Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = bovine trade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1632 KiB  
Article
Genomic Characterization of Two Bovine Enterovirus Strains Isolated from Newly Transported Cattle
by Cuilan Wu, Shuhong Zhong, Shiwen Feng, Huili He, Shuai Hu, Zhongwei Chen, Changting Li, Xiongbiao Xuan, Hao Peng, Zuzhang Wei and Jun Li
Vet. Sci. 2025, 12(7), 660; https://doi.org/10.3390/vetsci12070660 - 11 Jul 2025
Viewed by 367
Abstract
This study isolated and identified two novel Chinese bovine enterovirus (BEV) strains, designated as BEV-GX1901 and BEV-GX1902, from newly transported cattle with the diarrheal feces symptom. We also determined their complete genome sequences (7408 and 7405 nucleotides, respectively) and found both strains have [...] Read more.
This study isolated and identified two novel Chinese bovine enterovirus (BEV) strains, designated as BEV-GX1901 and BEV-GX1902, from newly transported cattle with the diarrheal feces symptom. We also determined their complete genome sequences (7408 and 7405 nucleotides, respectively) and found both strains have a genome organization analogous to that of picornaviruses. To better understand these two novel strains, a detailed analysis was applied to both strains, including the time of the cytopathic effect (CPE) production, TCID50 measurement, trypsin sensitivity test, ether sensitivity test, chioroform sensitivity test, acid and alkali resistance test, and heat resistance test. Our results showed that these two strains are different in physical and chemical properties. Our study also characterized that BEV-GX1901 and BEV-GX1902, both belonging to the BEV-E4 subtype, were closely related to the Australian strains K2577 and SL305, and the Japanese strain IS1 based on their genome sequences and VP1 region characterizations. It is speculated that this may be related to cattle trade and transportation. Additionally, the gene-by-gene or amino acid-by-amino acid comparison of the two strains found they have differences between their 5′UTR, 3′UTR, VP2, VP1, 2A, 3C, and 3D regions. Our results provide an important update of the virus’s presence in China and contribute to a better understanding of the distribution and characterization of BEVs in cattle. Full article
Show Figures

Figure 1

13 pages, 1317 KiB  
Article
Effectiveness of a Bivalent Recombinant Vaccine on the Production of Neutralizing Antibodies Against BoNT/C, BoNT/D, BoNT/CD e BoNT/DC in Bovines
by Ilenia Drigo, Luca Zandonà, Elena Tonon, Katia Capello and Luca Bano
Vaccines 2025, 13(3), 299; https://doi.org/10.3390/vaccines13030299 - 11 Mar 2025
Viewed by 777
Abstract
Background/Objectives. Bovine botulism, although relatively rare, presents significant economic losses due to high mortality rates and restrictions on livestock product trade. Vaccination remains the most effective strategy for preventing botulism-related mortality. This study evaluated the efficacy of a bivalent recombinant vaccine targeting the [...] Read more.
Background/Objectives. Bovine botulism, although relatively rare, presents significant economic losses due to high mortality rates and restrictions on livestock product trade. Vaccination remains the most effective strategy for preventing botulism-related mortality. This study evaluated the efficacy of a bivalent recombinant vaccine targeting the C-terminal portion of the heavy chain (Hc) of botulinum neurotoxin serotype C (BoNT/C) (Hc BoNT/C) and botulinum neurotoxin serotype D (BoNT/D) (Hc BoNT/D) in inducing neutralizing antibodies against these toxins and their mosaic variants BoNT/CD and BoNT/DC in cattle. This comparison aims to improve the design of an optimal recombinant vaccine for preventing bovine botulism caused by the most common serotypes. Methods. Twenty, four-month-old Holstein Friesian calves were randomly assigned to two groups of ten animals: vaccinated group and control group. Sera were collected at various time points to assess antibody titers using ELISA and neutralizing antibody titers using a mouse protection assay. Neutralizing antibody titers were compared to those obtained with a commercially available toxoid vaccine. Results. The recombinant vaccine elicited significant increases in anti-HcBoNT/C and anti-HcBoNT/D IgG antibody levels in vaccinated animals compared to controls animals with no adverse effects. Specifically, post-vaccination, the calves showed no local reactions (swelling, warmth) or behavioral changes suggestive of systemic illness. Neutralizing antibody titers against BoNT/C and BoNT/D were significantly higher in the recombinant vaccine group compared to the toxoid vaccine group. However, the recombinant vaccine showed lower neutralizing activity against BoNT/DC compared to the toxoid vaccine. Conclusions. The bivalent recombinant vaccine demonstrated promising immunogenicity in cattle, inducing high neutralizing antibody titers against BoNT/C and BoNT/D. While effective against these toxins, the lower efficacy against BoNT/DC highlights the need for further research to optimize the vaccine formulation, potentially by incorporating a BoNT/DC Hc component, to provide broader protection against bovine botulism. Full article
(This article belongs to the Special Issue Animal Diseases: Immune Response and Vaccines)
Show Figures

