Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (966)

Search Parameters:
Keywords = breakdown current

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3036 KiB  
Article
Modelling and Simulation of a New π-Gate AlGaN/GaN HEMT with High Voltage Withstand and High RF Performance
by Jun Yao, Xianyun Liu, Chenglong Lu, Di Yang and Wulong Yuan
Electronics 2025, 14(15), 2947; https://doi.org/10.3390/electronics14152947 - 24 Jul 2025
Abstract
Aiming at the problems of low withstand voltage and poor RF performance of traditional HEMT devices, a new AlGaN/GaN high electron mobility transistor device with a π-gate (NπGS HEMT) is designed in this paper. The new structure incorporates a π-gate design along with [...] Read more.
Aiming at the problems of low withstand voltage and poor RF performance of traditional HEMT devices, a new AlGaN/GaN high electron mobility transistor device with a π-gate (NπGS HEMT) is designed in this paper. The new structure incorporates a π-gate design along with a PN-junction field plate and an AlGaN back-barrier layer. The device is modeled and simulated in Silvaco TCAD 2015 software and compared with traditional t-gate HEMT devices. The results show that the NπGS HEMT has a significant improvement in various characteristics. The new structure has a higher peak transconductance of 336 mS·mm−1, which is 13% higher than that of the traditional HEMT structure. In terms of output characteristics, the new structure has a higher saturation drain current of 0.188 A/mm. The new structure improves the RF performance of the device with a higher maximum cutoff frequency of about 839 GHz. The device also has a better performance in terms of voltage withstand, exhibiting a higher breakdown voltage of 1817 V. These results show that the proposed new structure could be useful for future research on high voltage withstand and high RF HEMT devices. Full article
Show Figures

Figure 1

16 pages, 1519 KiB  
Article
Rare Earth Element Detection and Quantification in Coal and Rock Mineral Matrices
by Chet R. Bhatt, Daniel A. Hartzler and Dustin L. McIntyre
Chemosensors 2025, 13(8), 270; https://doi.org/10.3390/chemosensors13080270 - 23 Jul 2025
Abstract
As global demand for rare earth elements (REEs) increases, maintaining the production and supply chain is critical. Technologies capable of being used in the field and in situ in the subsurface for rapid REE detection and quantification facilitates the efficient mining of known [...] Read more.
As global demand for rare earth elements (REEs) increases, maintaining the production and supply chain is critical. Technologies capable of being used in the field and in situ in the subsurface for rapid REE detection and quantification facilitates the efficient mining of known resources and exploration of new and unconventional resources. Laser-induced breakdown spectroscopy (LIBS) is a promising technique for rapid elemental analysis both in the laboratory and in the field. Multiple articles have been published evaluating LIBS for detection and quantification of REEs; however, REEs in their natural deposits have not been adequately studied. In this work, detection and quantification of two REEs, La and Nd, have been studied in both synthetic and natural mineral matrices at concentrations relevant to REE extraction. Measurements were performed on REE-containing rock and coal samples (natural and synthetic) utilizing different LIBS instruments and techniques, specifically a commercial benchtop instrument, a custom benchtop instrument (single- and double-pulse modes), and a custom LIBS probe currently being developed for in situ, subsurface, borehole wall detection and quantification of REEs. Plasma expansion, emission intensity, detection limits, and double-pulse signal enhancement were studied. The limits of detection (LOD) were found to be 10/14 ppm for La and 15/25 ppm for Nd in simulated coal/rock matrices in single-pulse mode. Signal enhancement of 3.5 to 6-fold was obtained with double-pulse mode as compared to single-pulse operation. Full article
(This article belongs to the Special Issue Application of Laser-Induced Breakdown Spectroscopy, 2nd Edition)
Show Figures

