Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,020)

Search Parameters:
Keywords = brain activation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4429 KB  
Article
Maternal Poly (I:C)-Induced Placental Inflammation and Endocrine Dysfunction Are Associated with Disrupted Corticogenesis in Mouse Offspring
by Catherine Zhou, Callan Baldwin, Shuying Lin, Aaron Hayes, Kathleen Carter, Lir-Wan Fan, Abhay Bhatt and Yi Pang
Brain Sci. 2026, 16(2), 126; https://doi.org/10.3390/brainsci16020126 (registering DOI) - 24 Jan 2026
Abstract
Background/Objectives: Maternal immune activation (MIA) increases the risk of Autism Spectrum Disorders (ASD). Experimental models demonstrate that maternal exposure to bacterial endotoxin or the viral mimic polyinosinic:polycytidylic acid [poly (I:C)] reliably recapitulates ASD-like behavioral abnormalities in offspring, yet the underlying neurobiological mechanisms linking [...] Read more.
Background/Objectives: Maternal immune activation (MIA) increases the risk of Autism Spectrum Disorders (ASD). Experimental models demonstrate that maternal exposure to bacterial endotoxin or the viral mimic polyinosinic:polycytidylic acid [poly (I:C)] reliably recapitulates ASD-like behavioral abnormalities in offspring, yet the underlying neurobiological mechanisms linking MIA to altered neurodevelopment remain incompletely understood. Increasing evidence highlights the placenta as a critical mediator in shaping fetal brain development through immunological and hormonal regulation. Likewise, disruption of placental regulatory functions upon MIA may therefore represent a mechanistic pathway. Here, we investigated how alterations in placental cytokine profiles, innate immune cell composition, and endocrine outputs relate to neuroinflammation and neurogenesis in the offspring. Methods: Pregnant mice at gestational day 12.5 received a single intraperitoneal injection of poly (I:C). Placental macrophages, neutrophils, inflammatory cytokines, and nerve growth factor (NGF) expression were examined 72 h later. Neurodevelopmental outcomes, including microglial activity and neurogenic markers, were evaluated in mouse offspring at postnatal day (P) 1 and 6. Results: MIA induced a significant accumulation of monocytes and neutrophils in the placenta, which was associated with elevated levels of a broad spectrum of inflammatory mediators, including Th17-biased proinflammatory cytokines, chemokines, and adhesion proteins, in the placenta and amniotic fluid. In contrast, the placenta-derived NGF levels were significantly reduced. MIA induced strong and sustained microglial activation in the fetal and neonatal brain. This inflammatory milieu was accompanied by disrupted cortical neurogenesis, characterized by a marked increase in Ki67+ neuronal progenitor cells (NPCs) in the subventricular zone (SVZ), overproduction of early-born Tbr1+ neurons at P1, later-born Satb2+ neurons at P6. Conclusions: Collectively, these findings suggest that heightened Th17 inflammatory signaling, coupled with impaired placental endocrine function, contributes to dysregulated cortical neurogenesis in the offspring. Full article
(This article belongs to the Special Issue Inflammation and Central Nervous System)
Show Figures

Figure 1

22 pages, 757 KB  
Review
Microglial Maturation and Functional Heterogeneity: Mechanistic Links to Neurodevelopmental Disorders
by Pariya Khodabakhsh and Olga Garaschuk
Int. J. Mol. Sci. 2026, 27(3), 1185; https://doi.org/10.3390/ijms27031185 (registering DOI) - 24 Jan 2026
Abstract
As the brain’s resident macrophages, microglia on the one side are increasingly recognized as essential players in discrete developmental stages, where immune, metabolic, and activity-derived signals are coordinately integrated to guide brain development. On the other side, the precise temporal and molecular coordination [...] Read more.
As the brain’s resident macrophages, microglia on the one side are increasingly recognized as essential players in discrete developmental stages, where immune, metabolic, and activity-derived signals are coordinately integrated to guide brain development. On the other side, the precise temporal and molecular coordination of microglial maturation is imperative for the structural and functional integrity of the developing central nervous system (CNS). In this review, we synthesize recent data that reposition microglia from a uniform population of immune sentinels to temporally programmed and regionally specialized regulators of circuit maturation. This involves dissecting the embryonic origins and migratory pathways of microglial progenitors in mouse and human systems and illustrating how gradual transcriptional and morphological maturation aligns the biology of microglia with progressive phases of neurogenesis, synaptic fine-tuning, myelination, and vascular stabilization. In addition, we discuss how individual gene mutations, inflammatory insults during perinatal life, and environmental disturbances intersect with these temporal programs to alter microglial phenotypes and compromise circuit formation. With a special emphasis on epilepsy and autism spectrum disorder, often sharing the common etiology, we illustrate how early malfunction of microglia may drive neural network dysfunction. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

