Liver Transcriptome Analysis Reveals a Potential Mechanism of Heat Stress Increasing Susceptibility to Salmonella Typhimurium in Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Population and Design
2.2. Bacteria Culture
2.3. Weight Measurement
2.4. Phenotype Determination
2.5. Total RNA Isolation, cDNA Library Construction, and Sequencing
2.6. Screening of Differentially Expressed Genes (DEGs) and Functional Enrichment Analysis
2.7. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.8. Cell Stimulation and Infection
2.9. Quantitative Real-Time PCR (qPCR) Analysis
2.10. Statistical Analysis
3. Results
3.1. HS Exacerbated the Negative Impact of ST Infection on Weight Gain
3.2. HS Exacerbates Mortality in ST-Infected Chickens
3.3. HS Enhances Immune Factor Expression in ST-Infected Chickens
3.4. Dynamic Regulation of DEGs in ST-Infected Chickens Under HS
3.5. HS Activates Pro-Inflammatory Immune Pathways While Impairing Antioxidant Defenses in ST-Infected Chickens
3.6. Weighted Gene Co-Expression Network Analysis and Identification of Key Module Genes
3.7. Effect of PTGDS, WISP2, and SLC6A9 on Inflammatory Responses During ST Infection Under HS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HS | Heat stress |
GM | Guang Ming broilers |
CTL | The control group |
ST | Salmonella Typhimurium |
hpi | Hours post infection |
LB | Luria–Bertani |
H | Heterophils |
L | Lymphocytes |
M | Monocytes |
T-AOC | The total antioxidant capacity |
SOD | Superoxide dismutase |
IFN-γ | Interferon-γ |
IL-1β | Interleukin-1β |
IL-8 | Interleukin-8 |
ELISA | Enzyme-linked immunosorbent assay |
DEGs | Differentially expressed genes |
FPKM | Fragments per kilobase per million mapped reads |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
WGCNA | Weighted gene co-expression network analysis |
TOM | Topological overlap matrix |
MEs | Module eigengenes |
MM | Module Membership |
GS | Gene Significance |
qPCR | Quantitative Real-Time PCR |
SD | Standard deviation |
ANOVA | One-way analysis of variance |
GLYT1 | Glycine transporter 1 |
SLC6A9 | Solute carrier family 6 member 9 |
WISP2 | WNT1-inducible signaling pathway protein 2 |
PTGDS | prostaglandin synthase |
PGD2 synthase | Prostaglandin D2 synthase |
ROS | Reactive oxygen species |
References
- Grzinic, G.; Piotrowicz-Cieslak, A.; Klimkowicz-Pawlas, A.; Górny, R.L.; Lawniczek-Walczyk, A.; Piechowicz, L.; Olkowska, E.; Potrykus, M.; Tankiewicz, M.; Krupka, M.; et al. Intensive poultry farming: A review of the impact on the environment and human health. Sci. Total Environ. 2023, 858 Pt 3, 160014. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiang, Y.; Xu, H.; Jiao, X.; Wang, J.; Li, Q. Poultry production as the main reservoir of ciprofloxacin- and tigecycline-resistant extended-spectrum beta-lactamase (ESBL)-producing Salmonella enterica serovar Kentucky ST198.2-2 causing human infections in China. Appl. Environ. Microbiol. 2023, 89, e0094423. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.; Mourao, J.; Campos, J.; Peixe, L. Salmonellosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Magwedere, K.; Rauff, D.; De Klerk, G.; Keddy, K.H.; Dziva, F. Incidence of Nontyphoidal Salmonella in Food-Producing Animals, Animal Feed, and the Associated Environment in South Africa, 2012–2014. Clin. Infect. Dis. 2015, 61 (Suppl. S4), S283–S289. [Google Scholar] [CrossRef]
- Khraishah, H.; Alahmad, B.; Ostergard, R.L., Jr.; AlAshqar, A.; Albaghdadi, M.; Vellanki, N.; Chowdhury, M.M.; Al-Kindi, S.G.; Zanobetti, A.; Gasparrini, A.; et al. Climate change and cardiovascular disease: Implications for global health. Nat. Rev. Cardiol. 2022, 19, 798–812. [Google Scholar] [CrossRef]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Garnett, T.; Godfray, H.C.; Gollin, D.; Rayner, M.; Ballon, P.; Scarborough, P. Global and regional health effects of future food production under climate change: A modelling study. Lancet 2016, 387, 1937–1946. [Google Scholar] [CrossRef]