Figure 1

18 pages, 5521 KiB  
Article
Design and TCAD Simulation of GaN P-i-N Diode with Multi-Drift-Layer and Field-Plate Termination Structures
by Zhibo Yang, Guanyu Wang, Yifei Wang, Pandi Mao and Bo Ye
Micromachines 2025, 16(8), 839; https://doi.org/10.3390/mi16080839 - 22 Jul 2025
Viewed by 39
Abstract
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work [...] Read more.
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work systematically evaluates multiple edge termination techniques, including deep-etched mesa, beveled mesa, and field-plate configurations with both vertical and inclined mesa structures. We present an optimized multi-drift-layer GaN P-i-N diode incorporating field-plate termination and analyze its electrical performance in detail. This study covers forward conduction characteristics including on-state voltage, on-resistance, and their temperature dependence, reverse breakdown behavior examining voltage capability and electric field distribution under different temperatures, and switching performance addressing both forward recovery phenomena, i.e., voltage overshoot and carrier injection dynamics, and reverse recovery characteristics including peak current and recovery time. The comprehensive analysis offers practical design guidelines for developing high-performance GaN power devices. Full article
Show Figures

Figure 1

19 pages, 4782 KiB  
Article
PD Detection and Analysis Triggered by Metal Protrusion in GIS Through Various Methods
by Weifeng Xin, Wei Song, Manling Dong, Xiaochuan Huang, Xiaoshi Kou, Zhenyu Zhan, Xinyue Shi and Xutao Han
Appl. Sci. 2025, 15(14), 8113; https://doi.org/10.3390/app15148113 - 21 Jul 2025
Viewed by 139
Abstract
Defects in GIS can be effectively detected by detecting the partial discharge (PD). The common methods of detecting partial discharge are pulse current, ultrasonic and UHF (ultra-high frequency). However, the results of different methods may be different due to the different physical quantities [...] Read more.
Defects in GIS can be effectively detected by detecting the partial discharge (PD). The common methods of detecting partial discharge are pulse current, ultrasonic and UHF (ultra-high frequency). However, the results of different methods may be different due to the different physical quantities detected. It is important to research the differences between the PD detection methods for the PD detection and analysis. In this study, we designed metal protrusion defects in GIS, including protrusion on the conductor and enclosure. Then, we detected the PD of defects using pulse current, UHF and ultrasonic methods at the same time. The PRPD patterns, maximum discharge amplitude of different defects and PD inception voltage (PDIV) detected by the three methods were analyzed. The PRPD patterns and discharge amplitude of the different methods were very similar to each other, but the PDIVs were different. It can be concluded that the process from the PD inception to breakdown can be divided into four sections based on the PRPD and the maximum discharge amplitude. The similarity between the three methods is because their signals are all related to the pulse current during the PD process, and differences in their PDIVs are caused by the differences in sensitivity. The sensitivity of the pulse current is the lowest among the three methods due to its poor anti-jamming capability. The sensitivity of UHF is higher, and that of ultrasonic is the highest. Full article
(This article belongs to the Special Issue Advances in Monitoring and Fault Diagnosis for Power Equipment)
Show Figures

Figure 1

24 pages, 6475 KiB  
Review
Short-Circuit Detection and Protection Strategies for GaN E-HEMTs in High-Power Applications: A Review
by Haitz Gezala Rodero, David Garrido Díez, Iosu Aizpuru Larrañaga and Igor Baraia-Etxaburu
Electronics 2025, 14(14), 2875; https://doi.org/10.3390/electronics14142875 - 18 Jul 2025
Viewed by 204
Abstract
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into [...] Read more.
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into high-power applications is limited by critical reliability concerns, particularly regarding their short-circuit (SC) withstand capability and overvoltage (OV) resilience. GaN devices typically exhibit SC withstand times of only a few hundred nanoseconds, needing ultrafast protection circuits, which conventional desaturation (DESAT) methods cannot adequately provide. Furthermore, their high switching transients increase the risk of false activation events. The lack of avalanche capability and the dynamic nature of GaN breakdown voltage exacerbate issues related to OV stress during fault conditions. Although SC-related behaviour in GaN devices has been previously studied, a focused and comprehensive review of protection strategies tailored to GaN technology remains lacking. This paper fills that gap by providing an in-depth analysis of SC and OV failure phenomena, coupled with a critical evaluation of current and next-generation protection schemes suitable for GaN-based high-power converters. Full article
(This article belongs to the Special Issue Advances in Semiconductor GaN and Applications)
Show Figures