22 pages, 995 KB  
Review
Stroke Rehabilitation, Novel Technology and the Internet of Medical Things
by Ana Costa, Eric Schmalzried, Jing Tong, Brandon Khanyan, Weidong Wang, Zhaosheng Jin and Sergio D. Bergese
Brain Sci. 2026, 16(2), 124; https://doi.org/10.3390/brainsci16020124 (registering DOI) - 24 Jan 2026
Abstract
Stroke continues to impose an enormous morbidity and mortality burden worldwide. Stroke survivors often incur debilitating consequences that impair motor function, independence in activities of daily living and quality of life. Rehabilitation is a pivotal intervention to minimize disability and promote functional recovery [...] Read more.
Stroke continues to impose an enormous morbidity and mortality burden worldwide. Stroke survivors often incur debilitating consequences that impair motor function, independence in activities of daily living and quality of life. Rehabilitation is a pivotal intervention to minimize disability and promote functional recovery following a stroke. The Internet of Medical Things, a network of connected medical devices, software and health systems that collect, store and analyze health data over the internet, is an emerging resource in neurorehabilitation for stroke survivors. Technologies such as asynchronous transmission to handle intermittent connectivity, edge computing to conserve bandwidth and lengthen device life, functional interoperability across platforms, security mechanisms scalable to resource constraints, and hybrid architectures that combine local processing with cloud synchronization help bridge the digital divide and infrastructure limitations in low-resource environments. This manuscript reviews emerging rehabilitation technologies such as robotic devices, virtual reality, brain–computer interfaces and telerehabilitation in the setting of neurorehabilitation for stroke patients. Full article
Show Figures

Figure 1

22 pages, 2619 KB  
Article
Probiotics Lactobacillus acidophilus LA4 and Lacticaseibacillus paracasei F5 Alleviate Cognitive Dysfunction in Alzheimer’s Disease Models: A Dual-Screening Study in Drosophila and Mice
by Jia Liu, Guoqing Ren, Siyi Niu, Yongshuai Liu, Yuqing Zhao, Zhenou Sun, Qiaomei Zhu, Jixiang Zhang, Yufeng Mao, Zhengqi Liu, Qingbin Guo and Huanhuan Liu
Foods 2026, 15(3), 429; https://doi.org/10.3390/foods15030429 (registering DOI) - 24 Jan 2026
Abstract
Identifying probiotics that modulate the gut–brain axis is vital for non-pharmacological Alzheimer’s disease (AD) therapy. Through a staged screening from transgenic Drosophila to a D-galactose/AlCl3-induced murine model, Lactobacillus acidophilus LA4 and Lacticaseibacillus paracasei F5 were prioritized for their ability to improve [...] Read more.
Identifying probiotics that modulate the gut–brain axis is vital for non-pharmacological Alzheimer’s disease (AD) therapy. Through a staged screening from transgenic Drosophila to a D-galactose/AlCl3-induced murine model, Lactobacillus acidophilus LA4 and Lacticaseibacillus paracasei F5 were prioritized for their ability to improve climbing indices and reduce Aβ deposition and AChE activity. In AD mice, LA4 and F5 significantly ameliorated cognitive deficits and anxiety-like behaviors. Mechanistically, both strains reduced hippocampal Aβ1–42 and p-Tau levels, inhibited AChE, suppressed pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), and enhanced antioxidant enzymes (SOD, GSH-Px). 16S rRNA analysis revealed restored Firmicutes/Bacteroidetes ratios and enrichment of SCFA-producers (Muribaculaceae, Dubosiella). Metabolomics highlighted remodeled purine and arginine pathways, with strain-specific effects on primary bile acid biosynthesis/sphingolipid metabolism (LA4) and butanoate metabolism/nicotinate and nicotinamide metabolism (F5). Consequently, LA4 and F5 alleviate AD pathology by restructuring microbial and metabolic profiles, thereby mitigating neuroinflammation and oxidative stress. These findings confirm the potential of specific probiotics as functional food ingredients for the prevention and adjuvant treatment of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Application of Probiotics in Foods and Human Health)
Show Figures