- Onagbesan, O.M.; Uyanga, V.A.; Oso, O.; Tona, K.; Oke, O.E. Alleviating heat stress effects in poultry: Updates on methods and mechanisms of actions. Front. Vet. Sci. 2023, 10, 1255520. [Google Scholar] [CrossRef]
- Hirakawa, R.; Nurjanah, S.; Furukawa, K.; Murai, A.; Kikusato, M.; Nochi, T.; Toyomizu, M. Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Front. Vet. Sci. 2020, 7, 46. [Google Scholar] [CrossRef]
- Li, G.M.; Liu, L.P.; Yin, B.; Liu, Y.Y.; Dong, W.W.; Gong, S.; Zhang, J.; Tan, J.H. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-alpha systems. Poult. Sci. 2020, 99, 6084–6093. [Google Scholar] [CrossRef]
- Oluwagbenga, E.M.; Fraley, G.S. Heat stress and poultry production: A comprehensive review. Poult. Sci. 2023, 102, 103141. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Gomes, A.V.; Pinheiro, M.L.; Ribeiro, A.; Ferraz-de-Paula, V.; Astolfi-Ferreira, C.S.; Ferreira, A.J.; Palermo-Neto, J. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathol. 2012, 41, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Li, W.H.; Liu, Y.L.; Lun, J.C.; He, Y.M.; Tang, L.P. Heat stress inhibits TLR4-NF-kappaB and TLR4-TBK1 signaling pathways in broilers infected with Salmonella Typhimurium. Int. J. Biometeorol. 2021, 65, 1895–1903. [Google Scholar] [CrossRef]
- Han, J.H.; Karki, R.; Malireddi, R.K.S.; Mall, R.; Sarkar, R.; Sharma, B.R.; Klein, J.; Berns, H.; Pisharath, H.; Pruett-Miller, S.M.; et al. NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress. Nat. Commun. 2024, 15, 1739. [Google Scholar] [CrossRef] [PubMed]
- Fidan, E.D.; Nazligül, A.; Türkyilmaz, M.K.; Aypak, S.Ü.; Kilimci, F.S.; Karaarslan, S.; Kaya, M. Effect of photoperiod length and light intensity on some welfare criteria, carcass, and meat quality characteristics in broilers. Rev. Bras. Zootecn. 2017, 46, 202–210. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Dennis, G., Jr.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, P3. [Google Scholar] [CrossRef]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Yan, L.; Hu, M.; Gu, L.; Lei, M.; Chen, Z.; Zhu, H.; Chen, R. Effect of Heat Stress on Egg Production, Steroid Hormone Synthesis, and Related Gene Expression in Chicken Preovulatory Follicular Granulosa Cells. Animals 2022, 12, 1467. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.H.; Subramaniyan, S.A.; Kang, D.; Park, J.; Khan, M.; Choi, H.W.; Shim, K. Direct exposure to mild heat stress stimulates cell viability and heat shock protein expression in primary cultured broiler fibroblasts. Cell Stress Chaperones 2020, 25, 1033–1043. [Google Scholar] [CrossRef]
- Lai, H.Y.; Chen, Q.; Li, H.; Zhu, C.H.; Yi, L.J.; Zhou, J.; Hu, Q.H.; Yu, X.J. Role of p38MAPK signaling pathway in autophagy of Henle-407 cells induced by spvB of Salmonella typhimurium. Nan Fang Yi Ke Da Xue Xue Bao 2018, 38, 268–273. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yoo, J.H.; Ho, S.; Tran, D.H.; Cheng, M.; Bakirtzi, K.; Kukota, Y.; Ichikawa, R.; Su, B.; Tran, D.H.; Hing, T.C.; et al. Anti-fibrogenic effects of the anti-microbial peptide cathelicidin in murine colitis-associated fibrosis. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 55–74.e1. [Google Scholar] [CrossRef]
- Lo, B.C.; Shin, S.B.; Messing, M.; McNagny, K.M. Chronic Salmonella Infection Induced Intestinal Fibrosis. J. Vis. Exp. 2019, e60068. [Google Scholar] [CrossRef]
