Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,024)

Search Parameters:
Keywords = brain health/disorders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1028 KiB  
Review
Molecular Links Between Metabolism and Mental Health: Integrative Pathways from GDF15-Mediated Stress Signaling to Brain Energy Homeostasis
by Minju Seo, Seung Yeon Pyeon and Man S. Kim
Int. J. Mol. Sci. 2025, 26(15), 7611; https://doi.org/10.3390/ijms26157611 - 6 Aug 2025
Abstract
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact [...] Read more.
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact to influence both metabolic and psychiatric conditions. Evidence suggests that these pathways converge to regulate brain energy homeostasis through feedback mechanisms involving the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. GDF15 emerges as a key stress-responsive biomarker that links peripheral metabolism with brainstem GDNF family receptor alpha-like (GFRAL)-mediated anxiety circuits. Meanwhile, ceramides impair hippocampal mitochondrial function via membrane incorporation and disruption of the respiratory chain. These disruptions may contribute to sustained pathological states such as depression, anxiety, and cognitive dysfunction. Although direct mechanistic data are limited, integrating these pathways provides a conceptual framework for understanding metabolic–psychiatric comorbidities. Furthermore, differences in age, sex, and genetics may influence these systems, highlighting the need for personalized interventions. Targeting mitochondrial function, GDF15-GFRAL signaling, and gut microbiota composition may offer new therapeutic strategies. This integrative perspective helps conceptualize how metabolic and psychiatric mechanisms interact for understanding the pathophysiology of metabolic and psychiatric comorbidities and highlights therapeutic targets for precision medicine. Full article
Show Figures

Figure 1

23 pages, 1970 KiB  
Review
Resveratrol as a Therapeutic Agent in Alzheimer’s Disease: Evidence from Clinical Studies
by Nidhi Puranik, Meenakshi Kumari, Shraddha Tiwari, Thakur Dhakal and Minseok Song
Nutrients 2025, 17(15), 2557; https://doi.org/10.3390/nu17152557 - 5 Aug 2025
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and neuronal dysfunction. It is driven by the accumulation of amyloid-beta (Aβ) plaques, Tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. Resveratrol (RSV) is a natural polyphenolic compound found in grapes, berries, and red wine that has garnered attention for its potential neuroprotective properties in combating AD. The neuroprotective effects of RSV are mediated through the activation of sirtuins (SIRT1), inhibition of Aβ aggregation, modulation of Tau protein phosphorylation, and the attenuation of oxidative stress and inflammatory responses. RSV also enhances mitochondrial function and promotes autophagy, which are important processes for maintaining neuronal health. Preclinical studies have demonstrated its efficacy in reducing Aβ burden, improving cognitive performance, and mitigating synaptic damage; however, challenges such as poor bioavailability, rapid metabolism, and limited blood–brain barrier penetration restrict its clinical applicability. Recent technological advances and selected modifications are being explored to overcome these limitations and enhance its therapeutic efficacy. This review summarizes the multifaceted neuroprotective mechanisms of RSV, the synergistic potential of natural compounds in enhancing neuroprotection, and the advancements in formulation strategies aimed at mitigating AD pathology. Leveraging the therapeutic potential of natural compounds represents a compelling paradigm shift for AD management, paving the way for future clinical applications. Full article
(This article belongs to the Special Issue The Neuroprotective Activity of Natural Dietary Compounds)
Show Figures

Figure 1

18 pages, 2678 KiB  
Article
Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation
by Nina P. Allan, Amada Torres, Michael J. Corley, Brennan Y. Yamamoto, Chantell Balaan, Yasuhiro Yamauchi, Rafael Peres, Yujia Qin, Vedbar S. Khadka, Youping Deng, Monika A. Ward and Alika K. Maunakea
Cells 2025, 14(15), 1201; https://doi.org/10.3390/cells14151201 - 5 Aug 2025
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we separated the effects of pre-conception and gestational obesity. We found that maternal high fat diet (HFD) exposure prior to conception alone was sufficient to induce ASD-like behaviors in male offspring—including altered vocalizations, reduced sociability, and increased repetitive grooming—without anxiety-related changes. These phenotypes were absent in female offspring and those exposed only during gestation. Cortical transcriptome analysis revealed dysregulation and isoform shifts in genes implicated in ASD, including Homer1 and Zswim6. Whole-genome bisulfite sequencing of hippocampal tissue showed hypomethylation of an alternative Homer1 promoter, correlating with increased expression of the short isoform Homer1a, which is known to disrupt synaptic scaffolding. This pattern was specific to mice with ASD-like behaviors. Our findings show that pre-conceptional maternal obesity can lead to lasting, isoform-specific transcriptomic and epigenetic changes in the offspring’s brain. These results underscore the importance of maternal health before pregnancy as a critical and modifiable factor in ASD risk. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Autism Spectrum Disorder)
Show Figures

