Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = broiler breeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2393 KiB  
Review
Aggressive Mating Behavior in Roosters (Gallus gallus domesticus): A Narrative Review of Behavioral Patterns
by Mihnea Lupu, Dana Tăpăloagă, Elena Mitrănescu, Raluca Ioana Rizac, George Laurențiu Nicolae and Manuella Militaru
Life 2025, 15(8), 1232; https://doi.org/10.3390/life15081232 - 3 Aug 2025
Viewed by 184
Abstract
This review explores sexual aggression in broiler breeder males, aiming to synthesize existing scientific evidence regarding its causes, behavioral manifestations, and consequences, while addressing the genetic, neuroendocrine, and environmental mechanisms involved. Through an extensive analysis of scientific literature, the paper highlights that intensive [...] Read more.
This review explores sexual aggression in broiler breeder males, aiming to synthesize existing scientific evidence regarding its causes, behavioral manifestations, and consequences, while addressing the genetic, neuroendocrine, and environmental mechanisms involved. Through an extensive analysis of scientific literature, the paper highlights that intensive genetic selection aimed at enhancing growth and productivity has resulted in unintended behavioral dysfunctions. These include the reduction or absence of courtship behavior, the occurrence of forced copulations, and a notable increase in injury rates among hens. Reproductive challenges observed in meat-type breeder flocks, in contrast to those in layer lines, appear to stem from selection practices that have overlooked traits related to mating behavior. Environmental and managerial conditions, including photoperiod manipulation, stocking density, nutritional imbalances, and the use of mixed-sex rearing systems, are also identified as contributing factors to the expression of sexual aggression. Furthermore, recent genetic findings indicate a potential link between inherited neurobehavioral factors and aggressive behavior, with the SORCS2 gene emerging as a relevant candidate. Based on these insights, the review emphasizes the importance of considering behavioral parameters in breeding programs in order to reconcile productivity objectives with animal welfare standards. Future research may benefit from a more integrative approach that combines behavioral, physiological, and genomic data to better understand and address the multifactorial nature of sexual aggression in poultry systems. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

13 pages, 3548 KiB  
Article
Analysis of Carcass and Meat Characteristics in Breast Muscle Between Hubbard White Broilers and Xueshan Chickens
by Fan Li, Xingyu Zhang, Jiajia Yu, Jiaxue Yuan, Yuanfeng Zhang, Huiting He, Qing Ma, Yinglin Lu, Xiaoe Xiang and Minli Yu
Animals 2025, 15(14), 2099; https://doi.org/10.3390/ani15142099 - 16 Jul 2025
Viewed by 334
Abstract
The focus on selecting broilers for rapid growth rates and enhanced breast muscle yield has resulted in a decline in meat quality. The differences in carcass characteristics and meat quality between Hubbard white broilers (HWs, a commercial breed) and Xueshan chickens (XSs, an [...] Read more.
The focus on selecting broilers for rapid growth rates and enhanced breast muscle yield has resulted in a decline in meat quality. The differences in carcass characteristics and meat quality between Hubbard white broilers (HWs, a commercial breed) and Xueshan chickens (XSs, an indigenous breed) at market age were analyzed to determine the potential mechanisms responsible for these differences. The results show that HWs exhibited significantly better carcass performance than XSs, including the larger weight of the carcass, the breast muscle, and the thigh muscle (p < 0.01). In addition, based on HE staining analysis, HWs’ breast muscles had a considerably larger average myofiber area and diameter than those of XSs (p < 0.01). Furthermore, the physical characteristics of the meat revealed that XSs had higher redness and yellowness and also higher lightness. HW meat had a higher pH and thermal loss, but a lower shear force and drip loss than XS meat (p < 0.01). The content of saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) was, remarkably, lower in the breast muscles of HWs than of XSs (p < 0.01). In contrast, HWs had a larger concentration of monounsaturated fatty acids (MUFAs) than XSs (p < 0.01). Finally, the breast muscles of XSs had lower levels of mRNA expression for genes linked to lipid metabolism, such as fatty acid binding protein 4 (Fabp4) and peroxisome proliferator-activated receptor alpha (Pparα), and had higher levels of the phosphofructokinase muscle type (Pfkm) compared to HWs (p < 0.01). These results indicate that a lower carcass yield was observed in XSs compared with HWs, but that XSs showed better performance in terms of meat quality than HW. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Figure 1