- Liu, C.C.; Wang, N.; Chen, Y.; Inoue, Y.; Shue, F.; Ren, Y.; Wang, M.; Qiao, W.; Ikezu, T.C.; Li, Z.; et al. Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease. Nat. Immunol. 2023, 24, 1854–1866. [Google Scholar] [CrossRef] [PubMed]
- van de Weijer, M.L.; Krshnan, L.; Liberatori, S.; Guerrero, E.N.; Robson-Tull, J.; Hahn, L.; Lebbink, R.J.; Wiertz, E.; Fischer, R.; Ebner, D.; et al. Quality Control of ER Membrane Proteins by the RNF185/Membralin Ubiquitin Ligase Complex. Mol. Cell. 2020, 79, 768–781.e7. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Fu, J.; Shao, Y.; Xu, J.; Li, H.; Chen, C.; Zhao, Y.; Zheng, Z.; Yu, C.; Zheng, L.; et al. CYP51-mediated cholesterol biosynthesis is required for the proliferation of CD4+ T cells in Sjogren’s syndrome. Clin. Exp. Med. 2023, 23, 1691–1711. [Google Scholar] [CrossRef] [PubMed]
- Crites, B.R.; Carr, S.N.; Matthews, J.C.; Bridges, P.J. Form of dietary selenium affects mRNA encoding cholesterol biosynthesis and immune response elements in the early luteal phase bovine corpus luteum. J. Anim. Sci. 2022, 100, skac135. [Google Scholar] [CrossRef]
- Sims, J.E.; Smith, D.E. The IL-1 family: Regulators of immunity. Nat. Rev. Immunol. 2010, 10, 89–102. [Google Scholar] [CrossRef]
- Howard, A.; Hirst, B.H. The glycine transporter GLYT1 in human intestine: Expression and function. Biol. Pharm. Bull. 2011, 34, 784–788. [Google Scholar] [CrossRef]
- Fan, H.H.; Fang, S.B.; Chang, Y.C.; Huang, S.T.; Huang, C.H.; Chang, P.R.; Chang, W.C.; Yang, L.T.; Lin, P.C.; Cheng, H.Y. Effects of colonization-associated gene yqiC on global transcriptome, cellular respiration, and oxidative stress in Salmonella Typhimurium. J. Biomed. Sci. 2022, 29, 102. [Google Scholar] [CrossRef]
- Akil, L.; Ahmad, H.A.; Reddy, R.S. Effects of climate change on Salmonella infections. Foodborne Pathog. Dis. 2014, 11, 974–980. [Google Scholar] [CrossRef]
- Alhenaky, A.; Abdelqader, A.; Abuajamieh, M.; Al-Fataftah, A.R. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J. Therm. Biol. 2017, 70 Pt B, 9–14. [Google Scholar] [CrossRef]
- Gross, W.B.; Siegel, H.S. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. 1983, 27, 972–979. [Google Scholar] [CrossRef]
- Al-Murrani, W.K.; Al-Rawi, A.J.; Al-Hadithi, M.F.; Al-Tikriti, B. Association between heterophil/lymphocyte ratio, a marker of ‘resistance’ to stress, and some production and fitness traits in chickens. Br. Poult. Sci. 2006, 47, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Scanes, C.G. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Thiam, M.; Barreto Sanchez, A.L.; Zhang, J.; Wen, J.; Zhao, G.; Wang, Q. Investigation of the Potential of Heterophil/Lymphocyte Ratio as a Biomarker to Predict Colonization Resistance and Inflammatory Response to Salmonella enteritidis Infection in Chicken. Pathogens 2022, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Thiam, M.; Wang, Q.; Barreto Sanchez, A.L.; Zhang, J.; Ding, J.; Wang, H.; Zhang, Q.; Zhang, N.; Wang, J.; Li, Q.; et al. Heterophil/Lymphocyte Ratio Level Modulates Salmonella Resistance, Cecal Microbiota Composition and Functional Capacity in Infected Chicken. Front. Immunol. 2022, 13, 816689. [Google Scholar] [CrossRef]
- Duan, C.; Yang, L.; Chen, W.; Zhou, D.; Cao, S.; Zhang, Y.; Li, G.; Chen, H.; Tian, C. Long-term thermal stress reshapes the tolerance of head kidney of Hong Kong catfish (Clarias fuscus) to acute heat shock by regulating energy metabolism and immune response. Comp. Biochem. Physiol. Part D Genom. Proteom. 2025, 54, 101437. [Google Scholar] [CrossRef]
- Pandey, A.; Rajesh, M.; Baral, P.; Sarma, D.; Tripathi, P.H.; Akhtar, M.S.; Ciji, A.; Dubey, M.K.; Pande, V.; Sharma, P.; et al. Concurrent changes in thermal tolerance thresholds and cellular heat stress response reveals novel molecular signatures and markers of high temperature acclimation in rainbow trout. J. Therm. Biol. 2021, 102, 103124. [Google Scholar] [CrossRef]