Graphical abstract

25 pages, 24853 KB  
Article
Mesenchymal Stem Cell Therapy Modulates Peripheral–Central Immune Interactions and Attenuates Neuroinflammation-Driven Cognitive Dysfunction
by Gunel Ayyubova, Shahla Huseynova, Nigar Mustafayeva, Leyla Yildirim, Seher Ismayilova, Tarana Gasimova and Sabina Aliyeva
Int. J. Mol. Sci. 2026, 27(3), 1182; https://doi.org/10.3390/ijms27031182 (registering DOI) - 24 Jan 2026
Abstract
Peripheral inflammation is increasingly recognized as a critical driver of sustained neuroinflammation and cognitive dysfunction in neurodegenerative and inflammation-associated disorders. Systemic inflammatory mediators can compromise blood–brain barrier integrity, activate glial cells, and initiate maladaptive neuroimmune cascades that disrupt hippocampal–prefrontal circuits underlying learning and [...] Read more.
Peripheral inflammation is increasingly recognized as a critical driver of sustained neuroinflammation and cognitive dysfunction in neurodegenerative and inflammation-associated disorders. Systemic inflammatory mediators can compromise blood–brain barrier integrity, activate glial cells, and initiate maladaptive neuroimmune cascades that disrupt hippocampal–prefrontal circuits underlying learning and memory. Here, we investigated whether early systemic administration of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) mitigates inflammation-driven cognitive deficits in a chronic lipopolysaccharide (LPS) mouse model. Adult mice received daily LPS injections for seven days to induce persistent systemic and central inflammation, which was confirmed by serum and hippocampal cytokine analyses in a separate cohort at the time of MSC administration, followed by intravenous MSC treatment immediately after cessation of the inflammatory insult. Behavioral testing revealed significant impairments in spatial working memory, recognition memory, and associative learning. These deficits were accompanied by pronounced microglial activation, immune cell accumulation, astrocytosis, and a shift toward a pro-inflammatory cytokine milieu with suppression of IL-10 in the hippocampal CA1 region and medial prefrontal cortex. Early MSC treatment attenuated glial reactivity, reduced pro-inflammatory cytokines, restored IL-10 expression, and partially rescued cognitive performance. Collectively, these findings identify a post-inflammatory therapeutic window in which early MSC-based immunomodulation can rebalance neuroimmune signaling and limit inflammation-induced hippocampal–prefrontal circuit dysfunction, highlighting a clinically relevant strategy for targeting cognitive impairment associated with chronic systemic inflammation. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

