deeper understanding of blockchain’s evolution and implementation prospects, and supporting the advancement of innovation within the industry. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

31 pages, 4388 KB  
Review
Mapping the Knowledge Frontier in Environmental Health and Sustainability in Construction
by Chijioke Emmanuel Emere and Olusegun Aanuoluwapo Oguntona
Eng 2026, 7(1), 29; https://doi.org/10.3390/eng7010029 - 7 Jan 2026
Viewed by 217
Abstract
Environmental health concerns remain a major global challenge. In many nations, the adoption of measures to mitigate the negative environmental impacts of construction-related activities has been slow. Prior research has clarified that further study/advancement are required to improve environmental health/sustainability (EHS). To determine [...] Read more.
Environmental health concerns remain a major global challenge. In many nations, the adoption of measures to mitigate the negative environmental impacts of construction-related activities has been slow. Prior research has clarified that further study/advancement are required to improve environmental health/sustainability (EHS). To determine the focus of previous studies, this study attempts to identify, analyse, and visualise the trends in research concerning EHS in construction-related domains. The data were obtained from the Scopus database, and the study employed a bibliometric approach. The following keywords were used to search the database: ‘environmental health’ OR ‘ecological health’ OR ‘environmental sustainability’ OR ‘ecological sustainability’ OR ‘Environmental safety’ OR ‘ecological safety’ AND ‘construction industry’ OR ‘building industry’ to retrieve relevant documents. The analysis included co-citation analysis, keyword co-occurrence and trend mapping. The findings revealed four themes: Environmental Sustainability and Energy-Oriented Decision-Making, Low-Carbon Cementitious Materials and Mechanical Performance of Concrete, Waste Management and Circular Economy Practices, and Life Cycle Assessment and Carbon Emission Analysis. The keyword findings revealed very scant research in environmental health unlike environmental sustainability. Spain, China, and Saudi Arabia are the top three in terms of citation-to-publication ratio, indicating strong influence in literature sources. However, India has the highest number of publications. The findings also suggest that more relevant studies are required in African nations and South Asian countries. It further highlighted a knowledge gap that emerging economies must address to enhance the sustainability and environmental performance of construction projects. This bibliometric analysis is unique in its integrated examination of environmental sustainability and environmental health in the construction industry, employing strategic thematic mapping to reveal system-level linkages, contextual gaps, and targeted directions for future research. The conclusions provide scholars and stakeholders in the built environment with a solid theoretical basis, enhancing the industry’s preparedness to mitigate the adverse environmental and climatic impacts of traditional construction methods. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

Back to TopTop