- Wu, W.; Li, H.; Wang, Z.; Dai, Z.; Liang, X.; Luo, P.; Liu, K.; Zhang, H.; Zhang, N.; Li, S.; et al. The tertiary lymphoid structure-related signature identified PTGDS in regulating PD-L1 and promoting the proliferation and migration of glioblastoma. Heliyon 2024, 10, e23915. [Google Scholar] [CrossRef]
- Ma, S.X.; Xie, G.F.; Fang, P.; Tang, M.M.; Deng, Y.P.; Lu, Y.J.; Cao, W.; Fu, L. Low 15d-PGJ2 status is associated with oxidative stress in chronic obstructive pulmonary disease patients. Inflamm. Res. 2023, 72, 171–180. [Google Scholar] [CrossRef]
- Ishii, T. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation. Free Radic. Biol. Med. 2015, 88 Pt B, 189–198. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, J.; Wu, X.; Du, W.; Zhu, Y.; Liu, X.; Liu, Z.; Meng, B.; Guo, J.; Yang, Q.; et al. Blocking glycine utilization inhibits multiple myeloma progression by disrupting glutathione balance. Nat. Commun. 2022, 13, 4007. [Google Scholar] [CrossRef]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef] [PubMed]
- Rhen, M. Salmonella and Reactive Oxygen Species: A Love-Hate Relationship. J. Innate Immun. 2019, 11, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.X.; Lu, E.Q.; Cheng, Y.J.; Xu, E.; Zhu, M.; Chen, X. Glutamine Promotes Porcine Intestinal Epithelial Cell Proliferation through the Wnt/beta-Catenin Pathway. J. Agric. Food Chem. 2024, 72, 7155–7166. [Google Scholar] [CrossRef] [PubMed]
- Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 2006, 127, 469–480. [Google Scholar] [CrossRef]
- Cheng, L.; Zhao, Y.; Qi, D.; Li, W.; Wang, D. Wnt/beta-catenin pathway promotes acute lung injury induced by LPS through driving the Th17 response in mice. Biochem. Biophys. Res. Commun. 2018, 495, 1890–1895. [Google Scholar] [CrossRef]
- Dong, Y.; Fan, H.; Zhang, Z.; Jiang, F.; Li, M.; Zhou, H.; Guo, W.; Zhang, Z.; Kang, Z.; Gui, Y.; et al. Berberine ameliorates DSS-induced intestinal mucosal barrier dysfunction through microbiota-dependence and Wnt/beta-catenin pathway. Int. J. Biol. Sci. 2022, 18, 1381–1397. [Google Scholar] [CrossRef]
Parameters | Groups | ||
---|---|---|---|
CTL | ST | HS + ST | |
Before the start of heat exposure, 25 dpi | 691.31 ± 121.79 | 688.64 ± 106.71 | 710.18 ± 73.45 |
One day after heat exposure, 28 dpi | 1048.24 ± 156.74 a | 1048.47 ± 114.05 a | 936.24 ± 166.13 b |
One day after ST infection, 29 dpi | 1115.74 ± 82.90 a | 1077.28 ± 113.78 a | 951.75 ± 140.60 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Zhu, Y.; Wang, Z.; Li, Q.; Zhao, G.; Wang, Q. Liver Transcriptome Analysis Reveals a Potential Mechanism of Heat Stress Increasing Susceptibility to Salmonella Typhimurium in Chickens. Biology 2025, 14, 720. https://doi.org/10.3390/biology14060720
Zhang Q, Zhu Y, Wang Z, Li Q, Zhao G, Wang Q. Liver Transcriptome Analysis Reveals a Potential Mechanism of Heat Stress Increasing Susceptibility to Salmonella Typhimurium in Chickens. Biology. 2025; 14(6):720. https://doi.org/10.3390/biology14060720
Chicago/Turabian StyleZhang, Qi, Yvqing Zhu, Zixuan Wang, Qinghe Li, Guiping Zhao, and Qiao Wang. 2025. "Liver Transcriptome Analysis Reveals a Potential Mechanism of Heat Stress Increasing Susceptibility to Salmonella Typhimurium in Chickens" Biology 14, no. 6: 720. https://doi.org/10.3390/biology14060720
APA StyleZhang, Q., Zhu, Y., Wang, Z., Li, Q., Zhao, G., & Wang, Q. (2025). Liver Transcriptome Analysis Reveals a Potential Mechanism of Heat Stress Increasing Susceptibility to Salmonella Typhimurium in Chickens. Biology, 14(6), 720. https://doi.org/10.3390/biology14060720