47 pages, 948 KB  
Review
A Decade of Innovation in Breast Cancer (2015–2025): A Comprehensive Review of Clinical Trials, Targeted Therapies and Molecular Perspectives
by Klaudia Dynarowicz, Dorota Bartusik-Aebisher, Sara Czech, Aleksandra Kawczyk-Krupka and David Aebisher
Cancers 2026, 18(3), 361; https://doi.org/10.3390/cancers18030361 - 23 Jan 2026
Abstract
The past decade has witnessed an unprecedented transformation in breast cancer management, driven by parallel advances in targeted therapies, immunomodulation, drug-delivery technologies, and molecular diagnostic tools. This review summarizes the key achievements of 2015–2025, encompassing all major biological subtypes of breast cancer as [...] Read more.
The past decade has witnessed an unprecedented transformation in breast cancer management, driven by parallel advances in targeted therapies, immunomodulation, drug-delivery technologies, and molecular diagnostic tools. This review summarizes the key achievements of 2015–2025, encompassing all major biological subtypes of breast cancer as well as technological innovations with substantial clinical relevance. In hormone receptor-positive (HR+)/HER2− disease, the integration of CDK4/6 inhibitors, modulators of the PI3K/AKT/mTOR pathway, oral Selective Estrogen Receptor Degraders (SERDs), and real-time monitoring of Estrogen Receptor 1 (ESR1) mutations has enabled clinicians to overcome endocrine resistance and dynamically tailor treatment based on evolving molecular alterations detected in circulating biomarkers. In HER2-positive breast cancer, treatment paradigms have been revolutionized by next-generation antibody–drug conjugates, advanced antibody formats, and technologies facilitating drug penetration across the blood–brain barrier, collectively improving systemic and central nervous system disease control. The most rapid progress has occurred in triple-negative breast cancer (TNBC), where synergistic strategies combining selective cytotoxicity via Antibody-Drug Conjugates (ADCs), DNA damage response inhibitors, immunotherapy, epigenetic modulation, and therapies targeting immunometabolic pathways have markedly expanded therapeutic opportunities for this historically challenging subtype. In parallel, photodynamic therapy has emerged as an investigational and predominantly local phototheranostic approach, incorporating nanocarriers, next-generation photosensitizers, and photoimmunotherapy capable of inducing immunogenic cell death and modulating antitumor immune responses. A defining feature of the past decade has been the surge in patent-driven innovation, encompassing multispecific antibodies, optimized ADC architectures, novel linker–payload designs, and advanced nanotechnological and photoactive delivery systems. By integrating data from clinical trials, molecular analyses, and patent landscapes, this review illustrates how multimechanistic, biomarker-guided therapies supported by advanced drug-delivery technologies are redefining contemporary precision oncology in breast cancer. The emerging therapeutic paradigm underscores the convergence of targeted therapy, immunomodulation, synthetic lethality, and localized immune-activating approaches, charting a path toward further personalization of treatment in the years ahead. Full article
(This article belongs to the Section Cancer Therapy)
24 pages, 400 KB  
Review
Sensory Deprivation and the Brain: Neurobiological Mechanisms, Psychological Effects, and Clinical Implications
by Donatella Marazziti, Gerardo Russomanno, Matteo Gambini, Francesca Rita Digiuseppe, Enrico Fazio and Riccardo Gurrieri
Brain Sci. 2026, 16(2), 122; https://doi.org/10.3390/brainsci16020122 - 23 Jan 2026
Abstract
Background/Objectives: Sensory deprivation, defined as a reduction or absence of external sensory input across one or more modalities, has long been investigated in extreme and experimental settings. More recently, its relevance has expanded to clinical contexts and environmental conditions. The present narrative review [...] Read more.
Background/Objectives: Sensory deprivation, defined as a reduction or absence of external sensory input across one or more modalities, has long been investigated in extreme and experimental settings. More recently, its relevance has expanded to clinical contexts and environmental conditions. The present narrative review aims to synthesize current evidence on the neurobiological mechanisms, psychological effects, and clinical implications of sensory deprivation, with particular attention to its dual role as both a risk factor and, under controlled conditions, a potential therapeutic tool. Methods: A narrative literature search was conducted using PubMed, Scopus, and PsycINFO, covering studies published up to August 2025. Search terms included sensory deprivation, neuroplasticity, neurotransmitters, HPA axis, neuro-inflammation, circadian rhythms, psychopathology, extreme environments, and spaceflight. Preclinical and clinical studies examining biological, cognitive, and psychological consequences of reduced sensory stimulation were included. Data were synthesized thematically without quantitative meta-analysis. Results: Evidence indicates that sensory deprivation induces widespread neurobiological adaptations involving neurotransmitter systems (particularly dopaminergic