29 pages, 5277 KiB  
Article
DualHet-YOLO: A Dual-Backbone Heterogeneous YOLO Network for Inspection Robots to Recognize Yellow-Feathered Chicken Behavior in Floor-Raised House
by Yaobo Zhang, Linwei Chen, Hongfei Chen, Tao Liu, Jinlin Liu, Qiuhong Zhang, Mingduo Yan, Kaiyue Zhao, Shixiu Zhang and Xiuguo Zou
Agriculture 2025, 15(14), 1504; https://doi.org/10.3390/agriculture15141504 - 12 Jul 2025
Viewed by 293
Abstract
The behavior of floor-raised chickens is closely linked to their health status and environmental comfort. As a type of broiler chicken with special behaviors, understanding the daily actions of yellow-feathered chickens is crucial for accurately checking their health and improving breeding practices. Addressing [...] Read more.
The behavior of floor-raised chickens is closely linked to their health status and environmental comfort. As a type of broiler chicken with special behaviors, understanding the daily actions of yellow-feathered chickens is crucial for accurately checking their health and improving breeding practices. Addressing the challenges of high computational complexity and insufficient detection accuracy in existing floor-raised chicken behavior recognition models, a lightweight behavior recognition model was proposed for floor-raised yellow-feathered chickens, based on a Dual-Backbone Heterogeneous YOLO Network. Firstly, DualHet-YOLO enhances the feature extraction capability of floor-raised chicken images through a dual-path feature map extraction architecture and optimizes the localization and classification of multi-scale targets using a TriAxis Unified Detection Head. Secondly, a Proportional Scale IoU loss function is introduced that improves regression accuracy. Finally, a lightweight structure Eff-HetKConv was designed, significantly reducing model parameters and computational complexity. Experiments on a private floor-raised chicken behavior dataset show that, compared with the baseline YOLOv11 model, the DualHet-YOLO model increases the mAP for recognizing five behaviors—pecking, resting, walking, dead, and inactive—from 77.5% to 84.1%. Meanwhile, it reduces model parameters by 14.6% and computational complexity by 29.2%, achieving a synergistic optimization of accuracy and efficiency. This approach provides an effective solution for lightweight object detection in poultry behavior recognition. Full article
Show Figures

Figure 1

28 pages, 795 KiB  
Review
Efficacy of Feeding Grape By-Products on Performance, Nutrient Digestibility, Gut Morphology, Gut Microbial Community, Oxidative Stress and Immune Response in Fast-Growing Broilers
by Robert Ringseis, Klaus Eder and Denise K. Gessner
Animals 2025, 15(13), 1943; https://doi.org/10.3390/ani15131943 - 1 Jul 2025
Viewed by 403
Abstract
By-products from winemaking, such as grape pomace, grape seeds, grape skins, or extracts made from them, represent a cost-effective and sustainable bioresource. These by-products are a source of polyphenolic compounds, plant fibers and—in the case of seeds—essential fatty acids with various health-promoting effects [...] Read more.
By-products from winemaking, such as grape pomace, grape seeds, grape skins, or extracts made from them, represent a cost-effective and sustainable bioresource. These by-products are a source of polyphenolic compounds, plant fibers and—in the case of seeds—essential fatty acids with various health-promoting effects for livestock. Numerous studies involving fast-growing broiler breeds—which often suffer from metabolic inflammation and oxidative stress due to disproportionate breast muscle growth leading to issues like cardiorespiratory insufficiency—indicate that supplementing feed with grape by-products improves performance, particularly weight gain and feed efficiency. This literature review demonstrates that the performance-enhancing effects of grape by-products in fast-growing broiler breeds can be attributed to various mechanisms such as improved nutrient digestibility, a positive influence on intestinal morphology and integrity, the favorable modulation of the microbial community in the gut, the inhibition of oxidative stress or the enhancement of the antioxidant defense system, and the stimulation of the immune response. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
Show Figures