Figure 1

14 pages, 6398 KiB  
Article
Corrosion Behavior of Additively Manufactured GRX-810 Alloy in 3.5 wt.% NaCl
by Peter Omoniyi, Samuel Alfred, Kenneth Looby, Olu Bamiduro, Mehdi Amiri and Gbadebo Owolabi
Materials 2025, 18(14), 3252; https://doi.org/10.3390/ma18143252 - 10 Jul 2025
Viewed by 261
Abstract
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. [...] Read more.
This study examines the corrosion characteristics of GRX-810, a NiCoCr-based high entropy alloy, in a simulated marine environment represented by 3.5 wt.% NaCl solution. The research employs electrochemical and surface analysis techniques to evaluate the corrosion performance and protective mechanisms of this alloy. Electrochemical characterization was performed using potentiodynamic polarization to determine critical corrosion parameters, including corrosion potential and current density, along with electrochemical impedance spectroscopy to assess the stability and protective qualities of the oxide film. Surface analytical techniques provided detailed microstructural and compositional insights, with scanning electron microscopy revealing the morphology of corrosion products, energy-dispersive X-ray spectroscopy identifying elemental distribution in the passive layer, and X-ray diffraction confirming the chemical composition and crystalline structure of surface oxide. The results demonstrated distinct corrosion resistance behavior between the different processing conditions of the alloy. The laser powder bed fused (LPBF) specimens in the as-built condition exhibited superior corrosion resistance compared to their hot isostatically pressed (HIPed) counterparts, as evidenced by higher corrosion potentials and lower current densities. Microscopic examination revealed the formation of a dense, continuous layer of corrosion products on the alloy surface, indicating effective barrier protection against chloride ion penetration. A compositional analysis of all samples identified oxide film enriched with chromium, nickel, cobalt, aluminum, titanium, and silicon. XRD characterization confirmed the presence of chromium oxide (Cr2O3) as the primary protective phase, with additional oxides contributing to the stability of the film. This oxide mixture demonstrated the alloy’s ability to maintain passivity and effective repassivation following film breakdown. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

28 pages, 4054 KiB  
Article
A Core Ontology for Whole Life Costing in Construction Projects
by Adam Yousfi, Érik Andrew Poirier and Daniel Forgues
Buildings 2025, 15(14), 2381; https://doi.org/10.3390/buildings15142381 - 8 Jul 2025
Viewed by 321
Abstract
Construction projects still face persistent barriers to adopting whole life costing (WLC), such as fragmented data, a lack of standardization, and inadequate tools. This study addresses these limitations by proposing a core ontology for WLC, developed using an ontology design science research methodology. [...] Read more.
Construction projects still face persistent barriers to adopting whole life costing (WLC), such as fragmented data, a lack of standardization, and inadequate tools. This study addresses these limitations by proposing a core ontology for WLC, developed using an ontology design science research methodology. The ontology formalizes WLC knowledge based on ISO 15686-5 and incorporates professional insights from surveys and expert focus groups. Implemented in web ontology language (OWL), it models cost categories, temporal aspects, and discounting logic in a machine-interpretable format. The ontology’s interoperability and extensibility are validated through its integration with the building topology ontology (BOT). Results show that the ontology effectively supports cost breakdown, time-based projections, and calculation of discounted values, offering a reusable structure for different project contexts. Practical validation was conducted using SQWRL queries and Python scripts for cost computation. The solution enables structured data integration and can support decision-making throughout the building life cycle. This work lays the foundation for future semantic web applications such as knowledge graphs, bridging the current technological gap and facilitating more informed and collaborative use of WLC in construction. Full article
(This article belongs to the Special Issue Emerging Technologies and Workflows for BIM and Digital Construction)
Show Figures