pathways), dysregulation of the hypothalamic–pituitary–adrenal axis, neuroimmune activation, circadian rhythm disruption, and structural and functional brain changes, notably affecting the hippocampus. These alterations are associated with increased vulnerability to depression, anxiety, hallucinations, dissociative symptoms, and cognitive impairment. Duration, voluntariness, and individual differences (e.g., baseline vulnerability/resilience, trait anxiety, and prior psychiatric history) critically modulate outcomes. However, short-term and voluntary sensory restriction, such as Floatation-REST, may promote relaxation and emotional regulation under specific conditions. Conclusions: Sensory deprivation exerts complex, context-dependent effects on brain function and mental health. Duration, individual vulnerability, and voluntariness critically modulate outcomes. Understanding these mechanisms is increasingly relevant for clinical practice and for developing preventive strategies in extreme environments, including future long-duration space missions. Full article
(This article belongs to the Section Sensory and Motor Neuroscience)
10 pages, 252 KB  
Article
Quantum-like Cognition and Decision-Making: Interpretation of Phases in Quantum-like Superposition
by Andrei Khrennikov
Entropy 2026, 28(2), 134; https://doi.org/10.3390/e28020134 - 23 Jan 2026
Abstract
This paper addresses a central conceptual challenge in Quantum-like Cognition and Decision-Making (QCDM) and the broader research program of Quantum-like Modeling (QLM): the interpretation of phases in quantum-like state superpositions. In QLM, system states are represented by normalized vectors in a complex [...] Read more.
This paper addresses a central conceptual challenge in Quantum-like Cognition and Decision-Making (QCDM) and the broader research program of Quantum-like Modeling (QLM): the interpretation of phases in quantum-like state superpositions. In QLM, system states are represented by normalized vectors in a complex Hilbert space, |ψ=kXk|k, where the squared amplitudes Pk=|Xk|2 are outcome probabilities. However, the meaning of the phase factors eiϕk in the coefficients Xk=Pkeiϕk has remained elusive, often treating them as purely phenomenological parameters. This practice, while successful in describing cognitive interference effects (the "interference of the mind”), has drawn criticism for expanding the model’s parameter space without a clear physical or cognitive underpinning. Building on a recent framework that connects QCDM to neuronal network activity, we propose a concrete interpretation. We argue that the phases in quantum-like superpositions correspond directly to the phases of random oscillations generated by neuronal circuits in the brain. This interpretation not only provides a natural, non-phenomenological basis for phase parameters within QCDM but also helps to bridge the gap between quantum-like models and classical neurocognitive frameworks, offering a consistent physical analogy for the descriptive power of QLM. Full article
18 pages, 8749 KB  
Article
Reduced LOXL3 Expression Disrupts Microtubule Acetylation and Drives TP53-Dependent Cell Fate in Glioblastoma
by Talita de Sousa Laurentino, Roseli da Silva Soares, Antônio Marcondes Lerario, Ricardo Cesar Cintra, Suely Kazue Nagahashi Marie and Sueli Mieko Oba-Shinjo
Cells 2026, 15(3), 219; https://doi.org/10.3390/cells15030219 - 23 Jan 2026
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, marked by molecular heterogeneity and poor clinical prognosis. Lysyl oxidase-like 3 (LOXL3) is frequently upregulated in GBM, but its mechanistic contribution remains insufficiently defined. Here, we investigated the functional role of LOXL3 in GBM [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, marked by molecular heterogeneity and poor clinical prognosis. Lysyl oxidase-like 3 (LOXL3) is frequently upregulated in GBM, but its mechanistic contribution remains insufficiently defined. Here, we investigated the functional role of LOXL3 in GBM using CRISPR-Cas9-mediated LOXL3 knockdown in two genetically distinct GBM cell lines: U87MG (wild-type TP53) and U251 (mutant TP53). Reduced LOXL3 expression markedly reduced α-tubulin acetylation, particularly in U87MG cells, and downregulated genes involved in cell cycle progression and proliferation. Both cell lines exhibited mitotic defects, including delayed cell cycle progression and spindle abnormalities; however, cell fate diverged according to TP53 status. U87MG cells, sustained spindle checkpoint activation triggered a p53-dependent spindle checkpoint response culminating in apoptosis, while U251 cells underwent mitotic slippage and senescence. Transcriptomic analyses confirmed differential regulation of apoptosis versus senescence pathways in accordance with TP53 functionality. Additionally, reduced LOXL3 expression markedly impaired adhesion and migration in U87MG cells, whereas U251 cells were minimally affected, consistent with more pronounced microtubule destabilization. Collectively, these findings identify that LOXL3 is a key regulator of microtubule homeostasis, mitotic fidelity, adhesion, and invasive behavior in GBM. Targeting LOXL3 may therefore provide a therapeutic opportunity for genotype-informed intervention in GBM. Full article
Show Figures