Figure 1

16 pages, 2498 KiB  
Article
Liver Transcriptome Analysis Reveals a Potential Mechanism of Heat Stress Increasing Susceptibility to Salmonella Typhimurium in Chickens
by Qi Zhang, Yvqing Zhu, Zixuan Wang, Qinghe Li, Guiping Zhao and Qiao Wang
Biology 2025, 14(6), 720; https://doi.org/10.3390/biology14060720 - 18 Jun 2025
Viewed by 437
Abstract
Salmonella infection poses a serious threat to the poultry industry, causing significant economic losses. Under global warming conditions, the underlying molecular mechanisms by which heat stress affects bacterial infections in poultry remain unclear. This study conducted a Salmonella Typhimurium infection under heat stress [...] Read more.
Salmonella infection poses a serious threat to the poultry industry, causing significant economic losses. Under global warming conditions, the underlying molecular mechanisms by which heat stress affects bacterial infections in poultry remain unclear. This study conducted a Salmonella Typhimurium infection under heat stress in Guang Ming broilers. A total of 100 chickens were randomly divided into three groups: control group (CTL), Salmonella Typhimurium (ST) infection group, and heat stress and Salmonella Typhimurium (HS + ST) co-stimulation group. By integrating inflammatory phenotypes, liver transcriptome profiles, and weighted gene co-expression network analysis (WGCNA), we systematically investigated the key regulatory factors through which heat stress affects host susceptibility to Salmonella. The results demonstrated that heat stress reduced body weight gain, exacerbated Salmonella Typhimurium-induced inflammatory responses, and increased mortality. Transcriptome results revealed that heat stress led to excessive inflammatory responses and antioxidant defense imbalances. Combined differential expression analysis and WGCNA identified three hub regulatory genes: PTGDS and WISP2 showed significant correlations with the heterophil/lymphocyte ratio, while SLC6A9 was significantly correlated with serum IL-8 levels. Validation in HD11 cell infection models confirmed the differential expression of these genes under heat stress and Salmonella Typhimurium co-stimulation, indicating their critical roles in host immune regulation. This study elucidates the intrinsic regulatory relationships through which heat stress promotes Salmonella pathogenicity and inflammatory responses, providing important insights for disease-resistant poultry breeding and prevention strategies. Full article
Show Figures

Figure 1

24 pages, 12602 KiB  
Article
Effects of Different Rearing Methods on the Intestinal Morphology, Intestinal Metabolites, and Gut Microbiota of Lueyang Black-Bone Chickens
by Shuang Zeng, Linqing Shao, Mingming Zhao, Ling Wang, Jia Cheng, Tao Zhang and Hongzhao Lu
Animals 2025, 15(12), 1758; https://doi.org/10.3390/ani15121758 - 14 Jun 2025
Viewed by 676
Abstract
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The [...] Read more.
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The intestinal morphology, intestinal metabolites, and gut microbiota are critical determinants of nutrient utilization efficiency and immune health in poultry. This study investigates the impact of two distinct rearing modalities—cage-raised (CR) and cage-free (CF)—on the intestinal morphology, intestinal metabolites, and gut microbiota of the duodenum and cecum in Lueyang black-bone chickens. Additionally, we have integrated metabolomics and microbiome analyses. Morphological assessments revealed that, in comparison to the CR group, the CF group exhibited a significant increase in duodenal villi height (VH) and crypt depth (CD) (p < 0.01). Furthermore, there was a notable increase in the number of intestinal inflammatory cells within the CF group. Non-targeted metabolomics indicated an upregulation of omega-3 series polyunsaturated fatty acids and bile acid metabolites in the CR group. Conversely, the CF group demonstrated significantly elevated levels of lysophosphatidylcholine (LPC) and phosphatidylcholine (PE) in the intestine. Microbiome analysis revealed that in the duodenum, beneficial bacteria (e.g., Lactobacillus) were the dominant genera in the CF group, while the Bacteroides predominate in the CR group. Correlation analyses indicated a positive association between LPC levels and the presence of eight bacterial genera, including Ureaplasma. The omega-3 series polyunsaturated fatty acids were positively correlated with three bacterial genera, such as Flavobacterium. Notably, bile acid metabolites exhibited a significant positive correlation with Rikenellaceae_RC9_gut_group. In conclusion, this study provides novel insights into how rearing methods influence intestinal morphology, intestinal metabolites, and gut microbiota, offering a new perspective for the scientific management of poultry with the premise of ensuring animal health and welfare. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