Figure 1

15 pages, 3329 KiB  
Article
Identification of Chicken Bone Paste in Starch-Based Sausages Using Laser-Induced Breakdown Spectroscopy
by Haoyu Li, Li Shen, Xiang Han, Yu Liu and Yutong Wang
Sensors 2025, 25(13), 4226; https://doi.org/10.3390/s25134226 - 7 Jul 2025
Viewed by 301
Abstract
This study aims to rapidly in situ identify starch sausage samples with the improper addition of chicken bone paste. Chicken bones play important roles in building materials, biomass fuels, and as food additives after enzymatic hydrolysis, but no current research indicates that chicken [...] Read more.
This study aims to rapidly in situ identify starch sausage samples with the improper addition of chicken bone paste. Chicken bones play important roles in building materials, biomass fuels, and as food additives after enzymatic hydrolysis, but no current research indicates that chicken bones can be directly added to food for consumption. Especially in starch sausages, the addition of chicken bone paste is highly controversial due to potential risks of esophageal laceration and religious concerns. This paper first uses laser-induced breakdown spectroscopy (LIBS) to investigate the elemental differences between starch sausages and chicken bone paste. By preparing mixtures of starch sausages and chicken bone paste at different ratios, the relationships between the spectral peak intensities of elements, such as Ca, Ba, and Sr, and the proportion of chicken bone paste were determined. Through processing methods such as normalization with reference spectral lines, selection of the signal of the second laser pulse at the same position, and electron temperature correction, the determination coefficients (R2) of each element’s spectral lines have significantly improved. Specifically, the R2 values for Ca I, Ca II, Ba II, and Sr II have increased from 0.302, 0.694, 0.857, and 0.691 to 0.972, 0.952, 0.970, and 0.982, respectively. Finally, principal component analysis (PCA) was used to distinguish starch sausages, chicken bone paste, and their mixtures at different ratios, with further effective differentiation achieved through t-distributed stochastic neighbor embedding (t-SNE). The results show that LIBS technology can serve as an effective and rapid method for detecting elemental composition in food and distinguishing different food products, providing safety guarantees for food production and supervision. Full article
(This article belongs to the Special Issue Optical Sensing Technologies for Food Quality and Safety)
Show Figures

Figure 1

48 pages, 1963 KiB  
Review
Thick or Thin? Implications of Cartilage Architecture for Osteoarthritis Risk in Sedentary Lifestyles
by Eloy del Río
Biomedicines 2025, 13(7), 1650; https://doi.org/10.3390/biomedicines13071650 - 6 Jul 2025
Viewed by 684
Abstract
Osteoarthritis (OA) is a leading cause of disability worldwide and is characterized by the gradual degradation of articular cartilage in weight-bearing joints, notably the knees and hips. However, the primary morphological and anatomical determinants of the disease onset and progression remain unclear. This [...] Read more.
Osteoarthritis (OA) is a leading cause of disability worldwide and is characterized by the gradual degradation of articular cartilage in weight-bearing joints, notably the knees and hips. However, the primary morphological and anatomical determinants of the disease onset and progression remain unclear. This narrative overview examines how variations in cartilage thickness—traditionally viewed as a biomechanical protective feature—can paradoxically compromise metabolic homeostasis during prolonged sedentary behavior. Intriguingly, compelling evidence suggests that despite its superior load-bearing capacity, thicker cartilage faces greater challenges in solute transport, a limitation further exacerbated by the formation of diffusion-resistant boundary layers at the cartilage–fluid interface during immobilization. This phenomenon restricts nutrient influx and impedes waste clearance, leading to the accumulation of catabolic byproducts in deep cartilage zones and accelerated extracellular matrix breakdown, potentially influencing OA pathogenesis. By critically synthesizing current debates on mechanical loading with emerging data on metabolic dysregulation, particularly nutrient diffusion limitations, this analysis underscores the urgent need for targeted investigation of synovial–cartilage interface dynamics and chondrocyte metabolism under low-motion conditions. This study further advocates for strategic research focusing on often-overlooked, silent metabolic imbalances among sedentary populations and recommends early-intervention strategies, such as periodic joint mobilization, ergonomic adaptations, and public-health campaigns, to reduce prolonged sitting, preserve joint function, and guide more effective prevention and management approaches for non-traumatic OA in contemporary contexts. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatments on Musculoskeletal Disorders)
Show Figures