Figure 1

37 pages, 5366 KiB  
Article
Oral Microbiota Composition and Its Association with Gastrointestinal and Developmental Abnormalities in Children with Autism Spectrum Disorder
by Zuzanna Lewandowska-Pietruszka, Magdalena Figlerowicz and Katarzyna Mazur-Melewska
Microorganisms 2025, 13(8), 1822; https://doi.org/10.3390/microorganisms13081822 - 4 Aug 2025
Abstract
Autism Spectrum Disorder (ASD) is frequently accompanied by gastrointestinal disturbances, dietary selectivity, and altered stress responses, with growing evidence pointing to gut–brain axis involvement. While intestinal microbiota has been extensively studied, the role of the oral microbiota remains underexplored. This study investigates the [...] Read more.
Autism Spectrum Disorder (ASD) is frequently accompanied by gastrointestinal disturbances, dietary selectivity, and altered stress responses, with growing evidence pointing to gut–brain axis involvement. While intestinal microbiota has been extensively studied, the role of the oral microbiota remains underexplored. This study investigates the associations between oral microbiota composition and behavioral, gastrointestinal, dietary, and neuroendocrine parameters in children with ASD. A total of 45 children aged 2–18 years comprised the study group. Data collection included oral swabs for 16S rRNA gene sequencing, salivary cortisol sampling, dietary records, and standardized behavioral assessments using the Vineland Adaptive Behavior Scale. A total of 363 microbial species across 11 phyla were identified. Significant correlations were observed between specific bacterial taxa and functional gastrointestinal disorders (FGIDs), dietary patterns, salivary cortisol rhythms, and functioning. Children with FGIDs, food selectivity, or macronutrient imbalances exhibited enriched pro-inflammatory taxa (e.g., Selenomonas, Megasphaera), whereas those with typical cortisol secretion or higher adaptive functioning showed greater microbial diversity and abundance of health-associated genera (e.g., Bifidobacterium dentium). These findings suggest that oral microbiota profiles may reflect systemic physiological and neurobehavioral traits in children with ASD. Further longitudinal studies are needed to clarify causal relationships and support the development of microbiota-targeted interventions. Full article
(This article belongs to the Special Issue Focus on Pediatric Infectious Diseases)
Show Figures

Figure 1

12 pages, 469 KiB  
Communication
The Certificate of Advanced Studies in Brain Health of the University of Bern
by Simon Jung, David Tanner, Jacques Reis and Claudio Lino A. Bassetti
Clin. Transl. Neurosci. 2025, 9(3), 35; https://doi.org/10.3390/ctn9030035 - 4 Aug 2025
Abstract
Background: Brain health is a growing public health priority due to the high global burden of neurological and mental disorders. Promoting brain health across the lifespan supports individual and societal well-being, creativity, and productivity. Objective: To address the need for specialized education in [...] Read more.
Background: Brain health is a growing public health priority due to the high global burden of neurological and mental disorders. Promoting brain health across the lifespan supports individual and societal well-being, creativity, and productivity. Objective: To address the need for specialized education in this field, the University of Bern developed a Certificate of Advanced Studies (CAS) in Brain Health. This article outlines the program’s rationale, structure, and goals. Program Description: The one-year, 15 ECTS-credit program is primarily online and consists of four modules: (1) Introduction to Brain Health, (2) Brain Disorders, (3) Risk Factors, Protective Factors and Interventions, and (4) Brain Health Implementation. It offers a multidisciplinary, interprofessional, life-course approach, integrating theory with practice through case studies and interactive sessions. Designed for healthcare and allied professionals, the CAS equips participants with skills to promote brain health in clinical, research, and public health contexts. Given the shortage of trained professionals in Europe and globally, the program seeks to build a new generation of brain health advocates. It aims to inspire action and initiatives that support the prevention, early detection, and management of brain disorders. Conclusions: The CAS in Brain Health is an innovative educational response to a pressing global need. By fostering interdisciplinary expertise and practical skills, it enhances professional development and supports improved brain health outcomes at individual and population levels. Full article
(This article belongs to the Special Issue Brain Health)
Show Figures

