Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,237)

Search Parameters:
Keywords = breeding techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 2824 KiB  
Review
Assessing Milk Authenticity Using Protein and Peptide Biomarkers: A Decade of Progress in Species Differentiation and Fraud Detection
by Achilleas Karamoutsios, Pelagia Lekka, Chrysoula Chrysa Voidarou, Marilena Dasenaki, Nikolaos S. Thomaidis, Ioannis Skoufos and Athina Tzora
Foods 2025, 14(15), 2588; https://doi.org/10.3390/foods14152588 - 23 Jul 2025
Abstract
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a [...] Read more.
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a focus on the discovery and application of protein and peptide biomarkers for species differentiation and fraud detection. Recent innovations in both top-down and bottom-up proteomics have markedly improved the sensitivity and specificity of detecting key molecular targets, including caseins and whey proteins. Peptide-based methods are especially valuable in processed dairy products due to their thermal stability and resilience to harsh treatment, although their species specificity may be limited when sequences are conserved across related species. Robust chemometric approaches are increasingly integrated with proteomic pipelines to handle high-dimensional datasets and enhance classification performance. Multivariate techniques, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), are frequently employed to extract discriminatory features and model adulteration scenarios. Despite these advances, key challenges persist, including the lack of standardized protocols, variability in sample preparation, and the need for broader validation across breeds, geographies, and production systems. Future progress will depend on the convergence of high-resolution proteomics with multi-omics integration, structured data fusion, and machine learning frameworks, enabling scalable, specific, and robust solutions for milk authentication in increasingly complex food systems. Full article
Show Figures