Figure 1

18 pages, 2558 KB  
Article
Standardized Hericium erinaceus Extract Powder Improves Scopolamine-Induced Cognitive Deficits via BDNF-Mediated Neuroplasticity
by Seon-Hyeok Kim, Se Jeong Kim, Eun Ji Ko, Hae Ran Lee, Seong Min Hong, Se Hwan Ryu, Dae Hee Lee, Young Guk Kim, Jeong Yun Yu, Jae Kang Lee, Mi Kyeong Lee and Sun Yeou Kim
Sci. Pharm. 2026, 94(1), 12; https://doi.org/10.3390/scipharm94010012 - 23 Jan 2026
Abstract
Alzheimer’s disease and related neurodegenerative disorders are associated with progressive cognitive decline, primarily driven by cholinergic dysfunction and impaired synaptic signaling. Hericium erinaceus, also known as lion’s mane mushroom, has been reported to promote neuronal differentiation and synaptic plasticity. In this study, [...] Read more.
Alzheimer’s disease and related neurodegenerative disorders are associated with progressive cognitive decline, primarily driven by cholinergic dysfunction and impaired synaptic signaling. Hericium erinaceus, also known as lion’s mane mushroom, has been reported to promote neuronal differentiation and synaptic plasticity. In this study, a standardized H. erinaceus extract powder (HEP) was prepared from fruiting bodies and quantified using hericene A as a marker compound. The neuroprotective effects of HEP were then evaluated in both cellular and animal models of scopolamine-induced cognitive dysfunction. Pretreatment of SH-SY5Y human neuroblastoma cells with HEP (5–25 μg/mL) significantly improved cell viability and reduced scopolamine-induced apoptosis, while enhancing the activation of neuroplasticity-related signaling proteins, including brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK). In vivo, oral administration of HEP (300 mg/kg) to scopolamine-treated ICR mice markedly improved cognitive performance, increasing the recognition index to 63.8% compared with 41.6% in the scopolamine group, and enhancing spontaneous alternation in the Y-maze test to 59.6%. These cognitive improvements were accompanied by preserved hippocampal neuronal structure and increased BDNF immunoreactivity. Additionally, HEP improved cholinergic function by restoring serum acetylcholine levels and reducing acetylcholinesterase activity. Collectively, these findings suggest that standardized HEP exerts neuroprotective and cognition-enhancing effects via modulation of cholinergic markers and activation of BDNF-mediated neuroplasticity, highlighting its potential as a functional food ingredient or nutraceutical for preventing cognitive decline related to cholinergic dysfunction. Full article
(This article belongs to the Topic Functional Foods and Nutraceuticals in Health and Disease)
Show Figures

Figure 1

18 pages, 5987 KB  
Article
Potential Link Between a Disruptive CAPN6 Variant and Neurodevelopmental Disorders
by Francesco Calì, Simone Treccarichi, Mirella Vinci, Emanuela Avola, Antonino Musumeci, Alda Ragalmuto, Carola Costanza, Donatella Greco, Desiree Brancato, Concetta Federico, Santina Città, Francesco Domenico Di Blasi, Salvatore Saccone, Paolo Scudieri, Federico Zara and Maurizio Elia
Int. J. Mol. Sci. 2026, 27(3), 1140; https://doi.org/10.3390/ijms27031140 - 23 Jan 2026
Abstract
The placenta is often described as the “window to the brain” due to its crucial role in fetal neurological development. In this study, we investigated a family where the older male offspring exhibited severe neurodevelopmental and mild motor coordination disorders. His brother displayed [...] Read more.
The placenta is often described as the “window to the brain” due to its crucial role in fetal neurological development. In this study, we investigated a family where the older male offspring exhibited severe neurodevelopmental and mild motor coordination disorders. His brother displayed emotional and behavioral dysregulation along with mild motor coordination disorders. The father was asymptomatic, while the mother and daughter showed mild learning disabilities. Whole exome sequencing (WES) identified a disruptive X-linked pathogenic variant, c.1088_1089del p.Asp363GlyfsTer2, within the calpain-6 (CAPN6) gene. We have submitted this variant to the ClinVar database (RCV005234146.2). The variant was found in hemizygous condition in the affected male offspring and in heterozygous condition in both the mother and daughter. As predicted, the variant undergoes nonsense-mediated mRNA decay (NMD), preventing the translation of the CAPN6 gene into a functional protein. CAPN6 is a critical gene predominantly expressed in placental and trophoblast tissues. Although its function is not well characterized, CAPN6 is also expressed in several regions of the developing brain. Recent studies have shown that genetic variants in CAPN6 significantly influence vascular endothelial growth factor (VEGF) activity, thereby affecting angiogenesis and the blood supply essential for fetal growth and development. Although CAPN6 lacks an MIM phenotype code, we hypothesize that it might be enumerated as a novel candidate gene contributing to neurodevelopmental disorders. Functional studies are imperative to elucidate the role of CAPN6 in placental function and its potential implications for neurodevelopmental processes. This work aims to inspire further research into the role of CAPN6 in placental biology and its relevance to neurodevelopmental disorders. Full article
(This article belongs to the Special Issue Molecular Progression of Genome-Related Diseases: 2nd Edition)
Show Figures