Figure 1

33 pages, 799 KiB  
Review
The Ten Dietary Commandments for Patients with Irritable Bowel Syndrome: A Narrative Review with Pragmatic Indications
by Nicola Siragusa, Gloria Baldassari, Lorenzo Ferrario, Laura Passera, Beatrice Rota, Francesco Pavan, Fabrizio Santagata, Mario Capasso, Claudio Londoni, Guido Manfredi, Danilo Consalvo, Giovanni Lasagni, Luca Pozzi, Vincenza Lombardo, Federica Mascaretti, Alice Scricciolo, Leda Roncoroni, Luca Elli, Maurizio Vecchi and Andrea Costantino
Nutrients 2025, 17(15), 2496; https://doi.org/10.3390/nu17152496 - 30 Jul 2025
Viewed by 548
Abstract
Irritable bowel syndrome (IBS) is a gut–brain axis chronic disorder, characterized by recurrent abdominal pain and altered bowel habits in the absence of organic pathology. Nutrition plays a central role in symptom management, yet no single dietary strategy has demonstrated universal effectiveness. This [...] Read more.
Irritable bowel syndrome (IBS) is a gut–brain axis chronic disorder, characterized by recurrent abdominal pain and altered bowel habits in the absence of organic pathology. Nutrition plays a central role in symptom management, yet no single dietary strategy has demonstrated universal effectiveness. This narrative review critically evaluates current nutritional approaches to IBS. The low-Fermentable Oligo-, Di-, Mono-saccharides and Polyols (FODMAP) diet is the most extensively studied and provides short-term symptom relief, but its long-term effects on microbiota diversity remain concerning. The Mediterranean diet, due to its anti-inflammatory and prebiotic properties, offers a sustainable, microbiota-friendly option; however, it has specific limitations in the context of IBS, particularly due to the adverse effects of certain FODMAP-rich foods. A gluten-free diet may benefit individuals with suspected non-celiac gluten sensitivity, although improvements are often attributed to fructan restriction and placebo and nocebo effects. Lactose-free diets are effective in patients with documented lactose intolerance, while a high-soluble-fiber diet is beneficial for constipation-predominant IBS. IgG-based elimination diets are emerging but remain controversial and require further validation. In this review, we present the 10 dietary commandments for IBS, pragmatic and easily retained recommendations. It advocates a personalized, flexible, and multidisciplinary management approach, avoiding rigidity and standardized protocols, with the aim of optimizing adherence, symptom mitigation, and health-related quality of life. Future research should aim to evaluate, in real-world clinical settings, the impact and applicability of the 10 dietary commandments for IBS in terms of symptom improvement and quality of life Full article
(This article belongs to the Special Issue Dietary Interventions for Functional Gastrointestinal Disorders)
Show Figures