Figure 1

18 pages, 1169 KiB  
Article
Multi-Dimensional Analysis of Quality-Related Traits Affecting the Taste of Main Cultivated Japonica Rice Varieties in Northern China
by Hongwei Yang, Liying Zhang, Xiangquan Gao, Shi Han, Zuobin Ma and Lili Wang
Agronomy 2025, 15(8), 1757; https://doi.org/10.3390/agronomy15081757 - 22 Jul 2025
Abstract
The quality of rice, one of the most important food crops in the world, is directly related to people’s dietary experience and nutritional health. With the improvement in living standards, consumer requirements for the taste quality of rice are becoming increasingly strict. Japonica [...] Read more.
The quality of rice, one of the most important food crops in the world, is directly related to people’s dietary experience and nutritional health. With the improvement in living standards, consumer requirements for the taste quality of rice are becoming increasingly strict. Japonica rice occupies an important position in rice production due to its rich genetic diversity and excellent agronomic characteristics. In this study, LJ433, JY653, LJ218, LJ177, LY66, and LX21, which are mainly popularized in northern China and have different taste values, were selected as the experimental subjects, and YJ219, which won the gold award in the third China high-quality rice variety taste quality evaluation, was taken as the control (CK). Low-field nuclear magnetic resonance and spectral analysis were adopted as the main detection techniques. The effects of free water (peak area increased by 13.24–86.68% when p < 0.05), bound water, appearance characteristics (such as chalkiness, which decreased by 18.48–86.48%), and chemical composition (amylose content decreased by 3.76–26.47%) on the taste value of rice were systematically analyzed, and a multi-dimensional “appearance–palatability–nutrition” evaluation system was constructed. The experimental results indicated that increasing the free water content, reducing the chalkiness and chemical component content could significantly improve the taste value of rice (p < 0.05). The results of this research provide a theoretical basis for breeding new high-yield and high-quality rice varieties and have guiding significance for the practice of rice planting and processing. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
Genotypic and Environmental Impacts on Vicine and Convicine Concentrations in Faba Beans
by Pankaj Maharjan, Aaron C. Elkins, Jason Brand, Samuel C. Catt, Simone J. Rochfort and Joe F. Panozzo
Agriculture 2025, 15(15), 1567; https://doi.org/10.3390/agriculture15151567 - 22 Jul 2025
Viewed by 48
Abstract
High concentrations of vicine and convicine (v-c) in faba beans can trigger favism in susceptible humans, posing a significant barrier to the broader adoption of faba beans as a food source. While plant breeding and various post-harvest processing methods have been adopted to [...] Read more.
High concentrations of vicine and convicine (v-c) in faba beans can trigger favism in susceptible humans, posing a significant barrier to the broader adoption of faba beans as a food source. While plant breeding and various post-harvest processing methods have been adopted to reduce v-c levels, there is limited understanding of how agronomic practices may assist in reducing v-c levels. This study investigated the effect of sowing time (TOS), soil type, and genotype on v-c levels in faba beans. Twelve faba bean genotypes were evaluated across multiple field sites by applying two sowing times and two diverse soil types. The v-c content was quantified using established chromatographic techniques. Genotypes were identified as the most major factor affecting v-c levels, with significant variation observed in mean vicine and convicine contents. Sowing time also had a significant impact (p < 0.01), with lower v-c levels observed in TOS 1 compared to TOS 2. This reduction may be due to a longer plant development period and extended seed desiccation in TOS 1. Soil conditions, likely linked to nutritional factors, significantly influenced vicine concentrations (p < 0.05) but did not influence convicine levels (p > 0.05). These findings highlight the importance of agronomy practices, such as optimal sowing time, soil nutrition, and moisture management, in minimizing v-c levels; the most effective strategy remains the development of low v-c genotypes combined with farming practices that naturally suppress v-c accumulation. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 814 KiB  
Review
Macrobrachium rosenbergii Genome Editing Breeding with CRISPR–Cas Nucleases, Base Editors, and Prime Editors
by Guo Li, Xinzhi Zhou, Guanglin Zhu, Yingjia Pan, Junjun Yan, Jilun Meng, Tiantian Ye, Yaxian Cheng, Cui Liu and Zhimin Gu
Animals 2025, 15(15), 2161; https://doi.org/10.3390/ani15152161 - 22 Jul 2025
Viewed by 66
Abstract
This review focuses on CRISPR genome editing technology, particularly its application in the study of Macrobrachium rosenbergii (M. rosenbergii). It first elaborates on the basic principles and mechanisms of CRISPR–Cas9 technology, base editors, and prime editors. Then, it explores the application [...] Read more.
This review focuses on CRISPR genome editing technology, particularly its application in the study of Macrobrachium rosenbergii (M. rosenbergii). It first elaborates on the basic principles and mechanisms of CRISPR–Cas9 technology, base editors, and prime editors. Then, it explores the application of this technology in M. rosenbergii breeding, including improving growth rate, enhancing disease resistance, and sex control. Additionally, it introduces the progress of genome editing technology in M. rosenbergii, epidemiology and pathogenesis, diagnostic techniques, analyzes the opportunities and challenges it faces, reviews the historical evolution, and looks ahead to future development directions. CRISPR technology has brought new opportunities to the research and industrial development of M. rosenbergii, but it also needs to address numerous technical and safety challenges. Full article
Show Figures

Figure 1

11 pages, 1796 KiB  
Article
Head Sexual Characterization of Sanmartinero Creole Bovine Breed Assessed by Geometric Morphometric Methods
by Arcesio Salamanca-Carreño, Pere M. Parés-Casanova, Mauricio Vélez-Terranova, David E. Rangel-Pachón, Germán Martínez-Correal and Jaime Rosero-Alpala
Ruminants 2025, 5(3), 33; https://doi.org/10.3390/ruminants5030033 - 21 Jul 2025
Viewed by 148
Abstract
Geometric morphometrics is performed on different species in different contexts. Here, the aim was to investigate morphological differences in the head of the Sanmartinero Creole bovine to examine head shape variations between sexes using geometric morphometric methods. A sample of cranial pictures of [...] Read more.
Geometric morphometrics is performed on different species in different contexts. Here, the aim was to investigate morphological differences in the head of the Sanmartinero Creole bovine to examine head shape variations between sexes using geometric morphometric methods. A sample of cranial pictures of 43 animals (13 males and 30 females) was obtained, and form (size + shape) was studied by means of geometric morphometric techniques using a set of 14 landmarks. This approach eliminated potential dietary effects, ensuring that the observed shape variations were primarily due to intrinsic morphological differences. Sexual dimorphism was found in form (for both size and shape) of the head of the Sanmartinero Creole bovine breed. Males had significantly larger heads based on centroid size (U = 714, p = 0.0004), confirming true sexual size differences, and Principal Component Analysis revealed overlapping head shapes with sexual dimorphism concentrated at midline sagittal landmarks (between the most rostral and caudal orbit points) and paired lateral points, indicating that males have broader and longer heads. The two evaluated characters (head size and shape) are of special interest for the conservation of the breed, especially in those cases whose objectives are to maintain the uniqueness, distinctiveness, and uniformity of the populations. This study analyzed animals subjected to the same feeding program, ensuring the elimination of additional variables. Full article
(This article belongs to the Special Issue Feature Papers of Ruminants 2024–2025)
Show Figures