21 pages, 4088 KiB  
Article
Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China
by Lu Ren, Ying Li, Ziyu Ye, Xixi Wang, Xuegang Luo, Fuping Lu and Huabing Zhao
Foods 2025, 14(6), 1047; https://doi.org/10.3390/foods14061047 - 19 Mar 2025
Cited by 1 | Viewed by 705
Abstract
Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. [...] Read more.
Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. In this study, we aim to reveal the pollution of ARGs and ARB in the slaughter process of broilers. First, by qualitative and quantitative analysis of ARGs in samples collected from the broiler slaughtering and processing production chain, the contamination level of ARGs was reflected; secondly, potential hosts for ARGs and microbial community were analyzed to reflect the possible transmission rules; thirdly, through the antibiotic susceptibility spectrum analysis of four typical food-borne pathogens, the distribution of ARB was revealed. The results showed that 24 types of ARGs were detected positive on the broiler slaughter production line, and tetracycline-resistance genes (20.45%) were the most frequently detected. The types of ARGs vary with sampling process, and all sampling links contain high levels of sul2 and intI1. The most abundant ARGs were detected in chicken surface in the scalding stage and entrails surface in the evisceration stage. There was a significant correlation between intI1 and tetM, suggesting that tetM might be able to enter the human food chain through class-1 integrons. The host range of the oqxB gene is the most extensive, including Sphingobacterium, Bacteroidia unclassified, Rothia, Microbacterium, Algoriella, etc. In the relevant links of the slaughter production line, the microbial community structure is similar. Removing viscera may cause diffusion of ARGs carried by intestinal microorganisms and contaminate chicken and following processing production. The four food-borne pathogens we tested are widely present in all aspects of the slaughter process, and most of them have multi-drug resistance and even have a high degree of resistance to some veterinary drugs banned by the Ministry of Agriculture. Our study preliminarily revealed the pollution of ARGs and ARB in the slaughter process of broilers, and these results are helpful to carry out food safety risk assessment and formulate corresponding control measures. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 9929 KiB  
Review
Broiler Behavior Detection and Tracking Method Based on Lightweight Transformer
by Haixia Qi, Zihong Chen, Guangsheng Liang, Riyao Chen, Jinzhuo Jiang and Xiwen Luo
Appl. Sci. 2025, 15(6), 3333; https://doi.org/10.3390/app15063333 - 18 Mar 2025
Viewed by 848
Abstract
Detecting the daily behavior of broiler chickens allows early detection of irregular activity patterns and, thus, problems in the flock. In an attempt to resolve the problems of the slow detection speed, low accuracy, and poor generalization ability of traditional detection models in [...] Read more.
Detecting the daily behavior of broiler chickens allows early detection of irregular activity patterns and, thus, problems in the flock. In an attempt to resolve the problems of the slow detection speed, low accuracy, and poor generalization ability of traditional detection models in the actual breeding environment, we propose a chicken behavior detection method called FCBD-DETR (Faster Chicken Behavior Detection Transformer). The FasterNet network based on partial convolution (PConv) was used to replace the Resnet18 backbone network to reduce the computational complexity of the model and to improve the speed of model detection. In addition, we propose a new cross-scale feature fusion network to optimize the neck network of the original model. These improvements led to a 78% decrease in the number of parameters and a 68% decrease in GFLOPs. The experimental results show that the proposed model is superior to the traditional network in the speed, accuracy and generalization ability of broiler behavior detection. (1) The detection speed is improved from 49.5 frames per second to 68.5 frames per second, which is 22.6 frames and 10.9 frames higher than Yolov7 and Yolov8, respectively. (2) mAP0.5 reaches 99.4%, and MAP0.5:0.95 increases from 84.9 to 88.4%. (3) Combined with the multi-target tracking algorithm, the chicken flock counting, behavior recognition, and individual tracking tasks are successfully realized. Full article
(This article belongs to the Special Issue Big Data and AI for Food and Agriculture)
Show Figures