Figure 1

45 pages, 770 KiB  
Review
Neural Correlates of Burnout Syndrome Based on Electroencephalography (EEG)—A Mechanistic Review and Discussion of Burnout Syndrome Cognitive Bias Theory
by James Chmiel and Agnieszka Malinowska
J. Clin. Med. 2025, 14(15), 5357; https://doi.org/10.3390/jcm14155357 - 29 Jul 2025
Viewed by 343
Abstract
Introduction: Burnout syndrome, long described as an “occupational phenomenon”, now affects 15–20% of the general workforce and more than 50% of clinicians, teachers, social-care staff and first responders. Its precise nosological standing remains disputed. We conducted a mechanistic review of electroencephalography (EEG) studies [...] Read more.
Introduction: Burnout syndrome, long described as an “occupational phenomenon”, now affects 15–20% of the general workforce and more than 50% of clinicians, teachers, social-care staff and first responders. Its precise nosological standing remains disputed. We conducted a mechanistic review of electroencephalography (EEG) studies to determine whether burnout is accompanied by reproducible brain-function alterations that justify disease-level classification. Methods: Following PRISMA-adapted guidelines, two independent reviewers searched PubMed/MEDLINE, Scopus, Google Scholar, Cochrane Library and reference lists (January 1980–May 2025) using combinations of “burnout,” “EEG”, “electroencephalography” and “event-related potential.” Only English-language clinical investigations were eligible. Eighteen studies (n = 2194 participants) met the inclusion criteria. Data were synthesised across three domains: resting-state spectra/connectivity, event-related potentials (ERPs) and longitudinal change. Results: Resting EEG consistently showed (i) a 0.4–0.6 Hz slowing of individual-alpha frequency, (ii) 20–35% global alpha-power reduction and (iii) fragmentation of high-alpha (11–13 Hz) fronto-parietal coherence, with stage- and sex-dependent modulation. ERP paradigms revealed a distinctive “alarm-heavy/evaluation-poor” profile; enlarged N2 and ERN components signalled hyper-reactive conflict and error detection, whereas P3b, Pe, reward-P3 and late CNV amplitudes were attenuated by 25–50%, indicating depleted evaluative and preparatory resources. Feedback processing showed intact or heightened FRN but blunted FRP, and affective tasks demonstrated threat-biassed P3a latency shifts alongside dampened VPP/EPN to positive cues. These alterations persisted in longitudinal cohorts yet normalised after recovery, supporting trait-plus-state dynamics. The electrophysiological fingerprint differed from major depression (no frontal-alpha asymmetry, opposite connectivity pattern). Conclusions: Across paradigms, burnout exhibits a coherent neurophysiological signature comparable in magnitude to established psychiatric disorders, refuting its current classification as a non-disease. Objective EEG markers can complement symptom scales for earlier diagnosis, treatment monitoring and public-health surveillance. Recognising burnout as a clinical disorder—and funding prevention and care accordingly—is medically justified and economically imperative. Full article
(This article belongs to the Special Issue Innovations in Neurorehabilitation)
Show Figures

Figure 1

21 pages, 2030 KiB  
Article
Restoring Balance: Probiotic Modulation of Microbiota, Metabolism, and Inflammation in SSRI-Induced Dysbiosis Using the SHIME® Model
by Marina Toscano de Oliveira, Fellipe Lopes de Oliveira, Mateus Kawata Salgaço, Victoria Mesa, Adilson Sartoratto, Kalil Duailibi, Breno Vilas Boas Raimundo, Williams Santos Ramos and Katia Sivieri
Pharmaceuticals 2025, 18(8), 1132; https://doi.org/10.3390/ph18081132 - 29 Jul 2025
Viewed by 522
Abstract
Background/Objectives: Selective serotonin reuptake inhibitors (SSRIs), widely prescribed for anxiety disorders, may negatively impact the gut microbiota, contributing to dysbiosis. Considering the gut–brain axis’s importance in mental health, probiotics could represent an effective adjunctive strategy. This study evaluated the effects of Lactobacillus helveticus [...] Read more.
Background/Objectives: Selective serotonin reuptake inhibitors (SSRIs), widely prescribed for anxiety disorders, may negatively impact the gut microbiota, contributing to dysbiosis. Considering the gut–brain axis’s importance in mental health, probiotics could represent an effective adjunctive strategy. This study evaluated the effects of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on microbiota composition, metabolic activity, and immune markers in fecal samples from patients with anxiety on SSRIs, using the SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) model. Methods: The fecal microbiotas of four patients using sertraline or escitalopram were inoculated in SHIME® reactors simulating the ascending colon. After stabilization, a 14-day probiotic intervention was performed. Microbial composition was assessed by 16S rRNA sequencing. Short-chain fatty acids (SCFAs), ammonia, and GABA were measured, along with the prebiotic index (PI). Intestinal barrier integrity was evaluated via transepithelial electrical resistance (TEER), and cytokine levels (IL-6, IL-8, IL-10, TNF-α) were analyzed using a Caco-2/THP-1 co-culture system. The statistical design employed in this study for the analysis of prebiotic index, metabolites, intestinal barrier integrity and cytokines levels was a repeated measures ANOVA, complemented by post hoc Tukey’s tests to assess differences across treatment groups. For the 16S rRNA sequencing data, alpha diversity was assessed using multiple metrics, including the Shannon, Simpson, and Fisher indices to evaluate species diversity, and the Chao1 and ACE indices to estimate species richness. Beta diversity, which measures microbiota similarity across groups, was analyzed using weighted and unweighted UniFrac distances. To assess significant differences in beta diversity between groups, a permutational multivariate analysis of variance (PERMANOVA) was performed using the Adonis test. Results: Probiotic supplementation increased Bifidobacterium and Lactobacillus, and decreased Klebsiella and Bacteroides. Beta diversity was significantly altered, while alpha diversity remained unchanged. SCFA levels increased after 7 days. Ammonia levels dropped, and PI values rose. TEER values indicated enhanced barrier integrity. IL-8 and TNF-α decreased, while IL-6 increased. GABA levels remained unchanged. Conclusions: The probiotic combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 modulated gut microbiota composition, metabolic activity, and inflammatory responses in samples from individuals with anxiety on SSRIs, supporting its potential as an adjunctive strategy to mitigate antidepressant-associated dysbiosis. However, limitations—including the small pooled-donor sample, the absence of a healthy control group, and a lack of significant GABA modulation—should be considered when interpreting the findings. Although the SHIME® model is considered a gold standard for microbiota studies, further clinical trials are necessary to confirm these promising results. Full article
Show Figures