Figure 1

13 pages, 563 KiB  
Article
Validating Sperm Concentration in Rabbit Cryopreservation Protocol: Implications for Fertility, Litter Size, and Offspring Growth
by Michele Di Iorio, Giusy Rusco, Fabrizio Lauriola, Emanuele Antenucci, Alessandra Roncarati, Silvia Cerolini, Michele Schiavitto and Nicolaia Iaffaldano
Vet. Sci. 2025, 12(7), 678; https://doi.org/10.3390/vetsci12070678 - 18 Jul 2025
Viewed by 189
Abstract
The cryopreservation of rabbit semen is a valuable strategy for genetic resource preservation and efficient artificial insemination, but outcomes remain inconsistent, partly due to variations in sperm concentration per dose. This study aimed to evaluate the in vivo effects of different sperm concentrations [...] Read more.
The cryopreservation of rabbit semen is a valuable strategy for genetic resource preservation and efficient artificial insemination, but outcomes remain inconsistent, partly due to variations in sperm concentration per dose. This study aimed to evaluate the in vivo effects of different sperm concentrations (15, 25, 35, 55, and 75 million per straw) on fertility, prolificacy, and offspring growth in nulliparous and multiparous does. A total of 384 rabbit females were inseminated using frozen–thawed semen, and their reproductive performance was compared with fresh semen. Fertility and kindling rates varied with sperm concentration and parity: nulliparous does showed the highest fertility at 15 million sperm/straw (84.4%), while multiparous does reached peak values at 25–55 million/straw (78.1–81.3%). Litter size and live-born kits were consistently higher in multiparous than in nulliparous does. Offspring body weight at 19 and 60 days was influenced by both sperm concentration and maternal parity, with better growth generally observed in multiparous groups. Weaning success remained high across all groups. Our results indicate that sperm concentrations ranging from 15 to 35 × 106/straw are the most suitable for cryopreservation, as they maintain high fertility, prolificacy, and offspring growth, comparable to fresh semen. These results confirm that optimizing sperm concentration during cryopreservation improves reproductive efficiency and that tailoring insemination strategies to the physiological status of the female enhances outcomes. The results provide useful recommendations for improving cryopreservation techniques in rabbit breeding programs. Full article
Show Figures

Figure 1

17 pages, 3817 KiB  
Article
Molecular Mechanism of Body Color Change in the Ecological Seedling Breeding Model of Apostichopus japonicus
by Lingshu Han, Pengfei Hao, Haoran Xiao, Weiyan Li, Yichen Fan, Wanrong Tian, Ye Tian, Luo Wang, Yaqing Chang and Jun Ding
Biology 2025, 14(7), 873; https://doi.org/10.3390/biology14070873 - 17 Jul 2025
Viewed by 211
Abstract
The mismatch between the rapid expansion of breeding scale and outdated techniques has hindered the development of the sea cucumber (A. japonicus) industry. Our previous work revealed that ecological seedling breeding can produce red-colored A. japonicus, a phenotype not observed [...] Read more.
The mismatch between the rapid expansion of breeding scale and outdated techniques has hindered the development of the sea cucumber (A. japonicus) industry. Our previous work revealed that ecological seedling breeding can produce red-colored A. japonicus, a phenotype not observed in traditional artificial breeding, where individuals are typically green. To investigate the molecular and genetic basis of this novel red coloration, we compared the growth conditions of red sea cucumbers and green sea cucumbers, as well as the differences in the pigment composition, gene expression and metabolites of their body walls. Red individuals showed higher body length and weight, and elevated levels of astaxanthin, lutein, canthaxanthin, and β-carotene in the body wall. Transcriptomic and metabolomic analyses identified differentially expressed genes and metabolites associated with pigmentation. In particular, FMO2 and WDR18, involved in the cytochrome P450 drug metabolism pathway, were significantly upregulated in red individuals and are known to play roles in pigment biosynthesis and light signal perception. Key metabolites such as astaxanthin and fucoxanthin were implicated in body color formation. Moreover, genes in the arachidonic acid metabolism pathway were highly expressed, suggesting that dietary factors may contribute to pigment synthesis and accumulation. These findings provide novel insights into the mechanisms underlying body color variation in A. japonicus and offer potential for improved breeding strategies. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Graphical abstract