Figure 1

28 pages, 10681 KiB  
Article
Development of an Algorithm for Predicting Broiler Shipment Weight in a Smart Farm Environment
by Bohyeok Lee and Juwhan Song
Agriculture 2025, 15(5), 539; https://doi.org/10.3390/agriculture15050539 - 1 Mar 2025
Viewed by 783
Abstract
The weight information of broilers is important for understanding the growth progress of broilers and adjusting the breeding schedule, and predicting the broiler live weight at the time of shipment is an important task for producing high-quality broilers that meet consumer demand. To [...] Read more.
The weight information of broilers is important for understanding the growth progress of broilers and adjusting the breeding schedule, and predicting the broiler live weight at the time of shipment is an important task for producing high-quality broilers that meet consumer demand. To this end, we plan to analyze the broiler weight data automatically measured in a smart broiler house with an intelligent system and conduct a study to predict the weight until the time of shipment. To estimate the accurate daily body weight representative value of broiler body weight data, the K-means clustering method and the kernel density estimation method were applied, and the growth trends generated by each method were used as training data for the Prophet predictor, double exponential smoothing predictor, ARIMA predictor, and Gompertz growth model. The experimental results showed that the K-means + Prophet predictor model recorded the best prediction performance among the algorithm combinations proposed in this paper. The prediction results of the algorithm presented in this paper can analyze the growth progress of broilers in actual broiler houses and can be used as meaningful judgment data for adjusting the breeding schedule considering the time of shipment. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

27 pages, 5888 KiB  
Article
Multi-Omics Profiling of Lipid Variation and Regulatory Mechanisms in Poultry Breast Muscles
by Hongyuan Zhang, Yaqi Dai, Jinxing Gu, Hongtai Li, Ran Wu, Jiyu Jia, Jingqi Shen, Wanli Li, Ruili Han, Guirong Sun, Wenting Li, Xiaojun Liu, Yinli Zhao and Guoxi Li
Animals 2025, 15(5), 694; https://doi.org/10.3390/ani15050694 - 27 Feb 2025
Viewed by 689
Abstract
This study aimed to elucidate the genetic basis of lipid composition in the breast muscles of poultry, including AA broilers, dwarf guinea fowl, quails, and pigeons, and the impact of artificial selection on lipid traits. By employing lipidomics and transcriptomic sequencing, the research [...] Read more.
This study aimed to elucidate the genetic basis of lipid composition in the breast muscles of poultry, including AA broilers, dwarf guinea fowl, quails, and pigeons, and the impact of artificial selection on lipid traits. By employing lipidomics and transcriptomic sequencing, the research analyzed the chest muscle tissues of these four poultry. A total of 1542 lipid molecules were identified, with 711 showing significant differences among species. These lipids primarily belonged to subclasses such as TG, PC, Phosphatidylethanolamine (PE), Ceramides (Cer), and Diglyceride (DG), with each species demonstrating distinct profiles in these subclasses. Additionally, 5790 orthologous genes were identified, with 763, 767, 24, and 8 genes in AA broilers, dwarf guinea fowl, quails, and pigeons, respectively, exhibiting positive selection (Ka/Ks > 1). Notably, 114 genes related to lipid metabolism displayed significant differential expression, particularly between AA broilers and dwarf guinea fowl. The findings revealed that the metabolic pathways of PC and LPC lipid molecules in the glycerophospholipid pathway, as well as TG lipid molecules in the glycerolipid pathway, exhibited marked interspecies differences, potentially contributing to variations in breast muscle lipid composition. These results provide a solid foundation for understanding the lipid composition and molecular regulatory mechanisms in diverse poultry, offering valuable insights for further research in poultry lipid metabolism and artificial breeding programs. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Domestic Animals)
Show Figures