Graphical abstract

14 pages, 619 KiB  
Article
Validation of Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS)-Related Pediatric Treatment Evaluation Checklist (PTEC)
by Andrey Vyshedskiy, Anna Conkey, Kelly DeWeese, Frank Benno Junghanns, James B. Adams and Richard E. Frye
Pediatr. Rep. 2025, 17(4), 81; https://doi.org/10.3390/pediatric17040081 - 28 Jul 2025
Viewed by 314
Abstract
Background/Objectives: The objective of this study was to validate a new parent-reported scale for tracking Pediatric Acute-onset Neuropsychiatric Syndrome (PANS). PANS is a condition characterized by a sudden and severe onset of neuropsychiatric symptoms. To meet diagnostic criteria, an individual must present with [...] Read more.
Background/Objectives: The objective of this study was to validate a new parent-reported scale for tracking Pediatric Acute-onset Neuropsychiatric Syndrome (PANS). PANS is a condition characterized by a sudden and severe onset of neuropsychiatric symptoms. To meet diagnostic criteria, an individual must present with either obsessive–compulsive disorder (OCD) or severely restricted food intake, accompanied by at least two additional cognitive, behavioral, or emotional symptoms. These may include anxiety, emotional instability, depression, irritability, aggression, oppositional behaviors, developmental or behavioral regression, a decline in academic skills such as handwriting or math, sensory abnormalities, frequent urination, and enuresis. The onset of symptoms is usually triggered by an infection or an abnormal immune/inflammatory response. Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS) is a subtype of PANS specifically linked to strep infections. Methods: We developed a 101-item PANS/PANDAS and Related Inflammatory Brain Disorders Treatment Evaluation Checklist (PTEC) designed to assess changes to a patient’s symptoms over time along 10 subscales: Behavior/Mood, OCD, Anxiety, Food intake, Tics, Cognitive/Developmental, Sensory, Other, Sleep, and Health. The psychometric quality of PTEC was tested with 225 participants. Results: The internal reliability of the PTEC was excellent (Cronbach’s alpha = 0.96). PTEC exhibited adequate test–retest reliability (r = 0.6) and excellent construct validity, supported by a strong correlation with the Health subscale of the Autism Treatment Evaluation Checklist (r = 0.8). Conclusions: We hope that PTEC will assist parents and clinicians in the monitoring and treatment of PANS. The PTEC questionnaire is freely available at neuroimmune.org/PTEC. Full article
Show Figures