Graphical abstract

20 pages, 3465 KiB  
Article
Phase-Controlled Closing Strategy for UHV Circuit Breakers with Arc-Chamber Insulation Deterioration Consideration
by Hao Li, Qi Long, Xu Yang, Xiang Ju, Haitao Li, Zhongming Liu, Dehua Xiong, Xiongying Duan and Minfu Liao
Energies 2025, 18(13), 3558; https://doi.org/10.3390/en18133558 - 5 Jul 2025
Viewed by 371
Abstract
To address the impact of insulation medium degradation in the arc quenching chambers of ultra-high-voltage SF6 circuit breakers on phase-controlled switching accuracy caused by multiple operations throughout the service life, this paper proposes an adaptive switching algorithm. First, a modified formula for [...] Read more.
To address the impact of insulation medium degradation in the arc quenching chambers of ultra-high-voltage SF6 circuit breakers on phase-controlled switching accuracy caused by multiple operations throughout the service life, this paper proposes an adaptive switching algorithm. First, a modified formula for the breakdown voltage of mixed gases is derived based on the synergistic effect. Considering the influence of contact gap on electric field distortion, an adaptive switching strategy is designed to quantify the dynamic relationship among operation times, insulation strength degradation, and electric field distortion. Then, multi-round switching-on and switching-off tests are carried out under the condition of fixed single-arc ablation amount, and the laws of voltage–current, gas decomposition products, and pre-breakdown time are obtained. The test data are processed by the least squares method, adaptive switching algorithm, and machine learning method. The results show that the coincidence degree of the pre-breakdown time obtained by the adaptive switching algorithm and the test value reaches 90%. Compared with the least squares fitting, this algorithm achieves a reasonable balance between goodness of fit and complexity, with prediction deviations tending to be randomly distributed, no obvious systematic offset, and low dispersion degree. It can also explain the physical mechanism of the decay of insulation degradation rate with the number of operations. Compared with the machine learning method, this algorithm has stronger generalization ability, effectively overcoming the defects of difficult interpretation of physical causes and the poor engineering adaptability of the black box model. Full article
Show Figures

Figure 1

11 pages, 1699 KiB  
Article
Optimization of the LIBS Technique in Air, He, and Ar at Atmospheric Pressure for Hydrogen Isotope Detection on Tungsten Coatings
by Salvatore Almaviva, Lidia Baiamonte and Marco Pistilli
J. Nucl. Eng. 2025, 6(3), 22; https://doi.org/10.3390/jne6030022 - 1 Jul 2025
Viewed by 236
Abstract
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing [...] Read more.
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing this task directly in situ, without handling or removing PFCs, thus limiting analysis times and increasing the machine’s duty cycle. To increase sensitivity and the ability to discriminate between isotopes, LIBS analysis can be performed under different background gases at atmospheric pressure, such as air, He, and Ar. In this work, we present the results obtained on tungsten coatings enriched with deuterium and/or hydrogen as a deuterium–tritium nuclear fuel simulant, measured with the LIBS technique in air, He, and Ar at atmospheric pressure, and discuss the pros and cons of their use. The results obtained demonstrate that both He and Ar can improve the LIBS signal resolution of the hydrogen isotopes compared to air. However, using Ar has the additional advantage that the same procedure can also be used to detect He implanted in PFCs as a product of fusion reactions without any interference. Finally, the LIBS signal in an Ar atmosphere increases in terms of the signal-to-noise ratio (SNR), enabling the use of less energetic laser pulses to improve performance in depth profiling analyses. Full article
(This article belongs to the Special Issue Fusion Materials with a Focus on Industrial Scale-Up)
Show Figures