Figure 1

15 pages, 1599 KiB  
Article
Monitoring the Spread of Multidrug-Resistant Escherichia coli Throughout the Broiler Production Cycle
by Victor Dellevedove Cruz, Danilo Henrique Rabaçal Alves, Jamile Kellen de Souza, Maísa Fabiana Menck-Costa, Bruno Henrique Dias de Oliva, Ana Angelita Sampaio Baptista, Alexandre Oba, Fabrizio Matté, Kácio Emílio Borges Baierle, Sérgio Paulo Dejato da Rocha, Kelly Cristina Tagliari de Brito, Benito Guimarães de Brito, Gerson Nakazato, Marcio Costa and Renata Katsuko Takayama Kobayashi
Antibiotics 2025, 14(1), 69; https://doi.org/10.3390/antibiotics14010069 - 10 Jan 2025
Viewed by 1371
Abstract
The extensive use of antimicrobials in broiler production is changing the bird microbiota, fostering drug-resistant bacteria, and complicating therapeutic interventions, making the problem of multidrug resistance global. The monitoring of antimicrobial virulence and resistance genes are tools that have come to assist the [...] Read more.
The extensive use of antimicrobials in broiler production is changing the bird microbiota, fostering drug-resistant bacteria, and complicating therapeutic interventions, making the problem of multidrug resistance global. The monitoring of antimicrobial virulence and resistance genes are tools that have come to assist the breeding of these animals, directing possible treatments as already used in human medicine and collecting data to demonstrate possible dissemination of multidrug-resistant strains that may cause damage to industry and public health. This work aimed to monitor broiler farms in southern Brazil, isolating samples of E. coli and classifying them according to the profile of resistance to antimicrobials of interest to human and animal health. We also monitored the profile of virulence genes and conducted an epidemiological survey of possible risk factors that contribute to this selection of multidrug-resistant isolates. Monitoring was carried out on farms in the three southern states of the country, collecting samples of poultry litter, cloacal swabs, and beetles of the species Alphitobius diaperinus, isolating E. coli from each of these samples. These were evaluated by testing their susceptibility to antimicrobials of animal and human interest; detecting whether the samples were extended-spectrum β-lactamase enzyme (ESBL) producers; and when positive, selected for genotypic tests to identify resistant genes (CTX-M, TEM, and SHV) and virulence. Among the antimicrobials tested, enrofloxacin and ciprofloxacin demonstrated some of the highest frequencies of resistance in the isolated strains, with significant statistical results. The use of these antimicrobials increased the likelihood of resistance by over three times and was associated with a 1.5-fold higher probability of multidrug resistance. Of all isolates, 95% were multidrug-resistant, raising concerns for production and public health. Among 231 ESBL-positive samples, the CTX-M1 group predominated. Full article
(This article belongs to the Special Issue Detection of Bacteria and Antibiotics Surveillance in Livestock)
Show Figures