Figure 1

30 pages, 2595 KiB  
Review
Gut–Brain Axis in Mood Disorders: A Narrative Review of Neurobiological Insights and Probiotic Interventions
by Gilberto Uriel Rosas-Sánchez, León Jesús Germán-Ponciano, Abraham Puga-Olguín, Mario Eduardo Flores Soto, Angélica Yanet Nápoles Medina, José Luis Muñoz-Carillo, Juan Francisco Rodríguez-Landa and César Soria-Fregozo
Biomedicines 2025, 13(8), 1831; https://doi.org/10.3390/biomedicines13081831 - 26 Jul 2025
Viewed by 920
Abstract
The gut microbiota and its interaction with the nervous system through the gut–brain axis (MGB) have been the subject of growing interest in biomedical research. It has been proposed that modulation of microbiota using probiotics could offer a promising therapeutic alternative for mood [...] Read more.
The gut microbiota and its interaction with the nervous system through the gut–brain axis (MGB) have been the subject of growing interest in biomedical research. It has been proposed that modulation of microbiota using probiotics could offer a promising therapeutic alternative for mood regulation and the treatment of anxiety and depression disorders. The findings indicate that several probiotic strains, such as Lactobacillus and Bifidobacterium, have demonstrated anxiolytic and antidepressant effects in pre and clinical studies. These effects seem to be mediated by the regulation of the hypothalamic–pituitary–adrenal axis (HPA), the synthesis of neurotransmitters such as serotonin (5-HT) and Gamma-amino-butyric acid (GABA), as well as the modulation of systemic inflammation. However, the lack of standardization in dosing and strain selection, in addition to the scarcity of large-scale clinical studies, limit the applicability of these findings in clinical therapy. Additional research is required to establish standardized therapeutic protocols and better understand the role of probiotics in mental health. The aim of this narrative review is to discuss the relationship between the gut microbiota and the MGB axis in the context of anxiety and depression disorders, the underlying neurobiological mechanisms, as well as the preclinical evidence for the effect of probiotics in modulating these disorders. In this way, an exhaustive search was carried out in scientific databases including PubMed, ScienceDirect, Scopus, and Web of Science. Preclinical research evaluating the effects of different probiotic strains in animal models during chronic treatment was selected, excluding those studies that did not provide access to the full text. Full article
Show Figures

Figure 1

16 pages, 610 KiB  
Article
Wired Differently? Brain Temporal Complexity and Intelligence in Autism Spectrum Disorder
by Moses O. Sokunbi, Oumayma Soula, Bertha Ochieng and Roger T. Staff
Brain Sci. 2025, 15(8), 796; https://doi.org/10.3390/brainsci15080796 - 26 Jul 2025
Viewed by 932
Abstract
Background: Autism spectrum disorder (ASD) is characterised by atypical behavioural and cognitive diversity, yet the neural underpinnings linking brain activity and individual presentations remain poorly understood. In this study, we investigated the relationship between resting-state functional magnetic resonance imaging (fMRI) signal complexity and [...] Read more.
Background: Autism spectrum disorder (ASD) is characterised by atypical behavioural and cognitive diversity, yet the neural underpinnings linking brain activity and individual presentations remain poorly understood. In this study, we investigated the relationship between resting-state functional magnetic resonance imaging (fMRI) signal complexity and intelligence (full-scale intelligence quotient (FIQ); verbal intelligence quotient (VIQ); and performance intelligence quotient (PIQ)) in male adults with ASD (n = 14) and matched neurotypical controls (n = 15). Methods: We used three complexity-based metrics: Hurst exponent (H), fuzzy approximate entropy (fApEn), and fuzzy sample entropy (fSampEn) to characterise resting-state fMRI signal dynamics, and correlated these measures with standardised intelligence scores. Results: Using a whole-brain measure, ASD participants showed significant negative correlations between PIQ and both fApEn and fSampEn, suggesting that increased neural irregularity may relate to reduced cognitive–perceptual performance in autistic individuals. No significant associations between entropy (fApEn and fSampEn) and PIQ were found in the control group. Group differences in brain–behaviour associations were confirmed through formal interaction testing using Fisher’s r-to-z transformation, which showed significantly stronger correlations in the ASD group. Complementary regression analyses with interaction terms further demonstrated that the entropy (fApEn and fSampEn) and PIQ relationship was significantly moderated by group, reinforcing evidence for autism-specific neural mechanisms underlying cognitive function. Conclusions: These findings provide insight into how cognitive functions in autism may not only reflect deficits but also an alternative neural strategy, suggesting that distinct temporal patterns may be associated with intelligence in ASD. These preliminary findings could inform clinical practice and influence health and social care policies, particularly in autism diagnosis and personalised support planning. Full article
(This article belongs to the Special Issue Understanding the Functioning of Brain Networks in Health and Disease)
Show Figures