Figure 1

42 pages, 1662 KB  
Review
Roles and Mechanisms of TRIM Family Proteins in Inflammation in the Brain and Beyond
by Tatiana Gerasimova, Alisa Kotok, Sofia Saltykova, Ekaterina Stepanenko, Artem Eremeev, Ekaterina Novosadova, Vyacheslav Tarantul and Valentina Nenasheva
Int. J. Mol. Sci. 2026, 27(3), 1135; https://doi.org/10.3390/ijms27031135 - 23 Jan 2026
Abstract
Neurodegeneration is closely linked to neuroinflammation and is frequently accompanied by comorbidities with inflammatory features. Tripartite motif (TRIM) proteins are known to play an important role in innate immunity and inflammatory signaling in various tissues and organs of the body, including the central [...] Read more.
Neurodegeneration is closely linked to neuroinflammation and is frequently accompanied by comorbidities with inflammatory features. Tripartite motif (TRIM) proteins are known to play an important role in innate immunity and inflammatory signaling in various tissues and organs of the body, including the central nervous system. Among the main cell types of the brain, TRIMs’ functions in microglia are largely associated with the regulation of intracellular inflammatory signaling, while in neurons they mainly relate to cell survival and oxidative stress. Data concerning TRIMs’ activity in astrocytes remain limited. Many TRIM proteins exert similar pro- or anti-inflammatory effects in neuroinflammation and in other inflammatory disorders in the body, although for some members their roles are reported to be opposite, contradictory, or insufficiently characterized, highlighting the need for further research. The aim of this review was to summarize published data on the common mechanisms of TRIMs’ actions as modulators of inflammation, and compare available reports in the context of neuroinflammation and peripheral inflammatory pathologies. We suggested that such an analysis may be valuable for guiding future research—both by identifying existing gaps in knowledge and by supporting the rational selection of specific TRIM proteins for investigation as therapeutic targets, with careful consideration of their systemic effects. Full article
20 pages, 2046 KB  
Article
A Feasibility Study of Real-Time FMRI with Neurofeedback of Motor Performance in Cerebellar Ataxia
by Joshua G. Berenbaum, Cherie L. Marvel, Jonathan M. Lisinski, Jeffrey S. Soldate, Owen P. Morgan, Ashley N. Kucharski, Luca P. Lutzel, Jonathan A. Ecker, Laura C. Rice, Amy Mistri, Prianca A. Nadkarni, Liana S. Rosenthal and Stephen M. LaConte
Brain Sci. 2026, 16(2), 120; https://doi.org/10.3390/brainsci16020120 - 23 Jan 2026
Abstract
Background/Objectives: Neurodegenerative cerebellar ataxia (CA) is a movement disorder caused by progressive cell death in the cerebellum. Motor imagery represents a potential therapeutic tool to improve motor function by “exercising” brain regions associated with movement, without the need for overt activity. This study [...] Read more.
Background/Objectives: Neurodegenerative cerebellar ataxia (CA) is a movement disorder caused by progressive cell death in the cerebellum. Motor imagery represents a potential therapeutic tool to improve motor function by “exercising” brain regions associated with movement, without the need for overt activity. This study assessed the feasibility of combining motor imagery with real-time functional magnetic resonance imaging neurofeedback (rt-fMRI-NF) to improve motor function in CA. Methods: During finger tapping conditions, 16 participants with CA pushed a button at the same frequency in time with cross flashing at 1 Hz or 4 Hz, and this information was used to train the model. During motor imagery, participants imagined finger tapping while undergoing rt-fMRI-NF with visual feedback, steering them toward activating their motor circuit. Afterwards, they completed finger tapping again. FMRI analysis compared successful motor imagery trials versus all other imagery events. Brain activity on successful trials was covaried with pre–post rt-fMRI-NF tapping improvement scores. Results: Tapping was more accurate at 1 Hz than 4 Hz, and larger tapping error rates correlated with greater movement impairments. While not significant at the group level, 9 of the 16 participants improved tapping accuracy following rt-fMRI-NF. The size of motor improvements correlated with successful motor imagery activity at 1 Hz in the frontal lobe, insula, parietal lobe, basal ganglia, and cerebellum. Motor improvements were not associated with neurological impairment severity, mood, cognition, or imagery vividness. Conclusions: Feasibility was demonstrated for motor imagery therapy with neurofeedback to potentially improve fine motor precision in people with CA. Brain regions relevant to this process may be considered for targets of non-invasive therapeutic interventions. Full article
Show Figures