Figure 1

13 pages, 708 KiB  
Article
Genomic and Gut Microbiome Evaluations of Growth and Feed Efficiency Traits in Broilers
by Xia Xiong, Chunlin Yu, Mohan Qiu, Zengrong Zhang, Chenming Hu, Shiliang Zhu, Li Yang, Han Peng, Xiaoyan Song, Jialei Chen, Bo Xia, Jiangxian Wang, Yi Qing and Chaowu Yang
Animals 2024, 14(24), 3615; https://doi.org/10.3390/ani14243615 - 15 Dec 2024
Viewed by 1039
Abstract
In this study, we combined genomic and gut microbiome data to evaluate 13 economically important growth and feed efficiency traits in 407 Dahen broilers, including body weight (BW) at four, six, nine, and ten weeks of age (BW4, BW6, BW9, and BW10), as [...] Read more.
In this study, we combined genomic and gut microbiome data to evaluate 13 economically important growth and feed efficiency traits in 407 Dahen broilers, including body weight (BW) at four, six, nine, and ten weeks of age (BW4, BW6, BW9, and BW10), as well as the average daily gain (ADG6, ADG9, and ADG10), feed conversion ratio (FCR6, FCR9, and FCR10), and residual feed intake (RFI6, RFI9, and RFI10) for the three growing ages. The highest ADG and lowest FCR were observed at nine and six weeks of age, respectively. We obtained 47,872 high-quality genomic single-nucleotide polymorphisms (SNPs) by sequencing the genomes and 702 amplicon sequence variants (ASVs) of the gut microbiome by sequencing the 16S rRNA gene, both of which were used for analyses of linear mixed models. The heritability estimates (± standard error, SE) ranged from 0.103 ± 0.072 to 0.156 ± 0.079 for BW, 0.154 ± 0.074 to 0.276 ± 0.079 for the ADG, 0.311 ± 0.076 to 0.454 ± 0.076 for the FCR, and 0.413 ± 0.077 to 0.609 ± 0.076 for the RFI traits. We consistently observed moderate and low negative genetic correlations between the BW traits and the FCR and RFI traits (r = −0.562 to −0.038), whereas strong positive correlations were observed between the FCR and RFI traits (r = 0.564 to 0.979). For the FCR and RFI traits, strong positive correlations were found between the measures at the three ages. In contrast to the genomic contribution, we did not detect a gut microbial contribution to all of these traits, as the estimated microbiabilities did not confidently deviate from zero. We systematically evaluated the contributions of host genetics and gut microbes to several growth and feed efficiency traits in Dahen broilers, and the results show that only the host genetics had significant effects on the phenotypic variations in a flock. The parameters obtained in this study, based on the combined use of genomic and gut microbiota data, may facilitate the implementation of efficient breeding schemes in Dahen broilers. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

14 pages, 3856 KiB  
Article
Comparative Analysis of Myofiber Characteristics, Shear Force, and Amino Acid Contents in Slow- and Fast-Growing Broilers
by Shuang Gu, Jia Gao, Zehao Li, Shenbo Zhang, Chaoliang Wen, Congjiao Sun, Wei Yan, Zhuocheng Hou, Ning Yang and Junying Li
Foods 2024, 13(24), 3997; https://doi.org/10.3390/foods13243997 - 11 Dec 2024
Cited by 2 | Viewed by 1213
Abstract
Skeletal muscle fiber characteristics are pivotal in assessing meat quality. However, there is currently a lack of research precisely quantifying the total number of myofibers (TNM) of skeletal muscles. This study used Arbor Acres (AA) broilers and Wenchang (WC) chickens to determine the [...] Read more.
Skeletal muscle fiber characteristics are pivotal in assessing meat quality. However, there is currently a lack of research precisely quantifying the total number of myofibers (TNM) of skeletal muscles. This study used Arbor Acres (AA) broilers and Wenchang (WC) chickens to determine the TNM of several skeletal muscles and the meat quality of the pectoralis major muscle (PM). The results showed that the TNMs of the PM in AA males and females were 935,363.64 ± 92,529.28 and 873,983.72 ± 84,511.28, respectively, significantly higher than those in WC (511,468.97 ± 73,460.81 and 475,371.93 ± 70,187.83) at 7 days of age (p < 0.01). In terms of gastrocnemius medialis in AA males and females, we recorded values of 207,551.43 ± 31,639.97 and 177,203.23 ± 28,764.01, showing a significant difference compared to the values observed in WC (146,313.03 ± 29,633.21 and 124,238.9 ± 20,136.95) (p < 0.01). Similarly, the levels of gastrocnemius lateralis exhibited a significant difference between AA and WC (p < 0.01). Furthermore, the essential, umami, and sweet amino acids were found to be significantly higher in WC compared to AA (p < 0.01). These findings offer valuable data and insights for accurately quantifying the TNM in livestock and for the development of further genetic breeding strategies for meat quality. Full article
Show Figures