19 pages, 5014 KiB  
Article
Relationship Between Volatile Aroma Components and Amino Acid Metabolism in Crabapple (Malus spp.) Flowers, and Development of a Cultivar Classification Model
by Jingpeng Han, Yuxing Yao, Wenhuai Kang, Yang Wang, Jingchuan Li, Huizhi Wang and Ling Qin
Horticulturae 2025, 11(7), 845; https://doi.org/10.3390/horticulturae11070845 - 17 Jul 2025
Viewed by 189
Abstract
The integration of HS-SPME-GC/MS and UPLC-MS/MS techniques enabled the profiling of volatile organic compounds (VOCs) and amino acids (AAs) in 18 crabapple flower cultivars, facilitating the development of a novel VOC–AA model. Among the 51 identified VOCs, benzyl alcohol, benzaldehyde, and ethyl benzoate [...] Read more.
The integration of HS-SPME-GC/MS and UPLC-MS/MS techniques enabled the profiling of volatile organic compounds (VOCs) and amino acids (AAs) in 18 crabapple flower cultivars, facilitating the development of a novel VOC–AA model. Among the 51 identified VOCs, benzyl alcohol, benzaldehyde, and ethyl benzoate were predominant, categorizing cultivars into fruit-almond, fruit-sweet, and mixed types. The amino acids, namely glutamic acid (Glu), asparagine (Asn), aspartic acid (Asp), serine (Ser), and alanine (Ala) constituted 83.6% of the total AAs identified. Notably, specific amino acids showed positive correlations with key VOCs, suggesting a metabolic regulatory mechanism. The Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) model, when combined with volatile organic compounds (VOCs) and amino acid profiles, enabled more effective aroma type classification, providing a robust foundation for further studies on aroma mechanisms and targeted breeding. Full article
Show Figures

Figure 1

33 pages, 1864 KiB  
Review
The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review
by Mohamed K. Abou El-Nasr, Karim M. Hassan, Basma T. Abd-Elhalim, Dmitry E. Kucher, Nazih Y. Rebouh, Assiya Ansabayeva, Mostafa Abdelkader, Mahmoud A. A. Ali and Mohamed A. Nasser
Plants 2025, 14(14), 2192; https://doi.org/10.3390/plants14142192 - 15 Jul 2025
Viewed by 262
Abstract
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering [...] Read more.
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering photosynthesis process and growth rate), heavy metals (induced toxicity, hindering physiological processes also lowering crop quantity and quality), and pathogens (induce diseases that may significantly affect plant health beside productivity). This review explores the integrated effects of these stressors on plant productivity and growth rate, emphasizing how each stressor exceptionally plays a role in physiological responses. Owing to developments in technology that outclass traditional breeding methods and genetic engineering techniques, powerful alleviation strategies are vital. New findings have demonstrated the remarkable role of nanoparticles in regulating responses to these environmental stressors. In this review, we summarize the roles and various applications of nanomaterials in regulating abiotic and biotic stress responses. This review discusses and explores the relationship between various types of nanoparticles (metal, carbon-based, and biogenic) and their impact on plant physiology. Furthermore, we assess how nanoparticle technology may play a role in practices of sustainable agriculture by reducing the amount of compounds used, providing them with a larger surface area, highly efficient mass transfer abilities, and controlled, targeted delivery of lower nutrient or pesticide amounts. A review of data from several published studies leads to the conclusion that nanoparticles may act as a synergistic effect, which can effectively increase plant stress tolerance and their nutritional role. Full article
Show Figures

Figure 1

18 pages, 2273 KiB  
Article
Integrating Near-Infrared Spectroscopy and Proteomics for Semen Quality Biosensing
by Notsile H. Dlamini, Mariana Santos-Rivera, Carrie K. Vance-Kouba, Olga Pechanova, Tibor Pechan and Jean M. Feugang
Biosensors 2025, 15(7), 456; https://doi.org/10.3390/bios15070456 - 15 Jul 2025
Viewed by 302
Abstract
Artificial insemination (AI) is a key breeding technique in the swine industry; however, the lack of reliable biomarkers for semen quality limits its effectiveness. Seminal plasma (SP) contains extracellular vesicles (EVs) that present a promising, non-invasive biomarker for semen quality. This study explores [...] Read more.
Artificial insemination (AI) is a key breeding technique in the swine industry; however, the lack of reliable biomarkers for semen quality limits its effectiveness. Seminal plasma (SP) contains extracellular vesicles (EVs) that present a promising, non-invasive biomarker for semen quality. This study explores the biochemical profiles of boar SP to assess semen quality through near-infrared spectroscopy (NIRS) and proteomics of SP-EVs. Fresh semen from mature Duroc boars was evaluated based on sperm motility, classifying samples as Passed (≥70%) or Failed (<70%). NIRS analysis identified distinct variations in water structures at specific wavelengths (C1, C5, C12 nm), achieving high accuracy (92.2%), sensitivity (94.2%), and specificity (90.3%) through PCA-LDA. Proteomic analysis of SP-EVs revealed 218 proteins in Passed and 238 in Failed samples. Nexin-1 and seminal plasma protein pB1 were upregulated in Passed samples, while LGALS3BP was downregulated. The functional analysis highlighted pathways associated with single fertilization, filament organization, and glutathione metabolism in Passed samples. Integrating NIRS with SP-EV proteomics provides a robust approach to non-invasive assessment of semen quality. These findings suggest that SP-EVs could serve as effective biosensors for rapid semen quality assessment, enabling better boar semen selection and enhancing AI practices in swine breeding. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

24 pages, 2374 KiB  
Review
The Role of Colchicine in Plant Breeding
by Baljinder Singh, Sunyoung Yun, Yeji Gil and Myoung-Hwan Park
Int. J. Mol. Sci. 2025, 26(14), 6743; https://doi.org/10.3390/ijms26146743 - 14 Jul 2025
Viewed by 245
Abstract
Colchicine, a strong antimitotic drug produced by the crocus Colchicum autumnale, induces polyploidy by interfering with spindle formation during mitosis, making it a crucial tool in plant breeding. In this review, we give a comprehensive overview of the function of colchicine in [...] Read more.
Colchicine, a strong antimitotic drug produced by the crocus Colchicum autumnale, induces polyploidy by interfering with spindle formation during mitosis, making it a crucial tool in plant breeding. In this review, we give a comprehensive overview of the function of colchicine in plant enhancement, emphasizing its modes of action, application techniques, and effects on phytochemistry, physiology, and plant morphology. A wide variety of plant species, especially medicinal plants, have been studied in this context, utilizing in vitro, ex vitro, and in vivo methods for applying colchicine. In addition, we discuss the safety and effectiveness of colchicine in comparison to other polyploidy-inducing drugs, including oryzalin, trifluralin, and mutagens such as ethyl methanesulfonate and methyl methanesulfonate. Furthermore, the effects of colchicine on genetic stability and secondary metabolite production are discussed, with a focus on its usefulness in boosting the medicinal and economic potential of the target species. This synthesis highlights the ongoing use of colchicine in plant breeding and provides useful information and suggestions for future advancements in crop development via induced polyploidy. Full article
(This article belongs to the Special Issue New Insights in Plant Cell Biology)
Show Figures