Figure 1

18 pages, 8753 KiB  
Article
Enhanced Protein Separation Performance of Cellulose Acetate Membranes Modified with Covalent Organic Frameworks
by Shurui Shao, Maoyu Liu, Baifu Tao, Kayode Hassan Lasisi, Wenqiao Meng, Xing Wu and Kaisong Zhang
Membranes 2025, 15(3), 84; https://doi.org/10.3390/membranes15030084 - 6 Mar 2025
Viewed by 1402
Abstract
As a porous crystalline material, covalent organic frameworks (COFs) have attracted significant attention due to their extraordinary features, such as an ordered pore structure and excellent stability. Synthesized through the aldehyde amine condensation reaction, TpPa-1 COFs (Triformylphloroglucinol-p-Phenylenediamine-1 COFs) were blended with cellulose acetate [...] Read more.
As a porous crystalline material, covalent organic frameworks (COFs) have attracted significant attention due to their extraordinary features, such as an ordered pore structure and excellent stability. Synthesized through the aldehyde amine condensation reaction, TpPa-1 COFs (Triformylphloroglucinol-p-Phenylenediamine-1 COFs) were blended with cellulose acetate (CA) to form a casting solution. The TpPa-1 COF/CA ultrafiltration membrane was then prepared using the non-solvent-induced phase inversion (NIPS) method. The influence of TpPa-1 COFs content on the hydrophilicity, stability and filtration performance of the modified membrane was studied. Due to the hydrophilic groups in TpPa-1 COFs and the network structure formed by covalent bonds, the modified CA membranes exhibited higher hydrophilicity and lower protein adsorption compared with the pristine CA membrane. The porous crystalline structure of TpPa-1 COFs increased the water permeation path in the CA membrane, improving the permeability of the modified membrane while maintaining an outstanding bovine serum albumin (BSA) rejection. Furthermore, the addition of TpPa-1 COFs reduced protein adsorption on the CA membrane and overcame the trade-off between permeability and selectivity in CA membrane bioseparation applications. This approach provides a sustainable method for enhancing membrane performance while enhancing the application of membranes in protein purification. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

17 pages, 1820 KiB  
Article
An Overview of a Re-Emerging Disease in Italy: Bovine Tuberculosis Outbreaks in Cattle from MTBC-Free Territories
by Alice Giusti, Lorenzo Carbonetta, Filippo Fratini, Gabriele Spatola, Fiorenza Panerai, Stefano Pardini, Luca Cianti and Andrea Armani
Pathogens 2024, 13(11), 962; https://doi.org/10.3390/pathogens13110962 - 5 Nov 2024
Viewed by 1439
Abstract
Bovine tuberculosis (bTB) is a zoonotic disease with consequences for public health as well as the economy. In the EU, compulsory eradication programmes have been applied, and most territories in Italy have been reported as disease-free (FTs). However, outbreaks (OBs), i.e., an officially [...] Read more.
Bovine tuberculosis (bTB) is a zoonotic disease with consequences for public health as well as the economy. In the EU, compulsory eradication programmes have been applied, and most territories in Italy have been reported as disease-free (FTs). However, outbreaks (OBs), i.e., an officially confirmed occurrence of bTB in one or more animals in an establishment, have continued to be reported. In this study we provide an overview of bTB in terms of OB numbers in cattle from Italian FTs. Legislative sources were collected to find the FTs, the relevant declaration of free status year (FSY), and regional control and surveillance plans. Then, descriptive and statistical analyses were applied to the collected OBs. A total of 12 regions and 19 provinces were declared FTs in the 20 years from 2003 to 2023. Differences in regional plans were observed with respect to the percentages of herds that were annually controlled (control frequency). Overall, 370 OBs were recorded. A non-statistically significant decrease in the OB incidence rate after the FSY was declared. However, a notable increase in OBs detected at slaughterhouses after the FSY suggests that control systems (serological tests) at the herd level are not completely effective. Differences in the herds’ control frequencies among FTs seem to not have had a significant influence on the observed OB number. The Tuscany region was the most affected FT based on the OB numbers after the FSY (especially in the last year). Epidemiologically relevant primary determinants seem to be the farming system (semi-extensive and adjacent herds) and the cattle movements from positive incidence areas (trade and animal fairs). The role of wild boars in the disease maintenance cannot be excluded. The results of this study stress the need to revise bTB eradication and surveillance plans based on risk analysis. Full article
(This article belongs to the Special Issue Bacterial Infections: Surveillance, Prevention and Control)
Show Figures