Figure 1

21 pages, 6247 KiB  
Article
The Interactive Effects of Nutrient Density and Breed on Growth Performance and Gut Microbiota in Broilers
by Meiting Jia, Jiaqi Lei, Yuanyang Dong, Yuming Guo and Bingkun Zhang
Animals 2024, 14(23), 3528; https://doi.org/10.3390/ani14233528 - 6 Dec 2024
Cited by 2 | Viewed by 1543
Abstract
This study investigated whether variations in growth response to low nutrient density across breeds are linked to microbiota regulation. Arbor Acres (AA) and Beijing-You (BY) were fed high- (HN) and low-nutrient (LN) diets from day [...] Read more.
This study investigated whether variations in growth response to low nutrient density across breeds are linked to microbiota regulation. Arbor Acres (AA) and Beijing-You (BY) were fed high- (HN) and low-nutrient (LN) diets from day (d) 0 to d42. Body weight, feed intake, and intestinal measurements were recorded, and microbiota from the ileum and cecum were analyzed on d7, d21, and d42. Results showed that AA broilers had greater growth performance with a lower feed conversion ratio (FCR) and greater average daily gain (ADG) than BY chickens. The LN diet negatively affected AA broiler growth due to impaired intestinal development, while BY chickens compensated by increasing feed intake. Microbiota composition was primarily affected by breed than by nutrient density, with AA broilers having more beneficial bacteria and BY chickens having more short-chain fatty acid (SCFA)-producing bacteria. The LN diets reduced anti-inflammatory bacteria such as Shuttleworthia and Eisenbergiella in the cecum on d7. By d21, LN diets decreased Lactobacillus and increased proinflammatory Marvinbryantia, potentially impairing growth. However, LN diets enriched SCFA-producing bacteria like Ruminococcaceae_UCG.013, Eisenbergiella, and Tyzzerella in BY chickens and Faecalitalea in AA broilers by d21, which may benefit gut health. By d42, LN diets reduced genera linked to intestinal permeability and fat deposition, including Ruminococcus_torques_group, Romboutsia, Erysipelatoclostridium, and Oscillibacter. Additionally, LN diets enriched Christensenellaceae_R-7_group in AA broilers, associated with intestinal barrier integrity, and increased anti-inflammatory bacteria Alistipes and Barnesiella in AA broilers and BY chickens, respectively, by d42. Overall, AA broilers were more susceptible to reduced nutrient density due to impaired intestinal development, while BY chickens adapted better by increasing feed intake. The microbiota responses to low nutrient density varied over time, potentially negatively affecting gut health in the early stage and growth in the middle stage but possibly improving lipid deposition and gut health in the middle and late stages. Full article
(This article belongs to the Special Issue Microbiome, Immune and Intestinal Health in Animals)
Show Figures

Figure 1

18 pages, 4969 KiB  
Article
Genetic Diversity Analysis and Identification of Candidate Genes for Growth Traits in Chengkou Mountain Chicken
by Lingbin Liu, Yi Wang, Yu Huang, Zhen Wang, Qigui Wang and Haiwei Wang
Int. J. Mol. Sci. 2024, 25(23), 12939; https://doi.org/10.3390/ijms252312939 - 2 Dec 2024
Viewed by 999
Abstract
Growth traits constitute critical factors in the breeding program of broiler chickens. The Chengkou mountain chicken A-lineage (CMC-A) represents a breed specifically bred for meat production. To further explore the growth performance of the CMC-A population, this study conducted whole-genome sequencing on 464 [...] Read more.
Growth traits constitute critical factors in the breeding program of broiler chickens. The Chengkou mountain chicken A-lineage (CMC-A) represents a breed specifically bred for meat production. To further explore the growth performance of the CMC-A population, this study conducted whole-genome sequencing on 464 CMC-A roosters to systematically evaluate their genetic diversity. Additionally, runs of homozygosity (ROH) islands and genome-wide association studies (GWASs) were employed to identify the loci and functional genes influencing the growth traits in Chengkou mountain chickens. The results revealed a high level of genetic diversity and low levels of inbreeding in Chengkou mountain chickens. Several genes associated with stress resistance, muscle growth, and fat deposition were pinpointed through ROH island identification. Moreover, 52 SNP loci were detected, along with 71 candidate genes. These findings enhance our understanding of the genetic architecture underlying the growth traits in Chengkou mountain chickens and provide a theoretical foundation for subsequent breeding endeavors. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop