Genotypic and Environmental Impacts on Vicine and Convicine Concentrations in Faba Beans
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Trial and Genotypes
2.2. Calculation of Heat Sum
2.3. Protein, Moisture, and 100 Seed Weight Analysis
2.4. Vicine and Convicine Analysis
2.4.1. Sample Preparation
2.4.2. Chromatographic Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Genotype
3.2. Effect of Time of Sowing (TOS)
3.3. Effect of Soil Type
3.4. Solar Exposure During Podding and Its Impact on V-C Contents
3.5. Genotype by Treatment Interactions
3.6. A Study of Low V-C Lines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHS | Accumulated heat sum |
ASE | Accumulated solar exposure |
DB | Dry matter basis |
TOS | Time of sowing |
v-c | Vicine and convicine |
References
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsiņa, I.; Kronberga, A.; Balliu, A.; Olle, M.; et al. Faba bean cultivation—Revealing novel managing practices for more sustainable and competitive European cropping systems. Front. Plant Sci. 2018, 9, 1115. [Google Scholar] [CrossRef] [PubMed]
- Mínguez, M.I.; Rubiales, D. Chapter 15—Faba bean. In Crop Physiology Case Histories for Major Crops; Sadras, V.O., Calderini, D.F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 452–481. [Google Scholar]
- Food and Agriculture Organization FAOSTAT (Food and Agriculture Organization Corporate Statistical Database). 2023. Available online: https://www.fao.org/statistics/en (accessed on 16 May 2025).
- Duc, G.; Bao, S.; Baum, M.; Redden, B.; Sadiki, M.; Suso, M.J.; Vishniakova, M.; Zong, X. Diversity maintenance and use of Vicia faba L. genetic resources. Field Crop. Res. 2010, 115, 270–278. [Google Scholar] [CrossRef]
- Yano, H.; Fu, W. Effective use of plant proteins for the development of “New” foods. Foods 2022, 11, 1185. [Google Scholar] [CrossRef] [PubMed]
- Martineau-Côté, D.; Achouri, A.; Karboune, S.; L’Hocine, L. Faba bean: An untapped source of quality plant proteins and bioactives. Nutrients 2022, 14, 1541. [Google Scholar] [CrossRef] [PubMed]
- Björnsdotter, E.; Nadzieja, M.; Chang, W.; Escobar-Herrera, L.; Mancinotti, D.; Angra, D.; Xia, X.; Tacke, R.; Khazaei, H.; Crocoll, C.; et al. VC1 catalyses a key step in the biosynthesis of vicine in faba bean. Nat. Plants 2021, 7, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.; Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008, 371, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, C.G.; Losito, I.; Facchini, L.; Katina, K.; Palmisano, F.; Gobbetti, M.; Coda, R. Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Sci. Rep. 2016, 6, 32452. [Google Scholar] [CrossRef] [PubMed]
- Polanowska, K.; Szwengiel, A.; Kuligowski, M.; Nowak, J. Degradation of pyrimidine glycosides and L-DOPA in the faba bean by Rhizopus oligosporus. LWT 2020, 127, 109353. [Google Scholar] [CrossRef]
- Jamalian, J.; Ghorbani, M. Extraction of favism inducing agents from whole seeds of faba bean (Vicia faba L. var major). J. Sci. Food Agric. 2005, 85, 1055–1060. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Maya-Ocaña, K.; Ortiz-Moreno, A.; Herrera-Cabrera, B.E.; Dávila-Ortiz, G.; Múzquiz, M.; Jiménez-Martínez, C. Effect of roasting and boiling on the content of vicine, convicine and L-3,4-dihydroxyphenylalanine in Vicia faba L. J. Food Qual. 2012, 35, 419–428. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kidwai, M.K.; Noor, R.; Chawla, P.; Rose, P.K. A review of nutritional profile and processing of faba bean (Vicia faba L.). Legum. Sci. 2022, 4, e129. [Google Scholar] [CrossRef]
- Khazaei, H.; Purves, R.W.; Hughes, J.; Link, W.; O’Sullivan, D.M.; Schulman, A.H.; Björnsdotter, E.; Geu-Flores, F.; Nadzieja, M.; Andersen, S.U.; et al. Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends Food Sci. Technol. 2019, 91, 549–556. [Google Scholar] [CrossRef]
- Pitz, W.J.; Sosulski, F.W.; Hogge, L.R. Occurrence of vicine and convicine in seeds of some Vicia species and other pulses. Can. Inst. Food Sci. Technol. 1980, 13, 35–39. [Google Scholar] [CrossRef]
- Pulkkinen, M.; Coda, R.; Lampi, A.M.; Varis, J.; Katina, K.; Piironen, V. Possibilities of reducing amounts of vicine and convicine in faba bean suspensions and sourdoughs. Eur. Food Res. Technol. 2019, 245, 1507–1518. [Google Scholar] [CrossRef]
- Khazaei, H.; O’Sullivan, D.M.; Stoddard, F.L.; Adhikari, K.N.; Paull, J.G.; Schulman, A.H.; Andersen, S.U.; Vandenberg, A. Recent advances in faba bean genetic and genomic tools for crop improvement. Legum. Sci. 2021, 3, e75. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’an, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Polanco, C.; Sáenz de Miera, L.E.; Bett, K.; Pérez de la Vega, M. A genome-wide identification and comparative analysis of the lentil MLO genes. PLoS ONE 2018, 13, e0194945. [Google Scholar] [CrossRef] [PubMed]
- Jayakodi, M.; Golicz, A.A.; Kreplak, J.; Fechete, L.I.; Angra, D.; Bednář, P.; Bornhofen, E.; Zhang, H.; Bous-sageon, R.; Kaur, S.; et al. The giant diploid faba genome unlocks variation in a global protein crop. Nature 2023, 615, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, H.; Purves, R.W.; Song, M.; Stonehouse, R.; Bett, K.E.; Stoddard, F.L.; Vandenberg, A. Development and validation of a robust, breeder-friendly molecular marker for the vc− locus in faba bean. Mol. Breed. 2017, 37, 140. [Google Scholar] [CrossRef]
- Purves, R.W.; Zhang, H.; Khazaei, H.; Vandenberg, A. Rapid analysis of medically relevant compounds in faba bean seeds using FAIMS and mass spectrometry. Int. J. Ion Mobil. Spectrom. 2017, 20, 125–135. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crop. Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Boote, K.J.; Mínguez, M.I.; Sau, F. Adapting the CROPGRO legume model to simulate growth of faba bean. Agron. J. 2002, 94, 743–756. [Google Scholar] [CrossRef]
- Elkins, A.C.; Rochfort, S.J.; Maharjan, P.; Panozzo, J. A simple high-throughput method for the analysis of vicine and convicine in faba bean. Molecules 2022, 27, 6288. [Google Scholar] [CrossRef] [PubMed]
- McDonald, G.K.; Adisarwanto, T.; Knight, R. Effect of time of sowing on flowering in faba bean (Vicia faba). Aust. J. Exp. Agric. 1994, 34, 395–400. [Google Scholar] [CrossRef]
- Mayer Labba, I.C.; Frøkiær, H.; Sandberg, A.S. Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Res. Int. 2021, 140, 110038. [Google Scholar] [CrossRef] [PubMed]