Figure 1

19 pages, 6373 KiB  
Review
The Current Epizootiological Situation of Three Major Viral Infections Affecting Cattle in Egypt
by Sherin R. Rouby, Ahmed H. Ghonaim, Xingxiang Chen and Wentao Li
Viruses 2024, 16(10), 1536; https://doi.org/10.3390/v16101536 - 28 Sep 2024
Cited by 2 | Viewed by 3275
Abstract
One of the major factors hindering efficient livestock production is the presence of high-impact infectious animal diseases, such as foot and mouth disease (FMD), lumpy skin disease (LSD), and bovine ephemeral fever (BEF), which are notable viral infections affecting cattle in Egypt, leading [...] Read more.
One of the major factors hindering efficient livestock production is the presence of high-impact infectious animal diseases, such as foot and mouth disease (FMD), lumpy skin disease (LSD), and bovine ephemeral fever (BEF), which are notable viral infections affecting cattle in Egypt, leading to significant economic losses. FMD is caused by the foot and mouth disease virus (FMDV) of the genus Aphthovirus in the Picornaviridae family. LSD is caused by lumpy skin disease virus (LSDV) of Capripox genus within the Poxviridae family, subfamily Chordopoxvirinae. BEF is caused by bovine ephemeral fever virus (BEFV) of genus Ephemerovirus in the Rhabdoviridae family. FMD is a highly contagious viral infection of domestic and wild cloven-hooved animals and can spread through the wind. On the other hand, LSD and BEF are arthropod-borne viral diseases that mainly affect domestic cattle and water buffalo. Despite government vaccination efforts, these three viral diseases have become widespread in Egypt, with several reported epidemics. Egypt’s importation of large numbers of animals from different countries, combined with unregulated animal movements through trading and borders between African countries and Egypt, facilitates the introduction of new FMDV serotypes and lineages not covered by the current vaccination plans. To establish an effective control program, countries need to assess the real epizootic situation of various infectious animal diseases to develop an efficient early warning system. This review provides information about FMD, LSD, and BEF, including their economic impacts, causative viruses, global burden, the situation in Egypt, and the challenges in controlling these diseases. Full article
(This article belongs to the Special Issue Advances in Endemic and Emerging Viral Diseases in Livestock)
Show Figures

Graphical abstract

27 pages, 2220 KiB  
Review
The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications
by Guanxin Lv, Jianfa Wang, Shuai Lian, Hai Wang and Rui Wu
Animals 2024, 14(2), 297; https://doi.org/10.3390/ani14020297 - 18 Jan 2024
Cited by 9 | Viewed by 8364
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the [...] Read more.
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research. Full article
(This article belongs to the Collection Cattle Diseases)
Show Figures

Figure 1

14 pages, 604 KiB  
Review
The History of Bovine Genital Campylobacteriosis in the Face of Political Turmoil and Structural Change in Cattle Farming in Germany
by Hosny El-Adawy, Helmut Hotzel, Herbert Tomaso and Heinrich Neubauer
Vet. Sci. 2023, 10(12), 665; https://doi.org/10.3390/vetsci10120665 - 23 Nov 2023
Viewed by 2757
Abstract
Contagious bovine genital campylobacteriosis (BGC), also known as bovine venereal campylobacteriosis, is a disease relevant to international trade listed by the World Organization for Animal Health (WOAH). It is caused by Campylobacter fetus subsp. venerealis (Cfv), one of three subspecies of [...] Read more.
Contagious bovine genital campylobacteriosis (BGC), also known as bovine venereal campylobacteriosis, is a disease relevant to international trade listed by the World Organization for Animal Health (WOAH). It is caused by Campylobacter fetus subsp. venerealis (Cfv), one of three subspecies of Campylobacter fetus. Bulls are the reservoir but BGC may also be spread by artificial insemination (AI). BGC is characterized by severe reproductive losses such as infertility, early embryonic death and abortion with considerable economic losses. This significant economic impact has prompted several countries to adopt stringent eradication and surveillance measures to contain the disease. While there are commercial and autologous vaccines available, scientific evidence for the effectiveness of vaccination is still lacking. In Germany, BCG was already found to be endemic in the 1920s, shortly after the agent and the disease had been described for the first time. It can be assumed that BCG had already circulated uncontrolled for a long time in the predecessor states of Germany, influenced only by the political situation and trading networks of the time. After WW II, BCG was eradicated in the German Democratic Republic due to industrialized cattle production based on AI but it was still endemic at low levels in the Federal Republic of Germany with its diverse cattle production. There has been a steady decline in BGC incidence in re-unified Germany over the past 28 years. A single genetic Cfv lineage was identified which probably emerged in the 19th century and diversified over time. Interestingly, no recurrent cross-border introduction became evident. This review gives insight into the history of bovine genital campylobacteriosis considering the structural change in cattle farming in Germany and reflecting on the political background of the time. Full article
Show Figures

Figure 1

12 pages, 1354 KiB  
Article
Economic Aspects of Bovine Ephemeral Fever (BEF) Outbreaks in Dairy Cattle Herds
by Yaniv Lavon, Ephraim Ezra, Orly Friedgut and Adi Behar
Vet. Sci. 2023, 10(11), 645; https://doi.org/10.3390/vetsci10110645 - 8 Nov 2023
Cited by 10 | Viewed by 2959
Abstract
Bovine ephemeral fever virus (BEFV) is an arthropod-borne virus (arbovirus) transmitted by blood-feeding insects (mosquitoes and Culicoides biting midges). While the dispersal of arboviral diseases such as bovine ephemeral fever (BEF) into naive areas is often the result of globalization and animal movement, [...] Read more.
Bovine ephemeral fever virus (BEFV) is an arthropod-borne virus (arbovirus) transmitted by blood-feeding insects (mosquitoes and Culicoides biting midges). While the dispersal of arboviral diseases such as bovine ephemeral fever (BEF) into naive areas is often the result of globalization and animal movement, the endemization and local outbreaks of these diseases are mainly influenced by environmental changes. Climate change affects the activity, distribution, dynamics, and life cycles of these vectors (arthropods), the replication of viruses within their vectors, and weakens animal’s immune systems. Although BEF does not currently occur in the Americas and Europe (other than in the western regions of Turkey), the risk of BEFV emergence, spread, and endemization in Europe is real. Over the past two decades, arboviruses such as the bluetongue virus (BTV) and Schmallenberg virus (SBV) have emerged in Europe without warning and caused significant losses to the dairy and meat industries. Since the European cattle population has never been exposed to BEFV, the economic losses to dairy and beef production in this continent due to the reduction in milk production, loss of valuable cows, and abortion, should BEF emerge, would probably be considerable. Moreover, arboviruses can also cause substantial financial damage due to restrictions on animal trade and transportation, like the current EHDV-8 outbreak in the Mediterranean basin. In this study, we used national data stored in the Israeli herd book to examine the economic aspects of BEF outbreaks in affected dairy cattle farms countrywide. Our results demonstrate that BEF outbreaks can have immediate and delayed effects, causing severe economic losses due to culling (loss of valuable cows) and a reduction in milk production that affects dairy farm income for months after clinical diagnosis. To our knowledge, this is the first extensive study on the impact of a BEF outbreak at a population level, enabling to conduct accurate risk assessments in future cases of BEFV emergence and re-emergence. Full article
Show Figures

Figure 1

12 pages, 2682 KiB  
Article
The Cattle Trading Network and Its Effect on the Spread of Brucellosis in Paraná, Brazil
by Diego Leonardo Rodrigues, Nelly Marquetoux, José Henrique de Hildebrand Grisi Filho and José Soares Ferreira Neto
Ruminants 2023, 3(3), 202-213; https://doi.org/10.3390/ruminants3030019 - 25 Aug 2023
Cited by 1 | Viewed by 1400
Abstract
This study analyzed the cattle trade network in Paraná, Brazil, for the years 2018 and 2019 to identify potential movement patterns that could contribute to the spread of brucellosis among farms. The brucellosis statuses of 1757 farms were incorporated into the analysis. Network [...] Read more.
This study analyzed the cattle trade network in Paraná, Brazil, for the years 2018 and 2019 to identify potential movement patterns that could contribute to the spread of brucellosis among farms. The brucellosis statuses of 1757 farms were incorporated into the analysis. Network parameters of farms with a known brucellosis infection status were statistically compared between infected and non-infected farms using traditional techniques and the quadratic assignment procedure. A multilinear regression model (MLR) was used to consider known risk factors for brucellosis infection in conjunction with the network parameters. The cattle trade network in Paraná during the study period comprised 115,296 farms linked by 608,807 cattle shipments. The movement pattern was marked by a high concentration of movements to and from a small percentage of farms. The existence of such highly connected farms could facilitate the transmission of communicable diseases via the cattle trade in Paraná. The trading communities in Paraná exhibited a spatial pattern, with proximate farms more likely to engage in trade. Brucellosis-infected farms traded more frequently than non-infected farms (odds ratio [OR] 3.61), supplied cattle to other farms more often than the regional average (OR 2.12), and received more cattle (OR 2.78). The in-degree and out-degree were associated with brucellosis infection on the farm. The mean shortest path between infected farms was significantly shorter than that between non-infected farms (4.14 versus 4.49, p = 0.004, OR 1.39). In the MLR, a higher out-degree was positively associated with infected farms after accounting for previously identified risk factors. This novel information offers insights into the factors driving the current endemic situation in the study area and can inform the development of targeted animal health policies. Full article
(This article belongs to the Special Issue Disease Diagnostics and Surveillance in Ruminants)
Show Figures

Figure 1

16 pages, 2498 KiB  
Article
Dilution Reduces Sample Matrix Effects for Rapid, Direct, and Miniaturised Phenotypic Antibiotic Susceptibility Tests for Bovine Mastitis
by Matthew Michael Long, Sarah Helen Needs and Alexander Daniel Edwards
Antibiotics 2023, 12(9), 1363; https://doi.org/10.3390/antibiotics12091363 - 24 Aug 2023
Cited by 2 | Viewed by 2354
Abstract
The time-consuming nature of current methods for detecting antimicrobial resistance (AMR) to guide mastitis treatment and for surveillance, drives innovation towards faster, easier, and more portable technology. Rapid on-farm testing could guide antibiotic selection, reducing misuse that contributes to resistance. We identify challenges [...] Read more.
The time-consuming nature of current methods for detecting antimicrobial resistance (AMR) to guide mastitis treatment and for surveillance, drives innovation towards faster, easier, and more portable technology. Rapid on-farm testing could guide antibiotic selection, reducing misuse that contributes to resistance. We identify challenges that arise when developing miniaturized antibiotic susceptibility tests (AST) for rapid on-farm use directly in milk. We experimentally studied three factors: sample matrix (specifically milk or spoiled milk); the commensal bacteria found in fresh bovine milk; and result time on the performance of miniaturised AST. Microfluidic “dip-and-test” devices made from microcapillary film (MCF) were able to monitor Gram-negative bacterial growth colourimetrically even in the presence of milk and yoghurt (used to simulate spoiled milk samples), as long as this sample matrix was diluted 1:5 or more in growth medium. Growth detection kinetics using resazurin was not changed by milk at final concentrations of 20% or lower, but a significant delay was seen with yoghurt above 10%. The minimum inhibitory concentration (MIC) for ciprofloxacin and gentamicin was increased in the presence of higher concentrations of milk and yoghurt. When diluted to 1% all observed MIC were within range, indicating dilution may be sufficient to avoid milk matrix interfering with microfluidic AST. We found a median commensal cell count of 6 × 105 CFU/mL across 40 healthy milk samples and tested if these bacteria could alter microfluidic AST. We found that false susceptibility may be observed at early endpoint times if testing some pathogen and commensal mixtures. However, such errors are only expected to occur when a susceptible commensal organism is present at higher cell density relative to the resistant pathogen, and this can be avoided by reading at later endpoints, leading to a trade-off between accuracy and time-to-result. We conclude that with further optimisation, and additional studies of Gram-positive organisms, it should be possible to obtain rapid results for microfluidic AST, but a trade-off is needed between time-to-result, sample dilution, and accuracy. Full article
(This article belongs to the Special Issue Mastitis: Causative Agents, Drug Resistance, and Treatment Approaches)
Show Figures