Graphical abstract

24 pages, 11109 KiB  
Review
Review of Self-Powered Wireless Sensors by Triboelectric Breakdown Discharge
by Shuzhe Liu, Jixin Yi, Guyu Jiang, Jiaxun Hou, Yin Yang, Guangli Li, Xuhui Sun and Zhen Wen
Micromachines 2025, 16(7), 765; https://doi.org/10.3390/mi16070765 - 29 Jun 2025
Viewed by 473
Abstract
This review systematically examines recent advances in self-powered wireless sensing technologies based on triboelectric nanogenerators (TENGs), focusing on innovative methods that leverage breakdown discharge effects to achieve high-precision and long-distance signal transmission. These methods offer novel technical pathways and theoretical frameworks for next-generation [...] Read more.
This review systematically examines recent advances in self-powered wireless sensing technologies based on triboelectric nanogenerators (TENGs), focusing on innovative methods that leverage breakdown discharge effects to achieve high-precision and long-distance signal transmission. These methods offer novel technical pathways and theoretical frameworks for next-generation wireless sensing systems. To address the core limitations of conventional wireless sensors, such as a restricted transmission range, high power consumption, and suboptimal integration, this analysis elucidates the mechanism of the generation of high-frequency electromagnetic waves through localized electric field ionization induced by breakdown discharge. Key research directions are synthesized to enhance TENG-based sensing capabilities, including novel device architectures, the optimization of RLC circuit models, the integration of machine learning algorithms, and power management strategies. While current breakdown discharge sensors face challenges such as energy dissipation, multimodal coupling complexity, and signal interpretation barriers, future breakthroughs in material engineering and structural design are anticipated to drive advancements in efficiency, miniaturization, and intelligent functionality in this field. Full article
Show Figures

Figure 1

21 pages, 1321 KiB  
Review
Exploration of Multi-Source Lignocellulose-Degrading Microbial Resources and Bioaugmentation Strategies: Implications for Rumen Efficiency
by Xiaokang Lv, Zhanhong Qiao, Chao Chen, Jinling Hua and Chuanshe Zhou
Animals 2025, 15(13), 1920; https://doi.org/10.3390/ani15131920 - 29 Jun 2025
Viewed by 242
Abstract
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive [...] Read more.
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive tracts, forest soil, and microbial populations in papermaking processes. The rumen of ruminants harbors a diverse range of microbial species, making it a promising source of lignocellulose-degrading microorganisms. Exploring alternative systems like insect intestines and forest soil is essential for future research. Current studies primarily rely on traditional microbial isolation techniques to identify lignocellulose-degrading strains, underscoring the necessity to transition to utilizing microbial culturomics and genome-editing technologies for discovering and manipulating cellulose-degrading microbes. This review provides an overview of lignocellulose-degrading microbial communities from diverse environments, encompassing bacterial and fungal populations. It also delves into the use of metagenomic, metatranscriptomic, and metaproteomic approaches to pinpoint highly efficient cellulase genes, along with the application of genome-editing tools for engineering lignocellulose-degrading microorganisms. The primary objective of this review is to offer insights for further exploration of potential lignocellulose-degrading microbial resources and high-performance cellulase genes to enhance roughage utilization in ruminant rumen ecosystems. Full article
Show Figures