- Richards, M.F.; Preston, A.L.; Napier, T.; Jenkins, L.; Maphosa, L. Sowing date affects the timing and duration of key chickpea (Cicer arietinum L.) growth phases. Plants 2020, 9, 1257. [Google Scholar] [CrossRef] [PubMed]
- Maphosa, L.; Preston, A.; Richards, M.F. Effect of sowing date and environment on phenology, growth and yield of lentil (Lens culinaris Medikus.) genotypes. Plants 2023, 12, 474. [Google Scholar] [CrossRef] [PubMed]
- Porker, K.; Straight, M.; Hunt, J.R. Evaluation of G × E × M interactions to increase harvest index and yield of early sown wheat. Front. Plant Sci. 2020, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Bianco, V.V.; Lafiandra, D. High-performance reversed-phase liquid chromatography (HPLC) of favism inducing factors in Vicia faba L. Experientia 1982, 38, 789–790. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S.; Mohapatra, T. Interaction between macro-and micro-nutrients in plants. Front. Plant Sci. 2021, 12, 665583. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Bhandari, A.; Ghimire, R.; Xue, Q.; Kidwaro, F.; Ghatrehsamani, S.; Maharjan, B.; Goodwin, M. Managing micronutrients for improving soil fertility, health, and soybean yield. Sustainability 2021, 13, 11766. [Google Scholar] [CrossRef]
- Matthews, P.; Marcellos, H. Faba Bean. Agfact P4.2.7, 2nd ed.; New South Wales Agriculture: Orange, Australia, 2003; pp. 1–12. [Google Scholar]
- Confalone, A.; Lizaso, J.I.; Ruiz-Nogueira, B.; López-Cedrón, F.X.; Sau, F. Growth, PAR use efficiency, and yield components of field grown Vicia faba L. under different temperature and photoperiod regimes. Field Crop. Res. 2010, 115, 140–148. [Google Scholar] [CrossRef]
- Pulkkinen, M.; Gautam, M.; Lampi, A.M.; Ollilainen, V.; Stoddard, F.; Sontag-Strohm, T.; Salovaara, H.; Piironen, V. Determination of vicine and convicine from faba bean with an optimized high-performance liquid chromatographic method. Food Res. Int. 2015, 76, 168–177. [Google Scholar] [CrossRef]
- Gallo, V.; Skorokhod, O.A.; Simula, L.F.; Marrocco, T.; Tambini, E.; Schwarzer, E.; Marget, P.; Duc, G.; Arese, P. No red blood cell damage and no hemolysis in G6PD-deficient subjects after ingestion of low vicine/convicine Vicia faba seeds. Blood 2018, 131, 1621–1625. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.; Rai, M.; Tyagi, W.; Majumder, S.; Meetei, N.T. Lower vicine content reduces the reproductive yield performance in faba bean (Vicia faba L.). Sci. Rep. 2025, 15, e311. [Google Scholar] [CrossRef] [PubMed]
Trial Site | Observation | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|
Curyo 2021 | Total rainfall—mm | 1.4 | 26.4 | 34.6 | 45.2 | 31 | 47.2 | 42.6 | 54.6 | 3.4 |
Mean min. temperature—°C | 7.2 | 5.1 | 5.6 | 3.4 | 4.4 | 5.8 | 6.4 | 10.4 | 12.7 | |
Mean max. temperature—°C | 23.7 | 19.6 | 15.9 | 15.2 | 17.8 | 20.7 | 22.9 | 25.2 | 31.6 | |
Mean global solar exposure—MJ m−2 | 13.5 | 9.9 | 8.1 | 9.3 | 12.5 | 16.4 | 20.2 | 21.1 | 27.6 | |
Nhill 2021 | Total rainfall—mm | 19 | 15.2 | 12 | 58.6 | 17.8 | 36.8 | 57 | 7.6 | 0 |
Mean min. temperature—°C | 8.1 | 6.3 | 6.2 | 4.5 | 4.9 | 5.9 | 6.6 | 9.2 | 11.2 | |
Mean max. temperature—°C | 22.5 | 18.3 | 14.9 | 13.4 | 16.6 | 18.3 | 20.4 | 24.2 | 29.5 | |
Mean global solar exposure—MJ m−2 | 12.8 | 9.7 | 7.8 | 9 | 12.4 | 15 | 19.2 | 21 | 27.1 |