Figure 1

18 pages, 7014 KiB  
Article
ZnO/PDA/Mesoporous Cellular Foam Functionalized Thin-Film Nanocomposite Membrane towards Enhanced Nanofiltration Performance
by Jenny Nambikkattu, Anoopa Ann Thomas, Noel Jacob Kaleekkal, Thanigaivelan Arumugham, Shadi W. Hasan and Saravanamuthu Vigneswaran
Membranes 2023, 13(5), 486; https://doi.org/10.3390/membranes13050486 - 29 Apr 2023
Cited by 7 | Viewed by 2776
Abstract
Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability–selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare [...] Read more.
Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability–selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare TFN membranes. Incorporating the nanomaterial onto the TFN-2 membrane resulted in a decrease in the water contact angle and suppression of the membrane surface roughness. The pure water permeability of 6.40 LMH bar−1 at the optimal loading ratio of 0.25 wt.% obtained was higher than the TFN-0 (4.20 LMH bar−1). The optimal TFN-2 demonstrated a high rejection of small-sized organics (>95% rejection for 2,4-dichlorophenol over five cycles) and salts—Na2SO4 (≈95%) > MgCl2 (≈88%) > NaCl (86%) through size sieving and Donnan exclusion mechanisms. Furthermore, the flux recovery ratio for TFN-2 increased from 78.9 to 94.2% when challenged with a model protein foulant (bovine serum albumin), indicating improved anti-fouling abilities. Overall, these findings provided a concrete step forward in fabricating TFN membranes that are highly suitable for wastewater treatment and desalination applications. Full article
Show Figures