Figure 1

22 pages, 2129 KiB  
Review
Recent Advances in In Vitro Floral Induction in Tropical Orchids: Progress and Prospects in Vanilla Species
by Obdulia Baltazar-Bernal and José Luis Spinoso-Castillo
Horticulturae 2025, 11(7), 829; https://doi.org/10.3390/horticulturae11070829 - 12 Jul 2025
Viewed by 392
Abstract
Orchids and other flowering plants offer a wide range of floral traits. Within the Orchidaceae family, the Vanilla genus is one of the most valued plants in the commercial flavor industry. In vitro biotechnological approaches to Vanilla, such as germplasm conservation, massive [...] Read more.
Orchids and other flowering plants offer a wide range of floral traits. Within the Orchidaceae family, the Vanilla genus is one of the most valued plants in the commercial flavor industry. In vitro biotechnological approaches to Vanilla, such as germplasm conservation, massive propagation, and genetic engineering, have played a key role in breeding programs. There are, however, few studies that elucidate the physiological, molecular, and genetic aspects of vanilla orchid flowering and in vitro induction. This review’s main objective is to provide updated and complete data on in vitro floral induction and flowering of tropical and vanilla orchid species. A bibliographic search was carried out for scientific reports in academic databases (Scopus, Web of Science, PubMed, and ScienceDirect), and a total of 39 documents from 2014 and 2025 were analyzed. This review discusses the most important factors that affect in vitro flowering in Vanilla, including the monopodial genotypes, photoperiod, irradiance, temperature, nutrition, plant growth regulators, explant types, and culture methods. Consequently, this revision incorporates a number of studies on orchid in vitro flowering, with a focus on vanilla species. In conclusion, there still exists limited progress in Vanilla compared to other orchid species; however, the use of biotechnological techniques like in vitro flowering offers a fundamental framework for orchid breeding. Full article
(This article belongs to the Special Issue Orchids: Advances in Propagation, Cultivation and Breeding)
Show Figures

Figure 1

14 pages, 1593 KiB  
Article
Multifactor Analysis of a Genome-Wide Selection System in Brassica napus L.
by Wanqing Tan, Zhiyuan Wang, Jia Wang, Sayedehsaba Bilgrami and Liezhao Liu
Plants 2025, 14(14), 2095; https://doi.org/10.3390/plants14142095 - 8 Jul 2025
Viewed by 265
Abstract
Brassica napus is one of the most important oil crops. Rapid breeding of excellent genotypes is an important aspect of breeding. As a cutting-edge and reliable technique, genome-wide selection (GS) has been widely used and is influenced by many factors. In this study, [...] Read more.
Brassica napus is one of the most important oil crops. Rapid breeding of excellent genotypes is an important aspect of breeding. As a cutting-edge and reliable technique, genome-wide selection (GS) has been widely used and is influenced by many factors. In this study, ten phenotypic traits of two populations were studied, including oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), glucosinolate (GSL), seed oil content (SOC), and seed protein content (SPC), silique length (SL), days to initial flowering (DIF), days to final flowering (DFF), and the flowering period (FP). The effects of different GS models, marker densities, population designs, and the inclusion of nonadditive effects, trait-specific SNPs, and deleterious mutations on GS were evaluated. The results highlight the superior prediction accuracy (PA) under the RF model. Among the ten traits, the PA of glucosinolate was the highest, and that of linolenic acid was the lowest. At the same time, 5000 markers and a population of 400 samples, or a training population three times the size of an applied breeding population, can achieve optimal performance for most traits. The application of nonadditive effects and deleterious mutations had a weak effect on the improvement of traits with high PA but was effective for traits with low PA. The use of trait-specific SNPs can effectively improve the PA, especially when using markers with p-values less than 0.1. In addition, we found that the PA of traits was significantly and positively correlated with the number of markers, according to p-values less than 0.01. In general, based on the associated population, a GS system suitable for B. napus was established in this study, which can provide a reference for the improvement of GS and is conducive to the subsequent application of GS in B. napus, especially in the aspects of model selection of GS, the application of markers, and the setting of population sizes. Full article
Show Figures