Figure 1

27 pages, 464 KiB  
Review
Caffeine in Aging Brains: Cognitive Enhancement, Neurodegeneration, and Emerging Concerns About Addiction
by Manuel Glauco Carbone, Giovanni Pagni, Claudia Tagliarini, Icro Maremmani and Angelo Giovanni Icro Maremmani
Int. J. Environ. Res. Public Health 2025, 22(8), 1171; https://doi.org/10.3390/ijerph22081171 - 24 Jul 2025
Viewed by 610
Abstract
This narrative review examines the effects of caffeine on brain health in older adults, with particular attention to its potential for dependence—an often-overlooked issue in geriatric care. Caffeine acts on central adenosine, dopamine, and glutamate systems, producing both stimulating and rewarding effects that [...] Read more.
This narrative review examines the effects of caffeine on brain health in older adults, with particular attention to its potential for dependence—an often-overlooked issue in geriatric care. Caffeine acts on central adenosine, dopamine, and glutamate systems, producing both stimulating and rewarding effects that can foster tolerance and habitual use. Age-related pharmacokinetic and pharmacodynamic changes prolong caffeine’s half-life and increase physiological sensitivity in the elderly. While moderate consumption may enhance alertness, attention, and possibly offer neuroprotective effects—especially in Parkinson’s disease and Lewy body dementia—excessive or prolonged use may lead to anxiety, sleep disturbances, and cognitive or motor impairment. Chronic exposure induces neuroadaptive changes, such as adenosine receptor down-regulation, resulting in tolerance and withdrawal symptoms, including headache, irritability, and fatigue. These symptoms, often mistaken for typical aging complaints, may reflect a substance use disorder yet remain under-recognized due to caffeine’s cultural acceptance. The review explores caffeine’s mixed role in neurological disorders, being beneficial in some and potentially harmful in others, such as restless legs syndrome and frontotemporal dementia. Given the variability in individual responses and the underestimated risk of dependence, personalized caffeine intake guidelines are warranted. Future research should focus on the long-term cognitive effects and the clinical significance of caffeine use disorder in older populations. Full article
(This article belongs to the Section Behavioral and Mental Health)
19 pages, 1316 KiB  
Review
Anabolic–Androgenic Steroids and Brain Damage: A Review of Evidence and Medico-Legal Implications
by Mario Giuseppe Chisari, Massimiliano Esposito, Salvatore Alloca, Sabrina Franco, Martina Francaviglia, Gianpietro Volonnino, Raffaella Rinaldi, Nicola Di Fazio and Lucio Di Mauro
Forensic Sci. 2025, 5(3), 31; https://doi.org/10.3390/forensicsci5030031 - 24 Jul 2025
Viewed by 633
Abstract
Background: Anabolic–androgenic steroids (AASs) are commonly used for performance enhancement but have been linked to significant neurobiological consequences. This review explores the impact of AASs on neurochemical pathways, cognitive function, and psychiatric disorders, highlighting their potential neurotoxicity. Methods: A narrative review of current [...] Read more.
Background: Anabolic–androgenic steroids (AASs) are commonly used for performance enhancement but have been linked to significant neurobiological consequences. This review explores the impact of AASs on neurochemical pathways, cognitive function, and psychiatric disorders, highlighting their potential neurotoxicity. Methods: A narrative review of current literature was conducted to examine AASs-induced alterations in neurotransmitter systems, structural and functional brain changes, and associated psychiatric conditions. The interplay between AASs use and other substances was also considered. Results: Chronic AASs exposure affects serotonin and dopamine systems, contributing to mood disorders, aggression, and cognitive deficits. Structural and functional changes in the prefrontal cortex and limbic regions suggest long-term neurotoxicity. AASs use is associated with increased risks of depression, anxiety, and psychosis, potentially driven by hormonal dysregulation and neuroinflammation. Co-occurring substance use exacerbates neurocognitive impairments and behavioral disturbances. Discussion: While evidence supports the link between AASs use and neurotoxicity, gaps remain in understanding the precise mechanisms and long-term effects. Identifying biomarkers of brain damage and developing targeted interventions are crucial for mitigating risks. Increased awareness among medical professionals and policymakers is essential to address AASs-related neuropsychiatric consequences. Conclusions: AASs abuse poses significant risks to brain health, necessitating further research and prevention efforts. Evidence-based strategies are needed to educate the public, enhance early detection, and develop effective interventions to reduce the neuropsychiatric burden of AASs use. Full article
Show Figures