Figure 1

11 pages, 864 KiB  
Article
An ELISA to Detect Antibodies to Bovine Alphaherpesviruses 1 and 5 and Bubaline Alphaherpesvirus 1 in Cattle Sera
by Camila Mengue Scheffer, Sylio Alfredo Petzhold, Ana Paula Muterle Varela, Willian Pinto Paim, Phelipe Magalhães Duarte, Márcia Regina Loiko, Cristine Cerva, Candice Schmidt, Adrieli Wendlant, Samuel Paulo Cibulski, Diane Alves de Lima, Caroline Tochetto, Anne Caroline Ramos dos Santos, Juliana Inês Herpich, Thais Fumaco Teixeira, Helton Fernandes dos Santos, Fabrício Souza Campos, Ana Cláudia Franco and Paulo Michel Roehe
Vet. Sci. 2023, 10(2), 110; https://doi.org/10.3390/vetsci10020110 - 2 Feb 2023
Cited by 3 | Viewed by 2835
Abstract
Bovine alphaherpesvirus 1 (subtypes 1.1, 1.2a, and 1.2b), type 5 (subtypes 5a, 5b, and 5c), and bubaline herpesvirus 1 (BuHV-1) induce highly, though not fully cross-reactive serological responses. Most types and subtypes of these viruses circulate particularly in countries of the southern hemisphere, [...] Read more.
Bovine alphaherpesvirus 1 (subtypes 1.1, 1.2a, and 1.2b), type 5 (subtypes 5a, 5b, and 5c), and bubaline herpesvirus 1 (BuHV-1) induce highly, though not fully cross-reactive serological responses. Most types and subtypes of these viruses circulate particularly in countries of the southern hemisphere, notably Brazil and Argentina. Therefore, the detection of infected animals is important in defining prevention and control strategies, particularly when flocks are destined for international trade. Identification of infected herds is most often achieved by assays that detect antibodies, such as enzyme immunoassays (ELISAs). However, to date, no ELISA has been evaluated in its capacity to detect antibodies to these alphaherpesviruses. Here, an ELISA was developed to detect antibodies to all currently recognized BoAHV-1, BoAHV-5, and BuAHV-1 types/subtypes, and its sensitivity and specificity were determined. Six hundred bovine sera were screened in serum neutralization tests (SN) against the seven viruses. ELISAs prepared with each of the viruses were compared to SN. Subsequently, a combined assay with multiple antigens LISA was prepared by mixing five viral antigens, chosen for their highest sensitivity in the preparative assays. In comparison to SN, the mAgELISA sensitivity was 96.5% with 96.1% specificity (κ = 0.93; PPV = 95.0%; NPV = 97.3%). The findings reveal that the mAgELISA developed here is highly suitable for the detection of antibodies, comparable in sensitivity and specificity to that of SN when performed with all known types and subtypes of bovine and bubaline alphaherpesviruses. Full article
(This article belongs to the Special Issue Immunological Assessment of Veterinary Infectious Diseases)
Show Figures

Figure 1

13 pages, 1366 KiB  
Case Report
First Autochthonous Report on Cattle Babesia naoakii in Central Java, Indonesia, and Identification of Haemaphysalis bispinosa Ticks in the Investigated Area
by Penny Humaidah Hamid, Muhammad Cahyadi, April Hari Wardhana, Dyah Haryuningtyas Sawitri, Nadya Nurvita R. Setya, Titis Insyariati, Heri Kurnianto and Carlos R. Hermosilla
Pathogens 2023, 12(1), 59; https://doi.org/10.3390/pathogens12010059 - 29 Dec 2022
Cited by 11 | Viewed by 2870
Abstract
In tropical countries, clinical bovine babesiosis is a tick-borne disease primarily caused by Babesia bovis and Babesia bigemina. Here, we investigated 11 cattle with presumptive diagnosis of clinical babesiosis in Boyolali district, Central Java, Indonesia. The majority of the animals were anemic, [...] Read more.
In tropical countries, clinical bovine babesiosis is a tick-borne disease primarily caused by Babesia bovis and Babesia bigemina. Here, we investigated 11 cattle with presumptive diagnosis of clinical babesiosis in Boyolali district, Central Java, Indonesia. The majority of the animals were anemic, as evidenced by lower hematocrit, hemoglobin concentration, and red blood cell counts than the normal ranges. Blood DNA was analyzed by a PCR assay targeting the 18S rRNA-ITS region of babesial origin, and the results confirmed that the cattle were infected with Babesia species. The sequencing and phylogenetic analyses demonstrated that the animals were infected with Babesia naoakii. This is the first report of B. naoakii in Indonesia and of B. naoakii-induced clinical bovine babesiosis outside of Sri Lanka. B. naoakii causes a persistent infection, as indicated by positive PCR results for serial blood samples of the circulatory system taken two weeks after treatment. Consequently, subclinical or newly recovered cattle may serve as potential intermediate hosts and infect ticks as definitive hosts to complete the life cycle. To identify potential tick vectors, we collected ticks from cattle, including 11 animals with clinical babesiosis. Based on the morphology and the mitochondrial cytochrome c oxidase subunit 1 (COX1) of collected ticks, we found that all of the collected ticks were Haemaphysalis bispinosa, identifying this tick species as a potential vector of B. naoakii in Indonesia. In this study, the evaluation of local farmers’ awareness and practices regarding tick-borne diseases is presented, as disease prevention is also reliant on the implementation of strategies for vector control. Since livestock activities in Java represent the country’s busiest animal trade, thereby the spread of disease to other regions is possible through anthropogenic factors. In conclusion, B. naoakii is a causative pathogen of clinical bovine babesiosis autochthonously occurred in this report and further research on B. naoakii-infection is required in other regions of the country. The prompt treatment of the disease seemed crucial for animal survival, which implies the necessity of early diagnosis and a sensitive detection method. Full article
(This article belongs to the Special Issue Bovine Babesiosis)
Show Figures