Figure 1

23 pages, 6001 KiB  
Article
Quantification of Flavonoid Contents in Holy Basil Using Hyperspectral Imaging and Deep Learning Approaches
by Apichat Suratanee, Panita Chutimanukul and Kitiporn Plaimas
Appl. Sci. 2025, 15(13), 7582; https://doi.org/10.3390/app15137582 - 6 Jul 2025
Viewed by 316
Abstract
Holy basil (Ocimum tenuiflorum L.) is a medicinal herb rich in bioactive flavonoids with therapeutic properties. Traditional quantification methods rely on time-consuming and destructive extraction processes, whereas hyperspectral imaging provides a rapid, non-destructive alternative by analysing spectral signatures. However, effectively linking hyperspectral [...] Read more.
Holy basil (Ocimum tenuiflorum L.) is a medicinal herb rich in bioactive flavonoids with therapeutic properties. Traditional quantification methods rely on time-consuming and destructive extraction processes, whereas hyperspectral imaging provides a rapid, non-destructive alternative by analysing spectral signatures. However, effectively linking hyperspectral data to flavonoid levels remains a challenge for developing early detection tools before harvest. This study integrates deep learning with hyperspectral imaging to quantify flavonoid contents in 113 samples from 26 Thai holy basil cultivars collected across diverse regions of Thailand. Two deep learning architectures, ResNet1D and CNN1D, were evaluated in combination with feature extraction techniques, including wavelet transformation and Gabor-like filtering. ResNet1D with wavelet transformation achieved optimal performance, yielding an area under the receiver operating characteristic curve (AUC) of 0.8246 and an accuracy of 0.7702 for flavonoid content classification. Cross-validation demonstrated the model’s robust predictive capability in identifying antioxidant-rich samples. Samples with the highest predicted flavonoid content were identified, and cultivars exhibiting elevated levels of both flavonoids and phenolics were highlighted across various regions of Thailand. These findings demonstrate the predictive capability of hyperspectral data combined with deep learning for phytochemical assessment. This approach offers a valuable tool for non-destructive quality evaluation and supports cultivar selection for higher phytochemical content in breeding programs and agricultural applications. Full article
Show Figures

Figure 1

12 pages, 1718 KiB  
Article
Epidemiological Patterns of Gastrointestinal Parasitic Infections in Equine Populations from Urumqi and Ili, Xinjiang, China
by Yabin Lu, Penghui Ru, Sinan Qin, Yukun Zhang, Enning Fu, Mingyue Cai, Nuermaimaiti Tuohuti, Hui Wu, Yi Zhang and Yang Zhang
Vet. Sci. 2025, 12(7), 644; https://doi.org/10.3390/vetsci12070644 - 6 Jul 2025
Viewed by 364
Abstract
Gastrointestinal parasitic diseases pose significant health risks to equine populations. This study investigated the epidemiological patterns of equine gastrointestinal parasites in Xinjiang by analyzing 83 fecal samples collected from Ili (n = 62) and Urumqi (n = 21) between August and [...] Read more.
Gastrointestinal parasitic diseases pose significant health risks to equine populations. This study investigated the epidemiological patterns of equine gastrointestinal parasites in Xinjiang by analyzing 83 fecal samples collected from Ili (n = 62) and Urumqi (n = 21) between August and November 2024. The modified McMaster technique was employed to quantify fecal egg counts (EPG) and was complemented by morphological identification to assess infection dynamics related to geography, breed specificity, and management practices. The results demonstrated an overall infection prevalence of 66.3% (55/83), with strongyles, Parascaris equorum, and Eimeria oocysts being present. Significant geographical variation was observed, with Ili exhibiting a higher prevalence (74.2%) compared to Urumqi (42.9%). Breed susceptibility analysis revealed that there was a 94.1% prevalence in Yili horses versus 42.9% in Kazakh horses. Pasture-managed herds showed markedly higher infection rates (94.1%) than stable-based systems (50.0%). Parasite community composition was dominated by strongyles (82.1%), followed by Triodontophorus spp. (27.7%) and P. equorum (2.4%). These findings highlight severe parasitic infection risks in Xinjiang’s grazing equids, underscoring the urgency of implementing targeted anthelmintic protocols to mitigate disease transmission. Full article
Show Figures

Figure 1

Back to TopTop