Depth | NH4+ | NO3− | P | K | S | Cu | Fe | Mn | Zn | B | EC | pH | Soil | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(cm) | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | (dS m−1) | (CaCl2) | Moisture (%) | |
Nhill- Duplex soil | 0–10 | 4.3 | 6.8 | 18.0 | 223 | 16.6 | 0.8 | 45.0 | 18.6 | 1.3 | 1.6 | 0.2 | 6.3 | 5.8 |
10–20 | 2.3 | 2.8 | 5.3 | 258 | 8.3 | 0.8 | 35.9 | 4.4 | 0.3 | 3.1 | 0.2 | 6.9 | 15.6 | |
20–40 | 2.0 | 1.5 | 3.5 | 277 | 15.2 | 1.1 | 35.1 | 2.9 | 0.2 | 7.9 | 0.4 | 7.9 | 21.0 | |
Nhill- Sandy soil | 0–10 | 4.8 | 1.0 | 25.5 | 271 | 19.9 | 0.4 | 20.9 | 3.9 | 1.2 | 1.1 | 0.1 | 7.3 | 10.2 |
10–20 | 2.5 | 1.5 | 8.0 | 244 | 9.8 | 0.4 | 26.1 | 1.2 | 0.3 | 2.2 | 0.2 | 7.5 | 16.6 | |
20–40 | 1.8 | 3.3 | 5.5 | 288 | 13.4 | 0.5 | 25.6 | 0.7 | 0.2 | 3.8 | 0.3 | 8.0 | 23.8 |
Genotype | Treatment—Time of Sowing | Treatment—Soil Type | ||||||
---|---|---|---|---|---|---|---|---|
TOS 1 | TOS 2 | Duplex Soil | Sandy Soil | |||||
50% Flowering | 50% Podding | 50% Flowering | 50% Podding | 50% Flowering | 50% Podding | 50% Flowering | 50% Podding | |
Farah | 103 | 147 | 90 | 115 | 114 | 147 | 116 | 141 |
PBA Amberley | 113 | 150 | 97 | 121 | 120 | 150 | 119 | 143 |
PBA Bendoc | 112 | 151 | 95 | 120 | 118 | 138 | 118 | 143 |
PBA Marne | 102 | 148 | 89 | 116 | 118 | 145 | 117 | 147 |
PBA Nasma | 94 | 138 | 87 | 110 | 111 | 137 | 109 | 139 |
PBA Samira | 111 | 151 | 95 | 118 | 119 | 139 | 118 | 143 |
PBA Zahra | 113 | 152 | 96 | 119 | 120 | 148 | 121 | 147 |
AF12025 | 91 | 134 | 84 | 109 | 113 | 141 | 107 | 147 |
AF14075 | 109 | 149 | 95 | 118 | 120 | 147 | 119 | 139 |
AF14092 | 101 | 151 | 89 | 117 | 109 | 138 | 110 | 134 |
AF15278 | 112 | 149 | 95 | 119 | 118 | 147 | 118 | 137 |
AF15283 | 111 | 150 | 97 | 118 | 116 | 141 | 117 | 134 |
Trial | AHS During Podding | ASE During Podding (MJ m−2) | Mean Yield (t ha−1) | Mean 100 Seed Weight (g) | Mean Protein (mg g−1) | Sum of v-c (mg g−1 DB) |
---|---|---|---|---|---|---|
Curyo–TOS 1 | 326 A | 647 A | 2.63 A | 68.1 A | 281 a | 6.6 A |
Curyo–TOS 2 | 200 B | 427 B | 2.29 B | 56.5 B | 270 b | 8.0 B |
Nhill–Duplex soil | 177 B | 416 B | 3.10 C | 61.9 B | 276 ab | 7.8 B |
Nhill–Sandy soil | 172 B | 396 B | 3.53 D | 58.4 B | 281 a | 8.2 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maharjan, P.; Elkins, A.C.; Brand, J.; Catt, S.C.; Rochfort, S.J.; Panozzo, J.F. Genotypic and Environmental Impacts on Vicine and Convicine Concentrations in Faba Beans. Agriculture 2025, 15, 1567. https://doi.org/10.3390/agriculture15151567
Maharjan P, Elkins AC, Brand J, Catt SC, Rochfort SJ, Panozzo JF. Genotypic and Environmental Impacts on Vicine and Convicine Concentrations in Faba Beans. Agriculture. 2025; 15(15):1567. https://doi.org/10.3390/agriculture15151567
Chicago/Turabian StyleMaharjan, Pankaj, Aaron C. Elkins, Jason Brand, Samuel C. Catt, Simone J. Rochfort, and Joe F. Panozzo. 2025. "Genotypic and Environmental Impacts on Vicine and Convicine Concentrations in Faba Beans" Agriculture 15, no. 15: 1567. https://doi.org/10.3390/agriculture15151567
APA StyleMaharjan, P., Elkins, A. C., Brand, J., Catt, S. C., Rochfort, S. J., & Panozzo, J. F. (2025). Genotypic and Environmental Impacts on Vicine and Convicine Concentrations in Faba Beans. Agriculture, 15(15), 1567. https://doi.org/10.3390/agriculture15151567