Figure 1

17 pages, 1715 KB  
Article
Subcytotoxic Exposure to Avobenzone and Ethylhexyl Salicylate Induces microRNA Modulation and Stress-Responsive PI3K/AKT and MAPK Signaling in Differentiated SH-SY5Y Cells
by Agnese Graziosi, Luca Ghelli, Camilla Corrieri, Lisa Iacenda, Maria Chiara Manfredi, Sabrina Angelini, Giulia Sita, Patrizia Hrelia and Fabiana Morroni
Int. J. Mol. Sci. 2026, 27(3), 1134; https://doi.org/10.3390/ijms27031134 - 23 Jan 2026
Abstract
Avobenzone (AVO) and ethylhexyl salicylate (EHS) are widely used organic UV filters with distinct photochemical properties and reported biological effects. Experimental and predictive evidence suggests that some lipophilic UV filters may reach systemic circulation and potentially cross the blood–brain barrier (BBB), raising concerns [...] Read more.
Avobenzone (AVO) and ethylhexyl salicylate (EHS) are widely used organic UV filters with distinct photochemical properties and reported biological effects. Experimental and predictive evidence suggests that some lipophilic UV filters may reach systemic circulation and potentially cross the blood–brain barrier (BBB), raising concerns about possible central nervous system effects, although direct evidence for AVO and EHS remains limited. This study evaluated the effects of subcytotoxic concentrations (0.01–1 µM) of AVO and EHS on differentiated SH-SY5Y human neuroblastoma cells, focusing on early stress-related molecular responses. Cell viability and reactive oxygen species production were not significantly affected at any tested concentration. Integrated analyses of microRNA, gene, and protein expression revealed modest and variable modulation of miR-200a-3p and miR-29b-3p. Western blot analysis showed increased phosphorylation of AKT and ERK, no significant changes in mTOR activation, and an increased Bax/Bcl-2 ratio. Overall, these findings indicate that AVO and EHS trigger an early stress-adaptive response involving PI3K/AKT and MAPK/ERK signaling and modulation of apoptosis-related pathways. Such responses reflect a dynamic balance between cellular adaptation and pro-apoptotic signaling, which may become relevant under prolonged or higher-intensity exposure conditions. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

21 pages, 1102 KB  
Article
Near-Real-Time Epileptic Seizure Detection with Reduced EEG Electrodes: A BiLSTM-Wavelet Approach on the EPILEPSIAE Dataset
by Kiyan Afsari, May El Barachi and Christian Ritz
Brain Sci. 2026, 16(1), 119; https://doi.org/10.3390/brainsci16010119 (registering DOI) - 22 Jan 2026
Abstract
Background and Objectives: Epilepsy is a chronic neurological disorder characterized by recurrent seizures caused by abnormal brain activity. Reliable near-real-time seizure detection is essential for preventing injuries, enabling early interventions, and improving the quality of life for patients with drug-resistant epilepsy. This study [...] Read more.
Background and Objectives: Epilepsy is a chronic neurological disorder characterized by recurrent seizures caused by abnormal brain activity. Reliable near-real-time seizure detection is essential for preventing injuries, enabling early interventions, and improving the quality of life for patients with drug-resistant epilepsy. This study presents a near-real-time epileptic seizure detection framework designed for low-latency operation, focusing on improving both clinical reliability and patient comfort through electrode reduction. Method: The framework integrates bidirectional long short-term memory (BiLSTM) networks with wavelet-based feature extraction using Electroencephalogram (EEG) recordings from the EPILEPSIAE dataset. EEG signals from 161 patients comprising 1032 seizures were analyzed. Wavelet features were combined with raw EEG data to enhance temporal and spectral representation. Furthermore, electrode reduction experiments were conducted to determine the minimum number of strategically positioned electrodes required to maintain performance. Results: The optimized BiLSTM model achieved 86.9% accuracy, 86.1% recall, and an average detection delay of 1.05 s, with a total processing time of 0.065 s per 0.5 s EEG window. Results demonstrated that reliable detection is achievable with as few as six electrodes, maintaining comparable performance to the full configuration. Conclusions: These findings demonstrate that the proposed BiLSTM-wavelet approach provides a clinically viable, computationally efficient, and wearable-friendly solution for near-real-time epileptic seizure detection using reduced EEG channels. Full article
(This article belongs to the Section Neural Engineering, Neuroergonomics and Neurorobotics)
Show Figures

Figure 1

Back to TopTop