Figure 1

31 pages, 1682 KiB  
Review
The Impact of AI-Driven Application Programming Interfaces (APIs) on Educational Information Management
by David Pérez-Jorge, Miriam Catalina González-Afonso, Anthea Gara Santos-Álvarez, Zeus Plasencia-Carballo and Carmen de los Ángeles Perdomo-López
Information 2025, 16(7), 540; https://doi.org/10.3390/info16070540 - 25 Jun 2025
Viewed by 510
Abstract
In today’s digitalized educational landscape, the intelligent use of information is essential for personalizing learning, improving assessment accuracy, and supporting data-driven pedagogical decisions. This systematic review examines the integration of Application Programming Interfaces (APIs) powered by Artificial Intelligence (AI) to enhance educational information [...] Read more.
In today’s digitalized educational landscape, the intelligent use of information is essential for personalizing learning, improving assessment accuracy, and supporting data-driven pedagogical decisions. This systematic review examines the integration of Application Programming Interfaces (APIs) powered by Artificial Intelligence (AI) to enhance educational information management and learning processes. A total of 27 peer-reviewed studies published between 2013 and 2025 were analyzed. First, a general description of the selected works was provided, followed by a breakdown by dimensions in order to identify recurring patterns, stated interests and gaps in the current scientific literature on the use of AI-driven APIs in Education. The findings highlight five main benefits: data interoperability, personalized learning, automated feedback, real-time student monitoring, and predictive performance analytics. All studies addressed personalization, 74.1% focused on platform integration, and 37% examined automated feedback. Reported outcomes include improvements in engagement (63%), comprehension (55.6%), and academic achievement (48.1%). However, the review also identifies concerns about privacy, algorithmic bias, and limited methodological rigor in existing research. The study concludes with a conceptual model that synthesizes these findings from pedagogical, technological, and ethical perspectives, providing guidance for more adaptive, inclusive, and responsible uses of AI in education. Full article
(This article belongs to the Special Issue New Information Communication Technologies in the Digital Era)
Show Figures

Figure 1

31 pages, 6682 KiB  
Review
Research Progress on Non-Destructive Testing Technology and Equipment for Poultry Eggshell Quality
by Qiaohua Wang, Zheng Yang, Chengkang Liu, Rongqian Sun and Shuai Yue
Foods 2025, 14(13), 2223; https://doi.org/10.3390/foods14132223 - 24 Jun 2025
Viewed by 436
Abstract
Eggshell quality inspection plays a pivotal role in enhancing the commercial value of poultry eggs and ensuring their safety. It effectively enables the screening of high-quality eggs to meet consumer demand for premium egg products. This paper analyzes the surface characteristics, ultrastructure, and [...] Read more.
Eggshell quality inspection plays a pivotal role in enhancing the commercial value of poultry eggs and ensuring their safety. It effectively enables the screening of high-quality eggs to meet consumer demand for premium egg products. This paper analyzes the surface characteristics, ultrastructure, and mechanical properties of poultry eggshells. It systematically reviews current advances in eggshell quality inspection technologies and compares the suitability and performance of techniques for key indicators, including shell strength, thickness, spots, color, and cracks. Furthermore, the paper discusses challenges in non-destructive testing, including individual egg variations, species differences, hardware precision limitations, and inherent methodological constraints. It summarizes commercially available portable and online non-destructive testing equipment, analyzing core challenges: the cost–accessibility paradox, speed–accuracy trade-off, algorithm interference impacts, and the technology–practice gap. Additionally, the paper explores the potential application of several emerging technologies—such as tactile sensing, X-ray imaging, laser-induced breakdown spectroscopy, and fluorescence spectroscopy—in eggshell quality inspection. Finally, it provides a comprehensive outlook on future research directions, offering constructive guidance for subsequent studies and practical applications in production. Full article
Show Figures

Figure 1

Back to TopTop