Figure 1

11 pages, 487 KiB  
Article
The Effects of Active Methamphetamine Use Disorder and Regular Sports Activities on Brain Volume in Adolescents
by Hüseyin Yiğit, Hatice Güler, Zekeriya Temircan, Abdulkerim Gökoğlu, İzzet Ökçesiz, Müge Artar, Halil Dönmez, Erdoğan Unur and Halil Yılmaz
J. Clin. Med. 2025, 14(15), 5212; https://doi.org/10.3390/jcm14155212 - 23 Jul 2025
Viewed by 339
Abstract
Objectives: Methamphetamine (MA) abuse during adolescence can have a significant impact on brain development. On the other hand, regular exercise is known to promote brain health and may have neuroprotective effects. The purpose of this study is to compare brain volumes in three [...] Read more.
Objectives: Methamphetamine (MA) abuse during adolescence can have a significant impact on brain development. On the other hand, regular exercise is known to promote brain health and may have neuroprotective effects. The purpose of this study is to compare brain volumes in three different adolescent groups: those with active methamphetamine use disorder (MUD), adolescent athletes who regularly exercise, and healthy control adolescents. Methods: This MRI study involved three groups of adolescents: 10 with active MUD (9 males, 1 female), nine licensed runner adolescents (three males, six females), and 10 healthy adolescents (5 males, 5 females). Brain volumes were analyzed using T1-weighted images from a 3.0 Tesla MRI scanner, and then segmented automatically with vol2Brain. Statistical analyses included ANCOVA with sex as a covariate and LSD post hoc tests performed using SPSS Statistics 23. Results: Adolescents with MUD showed a 10% increase in total white matter volume compared to the athlete group. Conversely, cortical gray matter volume was reduced by 4% compared to the healthy control group and by 7% compared to the athlete group. The frontal and insular cortices in the MUD group had significantly diminished volumes compared to the athlete group. Overall, individuals with MUD had decreased gray matter volumes and increased white matter volumes in their brains. The brain volumetric differences between the MUD group and the athlete group were statistically significant. Conclusions: The brains of those with MUD displayed a reduction in gray matter volume and an increase in white matter volume, indicating damage from MA on the developing adolescent brain. The volumetric disparities between the MUD and athlete groups were found to be significantly different, suggesting a possible neuroprotective factor of exercise. Further studies are required to explore the potential of exercise-based interventions in alleviating the harmful effects of MA abuse. Full article
(This article belongs to the Section Sports Medicine)
Show Figures

Figure 1

25 pages, 2951 KiB  
Article
Reward Network Activations of Win Versus Loss in a Monetary Gambling Task
by Chella Kamarajan, Babak A. Ardekani, Ashwini K. Pandey, Gayathri Pandey, Sivan Kinreich, Weipeng Kuang, Jacquelyn L. Meyers and Bernice Porjesz
Behav. Sci. 2025, 15(8), 994; https://doi.org/10.3390/bs15080994 - 22 Jul 2025
Viewed by 335
Abstract
Reward processing is a vital function for health and survival and is impaired in various psychiatric and neurological disorders. Using a monetary gambling task, the current study aims to elucidate neural substrates in the reward network underlying the evaluation of win versus loss [...] Read more.
Reward processing is a vital function for health and survival and is impaired in various psychiatric and neurological disorders. Using a monetary gambling task, the current study aims to elucidate neural substrates in the reward network underlying the evaluation of win versus loss outcomes and their association with behavioral characteristics, such as impulsivity and task performance, and neuropsychological functioning. Functional MRI was recorded in thirty healthy, male community volunteers (mean age = 27.4 years) while they performed a monetary gambling task in which they bet with either 10 or 50 tokens and received feedback on whether they won or lost the bet amount. Results showed that a set of key brain structures in the reward network, including the putamen, caudate nucleus, superior and inferior parietal lobule, angular gyrus, and Rolandic operculum, had greater blood oxygenation level-dependent (BOLD) signals during win relative to loss trials, and the BOLD signals in most of these regions were highly correlated with one another. Furthermore, exploratory bivariate analyses between these reward-related regions and behavioral and neuropsychological domains showed significant correlations with moderate effect sizes, including (i) negative correlations between non-planning impulsivity and activations in the putamen and caudate regions, (ii) positive correlations between risky bets and right putamen activation, (iii) negative correlations between safer bets and right putamen activation, (iv) a negative correlation between short-term memory capacity and right putamen activity, and (v) a negative correlation between poor planning skills and left inferior occipital cortex activation. These findings contribute to our understanding of the neural underpinnings of monetary reward processing and their relationships to aspects of behavior and cognitive function. Future studies may confirm these findings with larger samples of healthy controls and extend these findings by investigating various clinical groups with impaired reward processing. Full article
(This article belongs to the Section Experimental and Clinical Neurosciences)
Show Figures

Figure 1

Back to TopTop