Figure 1

21 pages, 1000 KiB  
Article
Impact of Recombinant Bovine Somatotropin on Bovine Milk Composition and Fatty Acidome: A Multidose Longitudinal Study
by Rocío Barreiro, Alexandre Lamas, José M. Miranda, Carlos M. Franco, Alberto Cepeda and Patricia Regal
Foods 2022, 11(21), 3477; https://doi.org/10.3390/foods11213477 - 2 Nov 2022
Cited by 5 | Viewed by 3038
Abstract
Somatotropin is a species-specific polypeptide hormone produced in the pituitary gland of vertebrates. When administered exogenously to cattle, it can increase milk yield. However, the trade and administration of recombinant bovine somatotropin (rbST) to farm animals have been banned in the European Union [...] Read more.
Somatotropin is a species-specific polypeptide hormone produced in the pituitary gland of vertebrates. When administered exogenously to cattle, it can increase milk yield. However, the trade and administration of recombinant bovine somatotropin (rbST) to farm animals have been banned in the European Union (EU). Aside from food safety issues, very little is known about the effects of this hormone on milk composition and quality. In this work, a wide profile of fatty acids (the so-called fatty acidome) was determined by GC-FID in raw milk collected from control and rbST-treated lactating cows in a multidose longitudinal study. Milk composition (lactose, protein, fat, dry matter), including minerals (Ca, K, Mg, Na, P), was also determined, and milk yield was recorded. A tendency toward a less saturated profile was observed in the milk collected from animals treated with rbST, with higher concentrations of monounsaturated fatty acids. In addition, less calcium and potassium and more lactose and protein content were observed in milk from treated animals than in regular milk. As a result of this multicomponent profiling of milk, a clear impact of somatotropin treatment on milk quality was observed. The obtained results should be particularly interesting for those countries that permit the use of this hormone in dairy production. Full article
Show Figures

Figure 1

12 pages, 16492 KiB  
Article
Comparative Evaluation of the Foot-and-Mouth Disease Virus Permissive LF-BK αVβ6 Cell Line for Senecavirus A Research
by Jessica Mason, Victoria Primavera, Lauren Martignette, Benjamin Clark, Jose Barrera, Janine Simmons, William Hurtle, John G. Neilan and Michael Puckette
Viruses 2022, 14(9), 1875; https://doi.org/10.3390/v14091875 - 25 Aug 2022
Cited by 1 | Viewed by 2564
Abstract
Senecavirus A (SVA) is a member of the family Picornaviridae and enzootic in domestic swine. SVA can induce vesicular lesions that are clinically indistinguishable from Foot-and-mouth disease, a major cause of global trade barriers and agricultural productivity losses worldwide. The LF-BK αV [...] Read more.
Senecavirus A (SVA) is a member of the family Picornaviridae and enzootic in domestic swine. SVA can induce vesicular lesions that are clinically indistinguishable from Foot-and-mouth disease, a major cause of global trade barriers and agricultural productivity losses worldwide. The LF-BK αVβ6 cell line is a porcine-derived cell line transformed to stably express an αVβ6 bovine integrin and primarily used for enhanced propagation of Foot-and-mouth disease virus (FMDV). Due to the high biosecurity requirements for working with FMDV, SVA has been considered as a surrogate virus to test and evaluate new technologies and countermeasures. Herein we conducted a series of comparative evaluation in vitro studies between SVA and FMDV using the LF-BK αVβ6 cell line. These include utilization of LF-BK αVβ6 cells for field virus isolation, production of high virus titers, and evaluating serological reactivity and virus susceptibility to porcine type I interferons. These four methodologies utilizing LF-BK αVβ6 cells were applicable to research with SVA and results support the current use of SVA as a surrogate for FMDV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop