Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = boundary layer ingestion (BLI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6192 KiB  
Article
Optimizing the Landing Stability of Blended-Wing-Body Aircraft with Distributed Electric Boundary-Layer Ingestion Propulsors through a Novel Thrust Control Configuration
by Mingxing Yu, Zhi Tao, Haiwang Li and Peng Tang
Appl. Sci. 2024, 14(18), 8546; https://doi.org/10.3390/app14188546 - 23 Sep 2024
Viewed by 2338
Abstract
The imperative for energy conservation and environmental protection has led to the development of innovative aircraft designs. This study explored a novel thrust control configuration for blended-wing-body (BWB) aircraft with distributed electric boundary-layer ingestion (BLI) propulsors, addressing the issues of sagging and altitude [...] Read more.
The imperative for energy conservation and environmental protection has led to the development of innovative aircraft designs. This study explored a novel thrust control configuration for blended-wing-body (BWB) aircraft with distributed electric boundary-layer ingestion (BLI) propulsors, addressing the issues of sagging and altitude loss during landing. The research focused on a small-scale BWB demonstrator equipped with six BLI fans, each with a 90 mm diameter. Various thrust control configurations were evaluated to achieve significant thrust reduction while maintaining lift, including dual-layer sleeve, separate flap-type, single-stage linkage flap-type, and dual-stage linkage flap-type configurations. The separate flap-type configuration was tested through ground experiments. Control experiments were conducted under three different experimental conditions as follows: deflection of the upper cascades only, deflection of the lower cascades only, and symmetrical deflection of both cascades. For each condition, the deflection angles tested were 0°, 10°, 20°, 30°, 40°, 50°, and 60°. The thrust reductions observed for these three conditions were 0%, 37.5%, and 27.5% of the maximum thrust, respectively, without additional changes in the pitch moment. A combined thrust adjustment method maintaining a zero pitch moment demonstrated a linear thrust reduction to 20% of its initial value. The experiment concluded that the novel thrust control configuration effectively adjusted thrust without altering the BLI fans’ rotation speed, solving the coupled lift–thrust problem and enhancing BWB landing stability. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

25 pages, 1890 KiB  
Review
Multidisciplinary Optimization of Aircraft Aerodynamics for Distributed Propulsion Configurations
by Shaojun Luo, Tian Zi Eng, Zhili Tang, Qianrong Ma, Jinyou Su and Gabriel Bugeda
Appl. Sci. 2024, 14(17), 7781; https://doi.org/10.3390/app14177781 - 3 Sep 2024
Viewed by 2412
Abstract
The combination of different aerodynamic configurations and propulsion systems, namely, aero-propulsion, affects flight performance differently. These effects are closely related to multidisciplinary collaborative aspects (aerodynamic configuration, propulsion, energy, control systems, etc.) and determine the overall energy consumption of an aircraft. The potential benefits [...] Read more.
The combination of different aerodynamic configurations and propulsion systems, namely, aero-propulsion, affects flight performance differently. These effects are closely related to multidisciplinary collaborative aspects (aerodynamic configuration, propulsion, energy, control systems, etc.) and determine the overall energy consumption of an aircraft. The potential benefits of distributed propulsion (DP) involve propulsive efficiency, energy-saving, and emissions reduction. In particular, wake filling is maximized when the trailing edge of a blended wing body (BWB) is fully covered by propulsion systems that employ boundary layer ingestion (BLI). Nonetheless, the thrust–drag imbalance that frequently arises at the trailing edge, excessive energy consumption, and flow distortions during propulsion remain unsolved challenges. These after-effects imply the complexity of DP systems in multidisciplinary optimization (MDO). To coordinate the different functions of the aero-propulsive configuration, the application of MDO is essential for intellectualized modulate layout, thrust manipulation, and energy efficiency. This paper presents the research challenges of ultra-high-dimensional optimization objectives and design variables in the current literature in aerodynamic configuration integrated DP. The benefits and defects of various coupled conditions and feasible proposals have been listed. Contemporary advanced energy systems, propulsion control, and influential technologies that are energy-saving are discussed. Based on the proposed technical benchmarks and the algorithm of MDO, the propulsive configuration that might affect energy efficiency is summarized. Moreover, suggestions are drawn for forthcoming exploitation and studies. Full article
(This article belongs to the Special Issue Multi-Objective Optimization: Techniques and Applications)
Show Figures

Figure 1

20 pages, 5943 KiB  
Article
Conceptual Design of Layered Distributed Propulsion System to Improve Power-Saving Benefit of Boundary-Layer Ingestion
by Zhiping Li, Yujiang Lu and Tianyu Pan
Aerospace 2024, 11(2), 141; https://doi.org/10.3390/aerospace11020141 - 8 Feb 2024
Viewed by 1917
Abstract
DPS (distributed propulsion system) utilizing BLI (boundary-layer ingestion) has shown great potential for reducing the power consumption of sustainable AAM (advanced air mobility), such as BWB (blended-wing body) aircraft. However, the ingesting boundary layer makes it easier for flow separation to occur within [...] Read more.
DPS (distributed propulsion system) utilizing BLI (boundary-layer ingestion) has shown great potential for reducing the power consumption of sustainable AAM (advanced air mobility), such as BWB (blended-wing body) aircraft. However, the ingesting boundary layer makes it easier for flow separation to occur within the S-shaped duct, and the consequent distortion due to flow separation can dramatically reduce the aerodynamic performance of the fan, which offsets the power-saving benefit of BLI. By analyzing the source of power saving and power loss of BLI, this paper presents the LDPS (layered distributed propulsion system) concept, in which the freestream flow and boundary-layer flow are ingested separately to improve the power-saving benefit of BLI. In order to preliminarily verify the feasibility of LDPS, an existing DPS is modified. The design parameters and the system performances of LDPS are studied using a 1D engine model. The results show that there is an optimal ratio of the FPR (fan pressure ratio) for the FSE (freestream engine) to the BLE (boundary-layer engine) that maximizes the PSC (power-saving coefficient) of LDPS. This optimal ratio of FPR for the two fans can be obtained when the exit velocities of FSE and BLE are the same. Under the optimal ratio of FPR for the two fans, the PSC of LDPS is improved by 5.83% compared to conventional DPS. Full article
Show Figures

Figure 1

17 pages, 2634 KiB  
Article
Towards More Efficient Electric Propulsion UAV Systems Using Boundary Layer Ingestion
by Jonathan Arias, Francisco Martinez, Edgar Cando and Esteban Valencia
Drones 2023, 7(12), 686; https://doi.org/10.3390/drones7120686 - 21 Nov 2023
Cited by 1 | Viewed by 2756
Abstract
The implementation of distributed propulsion and boundary layer ingestion for unmanned aerial vehicles represents various challenges for the design of embedded ducts in blended wing body configurations. This work explores the conceptual design and evaluation of DP configurations with BLI. The aerodynamic integration [...] Read more.
The implementation of distributed propulsion and boundary layer ingestion for unmanned aerial vehicles represents various challenges for the design of embedded ducts in blended wing body configurations. This work explores the conceptual design and evaluation of DP configurations with BLI. The aerodynamic integration of each configuration is evaluated following a proposed framework, including simulation analysis. Power saving coefficient and propulsive efficiency were compared against a baseline podded case. The results show the optimal propulsion configuration for the BWB UAV obtaining 3.95% of power benefit and propulsive efficiency (ηp>80%). Indeed, the aerodynamic integration effects for the proposed design maintain the BWB’s aerodynamic efficiency, which will contribute to longer endurance and better performance. Full article
Show Figures

Figure 1

26 pages, 59698 KiB  
Article
Potential Propulsive and Aerodynamic Benefits of a New Aircraft Concept: A Low-Speed Experimental Study
by Pedro D. Bravo-Mosquera, Hernán D. Cerón-Muñoz and Fernando M. Catalano
Aerospace 2023, 10(7), 651; https://doi.org/10.3390/aerospace10070651 - 20 Jul 2023
Cited by 8 | Viewed by 4896
Abstract
The aerodynamic design of a new aircraft concept was investigated through subsonic wind-tunnel testing using 1:28-scale powered models. The aircraft configuration integrates a box-wing layout with engines located at the rear part of the fuselage. Measurements involved a back-to-back comparison between two aircraft [...] Read more.
The aerodynamic design of a new aircraft concept was investigated through subsonic wind-tunnel testing using 1:28-scale powered models. The aircraft configuration integrates a box-wing layout with engines located at the rear part of the fuselage. Measurements involved a back-to-back comparison between two aircraft models: a podded version whose engines were assembled on pylons and a boundary-layer ingestion (BLI) version that provided several system-level benefits. The flowfield was investigated through the power balance method and a variety of pressure flowfield and inlet flow distortion metrics. The results proved that the BLI configuration enhances the propulsive efficiency by reducing both the electrical power coefficient and the kinetic energy waste due to lower jet velocities. Furthermore, there was a reduction of the total pressure recovery due to pressure gradients inside the duct, thereby causing high distortion. Overall, this research highlights the importance of wind-tunnel testing to bring any aerodynamic technology to a sufficient level of maturity and to enable future new aircraft concepts. Full article
(This article belongs to the Special Issue Flight Dynamics, Control & Simulation)
Show Figures

Figure 1

22 pages, 17402 KiB  
Article
Numerical Investigation on the Effect of Height-to-Radius Ratio on Flow Separation Features in S-Shaped Diffuser with Boundary Layer Ingestion
by Zhiping Li, Yujiang Lu, Tianyu Pan and Yafei Zhang
Aerospace 2023, 10(6), 551; https://doi.org/10.3390/aerospace10060551 - 9 Jun 2023
Cited by 4 | Viewed by 2083
Abstract
The flow separation occurring in the S-shaped diffuser with boundary layer ingestion (BLI) has a significant effect on the performance of the embedded engine. Previous studies have found that the area ratio (AR) as well as the length-to-offset ratio (LOR) of the S-shaped [...] Read more.
The flow separation occurring in the S-shaped diffuser with boundary layer ingestion (BLI) has a significant effect on the performance of the embedded engine. Previous studies have found that the area ratio (AR) as well as the length-to-offset ratio (LOR) of the S-shaped diffuser are the key contributing factors that affect the flow separation features. Based on the flow phenomena observed in previous studies of an S-shaped diffuser with 100% BLI, a hypothesis that the parameter height-to-radius ratio (HRR) may also have significant effect on the flow separation features in the S-shaped diffuser is proposed. The purpose of this paper is to verify this hypothesis and to further investigate the effect of HRR on the flow separation features in the S-shaped diffuser with BLI using numerical methods. First, the hypothesis that HRR has an effect on the flow separation features in the S-shaped diffuser is verified under uniform inlet condition. Second, the effect of HRR on the flow separation features is investigated under different relative heights of inlet BLI. It is found that the flow separation features in the S-shaped diffuser are very sensitive to the change in HRR but not to the change in relative height of inlet BLI. Finally, for the fixed boundary layer height generated from the airframe, the S-shaped diffuser with a smaller design HRR can significantly suppress the flow separation and thus achieve a higher total pressure recovery and a lower distortion coefficient. The results provide improved understandings of the factor affecting the flow separation features in the S-shaped diffuser, and are useful for improving the aerodynamic performance of the embedded engine with BLI. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

24 pages, 8146 KiB  
Article
Aerodynamics and Power Balance of a Distributed Aft-Fuselage Boundary Layer Ingesting Aircraft
by Tze Sing Tse and Cesare A. Hall
Aerospace 2023, 10(2), 122; https://doi.org/10.3390/aerospace10020122 - 27 Jan 2023
Cited by 5 | Viewed by 4235
Abstract
This paper presents a first investigation into the aerodynamics and performance breakdown of a distributed aft-fuselage boundary layer ingesting (BLI) tube-and-wing aircraft using fully coupled Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations that resolve the complete fan and installation geometries. Through the URANS simulations, the [...] Read more.
This paper presents a first investigation into the aerodynamics and performance breakdown of a distributed aft-fuselage boundary layer ingesting (BLI) tube-and-wing aircraft using fully coupled Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations that resolve the complete fan and installation geometries. Through the URANS simulations, the interaction between the turbulence from the fuselage boundary layer (BL) and the BLI propulsor is identified as an area that warrants further research. Using the URANS approach, the ingested turbulence leads to a 4.5% reduction in the propulsor stage total–total isentropic efficiency. A mechanical power balance has been drawn up to compare the power sources and sinks throughout the installation and propulsor for two test cases with different thicknesses of ingested BL. The test case with a thinner BL was found to generate significantly more dissipation in the BL development upstream of the propulsor, the flow separation over the outer cowl, and the interaction between the reversed flow over the cowl and the propulsor exhaust jet. Due to this increase in dissipation, the case with thinner ingested BL consumes 7% more power relative to a baseline case with thicker BL, representative of the upstream fuselage at cruise. This demonstrates the importance of matching the installation with the incoming fuselage BL. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 34189 KiB  
Article
Aerodynamic Shape Optimization of an Aircraft Propulsor Air Intake with Boundary Layer Ingestion
by Ayesh Sudasinghe, Padmassun Rajakareyar, Edgar Matida, Hamza Abo El Ella and Mostafa S. A. ElSayed
Appl. Mech. 2022, 3(3), 1123-1144; https://doi.org/10.3390/applmech3030064 - 12 Sep 2022
Cited by 6 | Viewed by 4165
Abstract
The growth of the airline industry has highlighted the need for more environmentally conscious aviation, leading to the conceptualization of more fuel-efficient aircraft. One concept that has received significant attention and has been associated with improved fuel efficiency is the boundary layer ingesting [...] Read more.
The growth of the airline industry has highlighted the need for more environmentally conscious aviation, leading to the conceptualization of more fuel-efficient aircraft. One concept that has received significant attention and has been associated with improved fuel efficiency is the boundary layer ingesting (BLI) propulsion system, which refers to the ingesting of the aircraft wake by the propulsors. Although BLI has theoretically been proven to reduce fuel burn, this can potentially be offset by the reduced efficiency and stability experienced by the propulsor in the presence of distorted inflow. Therefore, engine intakes must be optimized in order to mitigate the effects of BLI on the propulsion system. In this work, the shape optimization of a BLI intake is investigated using a free-form deformation technique in combination with a multi-objective genetic algorithm, in order to minimize pressure losses and distortion at the engine inlet. The optimization is performed on an S-duct intake at a cruise altitude of approximately 37,000 feet and a free stream Mach number of 0.7. An optimization strategy was developed for the task which was able to produce a Pareto optimal set of designs with improved pressure recovery and distortion. The general trend of the optimal designs shows that to reduce distortion the optimizer accelerates the flow to reduce the size of the low total pressure region and increase the dynamic pressure at the engine inlet. In contrast, the pressure recovery was increased by reducing velocity as well as shifting the maximum velocity region to the outlet, which reduces the viscous dissipation losses within the intake. The final result is a fully autonomous optimization strategy resulting in reduced pressure losses and reduced distortion leading to higher efficiency BLI S-duct intake designs. Full article
(This article belongs to the Special Issue Feature Papers in Applied Mechanics)
Show Figures

Figure 1

26 pages, 61733 KiB  
Article
Numerical Investigations of a Non-Uniform Stator Dihedral Design Strategy for a Boundary Layer Ingestion (BLI) Fan
by Tianyu Pan, Kaikai Shi, Hanan Lu, Zhiping Li and Jian Zhang
Energies 2022, 15(16), 5791; https://doi.org/10.3390/en15165791 - 10 Aug 2022
Cited by 3 | Viewed by 2248
Abstract
A distributed propulsion system has the advantage of saving 5–15% fuel burn through ingesting the fuselage boundary layer of an aircraft by fan or compressor. However, due to boundary layer ingestion (BLI), the fan stage will continuously operate under serious inlet distortion. This [...] Read more.
A distributed propulsion system has the advantage of saving 5–15% fuel burn through ingesting the fuselage boundary layer of an aircraft by fan or compressor. However, due to boundary layer ingestion (BLI), the fan stage will continuously operate under serious inlet distortion. This will lead to a circumferentially non-uniform flow separation distribution on the stator blade suction surface along the annulus, which significantly decreases the fan’s adiabatic efficiency. To solve this problem, a non-uniform stator dihedral design strategy has been developed to explore its potential of improving BLI fan performance. First, the stator full-annulus blade passages were divided into blade dihedral design regions and baseline design regions on the basis of the additional aerodynamic loss distributions caused by BLI inlet distortion. Then, to find the appropriate dihedral design parameters, the full-annulus BLI fan was discretized into several portions according to the rotor blade number and the dihedral design parameter investigations for dihedral depth and dihedral angle were conducted at the portion with the largest inflow distortion through a single-blade-passage computational model. The optimal combinational dihedral design parameter (dihedral depth 0.3, dihedral angle 6 deg) was applied to the blade passages with notable flow loss which were mainly located in the annulus positions from −120 to 60 degrees suffering from inlet distortion, while the blades in the low-loss annulus locations were unchanged. In this way, a non-uniform stator dihedral design scheme was achieved. In the end, the effectiveness of the non-uniform stator dihedral design was validated by analyzing the internal flow fields of the BLI fan. The results show that the stator dihedral design in distorted regions can increase the inlet axial velocity and reduce the aerodynamic load near the blade trailing edge, which are beneficial for suppressing the flow separations and reducing aerodynamic loss. Specifically, compared with the baseline design, the non-uniform stator dihedral design has achieved a reduction of aerodynamic loss of about 7.7%. The fan stage has presented an improvement of adiabatic efficiency of about 0.48% at the redesigned point without sacrificing the total pressure ratio. In the entire operating range, the redesigned fan has also shown a higher adiabatic efficiency than the baseline design with no reduction of the total pressure ratio, which provides a probable guideline for future BLI distortion-tolerant fan design. Full article
(This article belongs to the Special Issue Flow and Heat Transfer in Turbomachinery)
Show Figures

Figure 1

24 pages, 12278 KiB  
Article
Parameter Sensitivity Study on Inflow Distortion of Boundary Layer Ingested Turbofans
by Xin Zhao, Philip Van Hoorn, Hua-Dong Yao and James Alderman
Aerospace 2022, 9(8), 426; https://doi.org/10.3390/aerospace9080426 - 4 Aug 2022
Cited by 3 | Viewed by 2395
Abstract
The inflow distortion to the fan introduced by the ingestion of the fuselage boundary layer is the most critical challenge in realizing the benefits of boundary later ingesting (BLI) concepts. Minimizing the level of distortion while maintaining the desired amount of ingested boundary [...] Read more.
The inflow distortion to the fan introduced by the ingestion of the fuselage boundary layer is the most critical challenge in realizing the benefits of boundary later ingesting (BLI) concepts. Minimizing the level of distortion while maintaining the desired amount of ingested boundary layer and free stream flow is crucial in minimizing the penalties to fan efficiency and noise emissions. In this paper, a parametric sensitivity study is performed to examine the integration of two semi-buried BLI turbofans at the rear end of a typical tube-and-wing body (TWB) fuselage. The key parameters influencing BLI, such as the nacelle installation positions, wing position, fuselage length, rear fuselage shape, intake shape and operating conditions were evaluated by computational fluid dynamics (CFD). Among the investigated parameters, increasing the nacelle spanwise installation spacing improved inflow distortion by reducing the diffusion separation, but this needs to be offset against the added weight and nacelle drag. A high wing position variant showed strong interference between the wing and the nacelle, which must be avoided as this significantly increases the complexity of the inflow distortion. A moderate angle of attack (AOA) variation did not affect the fan inflow distortion but there was a tendency for interference from the wing to increase when the AOA was increased. The general conclusions from this study will be useful in the conceptual design of a similar type of BLI configuration, as well as a more comprehensive optimization of this type of aircraft–engine integration. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 20218 KiB  
Article
2D Numerical Study on the Flow Mechanisms of Boundary Layer Ingestion through Power-Based Analysis
by Peijian Lv, Mengmeng Zhang, Fei Cao, Defu Lin and Li Mo
Aerospace 2022, 9(4), 184; https://doi.org/10.3390/aerospace9040184 - 30 Mar 2022
Cited by 1 | Viewed by 2722
Abstract
This paper aims to establish an approach of power bookkeeping in a numerical study. To study the process of power conversion coursed in the flow field, the methodology employs a power-based analysis to quantify power terms. This approach is examined in a simulation [...] Read more.
This paper aims to establish an approach of power bookkeeping in a numerical study. To study the process of power conversion coursed in the flow field, the methodology employs a power-based analysis to quantify power terms. This approach is examined in a simulation of jet flow and then applied to the cases of an isolated actuator disc and an isolated flat plate. Eventually, a numerical simulation is carried out for the boundary layer ingestion (BLI) case that integrates the flat plate and a wake-filling actuator disc. This study quantitatively discusses the mechanisms of BLI under the conditions of laminar and turbulent flow. The proposed power-based analysis might offer insights for the aircraft aerodynamic design using favorable airframe propulsion integration. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics)
Show Figures

Figure 1

55 pages, 1893 KiB  
Review
Recent Advances in Boundary Layer Ingestion Technology of Evolving Powertrain Systems
by Dimitra Eirini Diamantidou, Md Lokman Hosain and Konstantinos G. Kyprianidis
Sustainability 2022, 14(3), 1731; https://doi.org/10.3390/su14031731 - 2 Feb 2022
Cited by 16 | Viewed by 4617
Abstract
The increasing environmental concern during the last years is driving the research community towards reducing aviation’s environmental impact. Several strict goals set by various aviation organizations shifted the research focus towards more efficient and environmentally friendly aircraft concepts. Boundary Layer Ingestion (BLI) is [...] Read more.
The increasing environmental concern during the last years is driving the research community towards reducing aviation’s environmental impact. Several strict goals set by various aviation organizations shifted the research focus towards more efficient and environmentally friendly aircraft concepts. Boundary Layer Ingestion (BLI) is currently investigated as a potential technology to achieve different design goals such as energy efficiency improvement and noise emission reductions in the next generation of commercial aircraft. The technology principle is to place the propulsive unit within the boundary layer generated by the airframe body. Although several studies showed its theoretical benefits, a multidisciplinary nature is introduced in the design phase. This imposes new challenges on the current design tools. An increasing number of publications are focusing on assessing this technology while taking into account interlinks between different disciplines. The goal of this work is to review the current state-of-the-art of BLI evaluation studies. Particular focus is given to the underlying assumptions of each work, the methodology employed, and the level of fidelity of the tools used. By organizing the available work in a comprehensive manner, the up-to-date results are interpreted. The current trends and trade-offs emerging from studies are presented. Through reviewing the ongoing published work, the next steps for further development of the methods that will assess this technology are derived. Full article
Show Figures

Figure 1

16 pages, 759 KiB  
Article
Development of a Multi-Segment Parallel Compressor Model for a Boundary Layer Ingesting Fuselage Fan Stage
by Jonas Voigt and Jens Friedrichs
Energies 2021, 14(18), 5746; https://doi.org/10.3390/en14185746 - 13 Sep 2021
Cited by 4 | Viewed by 2355
Abstract
The present methodological study aims to assess boundary layer ingestion (BLI) as a promising method to improve propulsion efficiency. BLI utilizes the low momentum inflow of the wing or fuselage boundary layer for thrust generation in order to minimize the required propulsive power [...] Read more.
The present methodological study aims to assess boundary layer ingestion (BLI) as a promising method to improve propulsion efficiency. BLI utilizes the low momentum inflow of the wing or fuselage boundary layer for thrust generation in order to minimize the required propulsive power for a given amount of thrust for wing or fuselage-embedded engines. A multi-segment parallel compressor model (PCM) is developed to calculate the power saving from full annular BLI as occurring at a fuselage tail center-mounted aircraft engine, employing radially subdivided fan characteristics. Applying this methodology, adverse effects on the fan performance due to varying inlet distortions depending on flight operating point as well as upstream boundary layer suction can be taken into account. This marks one step onto a further segmented PCM model for general cases of BLI-induced inlet distortion and allows the evaluation of synergies between combined BLI and active laminar flow control as a drag reduction measure. This study, therefore, presents one further step towards lower fuel consumption and, hence, a lower environmental impact of future transport aircraft. Full article
(This article belongs to the Special Issue Turbomachinery, Energy and Environmental Technologies)
Show Figures

Figure 1

22 pages, 3325 KiB  
Article
Aeroacoustics Assessment of an Hybrid Aircraft Configuration with Rear-Mounted Boundary Layer Ingested Engine
by Francesco Petrosino, Mattia Barbarino and Martin Staggat
Appl. Sci. 2021, 11(7), 2936; https://doi.org/10.3390/app11072936 - 25 Mar 2021
Cited by 15 | Viewed by 4063
Abstract
Hybrid electric propulsion is a promising solution to reduce aircraft emissions, thus improving the sustainability of the air transport. In this work, a hybrid aircraft configuration with a rear-mounted boundary layer ingestion (BLI) engine has been investigated. The partial embedding of the engine [...] Read more.
Hybrid electric propulsion is a promising solution to reduce aircraft emissions, thus improving the sustainability of the air transport. In this work, a hybrid aircraft configuration with a rear-mounted boundary layer ingestion (BLI) engine has been investigated. The partial embedding of the engine into the fuselage generates a distortion of the ingested inflow causing additional tonal and broadband BLI noise sources, and, at the same time, alters the existing one, such as the rotor–stator interaction noise (RSI). This work is focused on the tonal RSI noise modeling, with and without the distortion generated by the BLI, and the far-field propagation including the acoustic masking contribution due to the engine–fuselage integration. As the main result, this work shows the contributions of BLI and the engine–aircraft integration on the RSI noise. Both effects should be properly taken into account in the early aircraft design stage for an effective noise reduction even at ground level. Full article
Show Figures

Figure 1

14 pages, 6184 KiB  
Article
Harmonic Forcing from Distortion in a Boundary Layer Ingesting Fan
by Hans Mårtensson
Aerospace 2021, 8(3), 58; https://doi.org/10.3390/aerospace8030058 - 24 Feb 2021
Cited by 12 | Viewed by 3660
Abstract
Integrating a fan with a boundary layer ingestion (BLI) configuration into an aircraft fuselage can improve propulsion efficiency by utilizing the lower momentum airflow in the boundary layer developed due to the surface drag of the fuselage. As a consequence, velocity and total [...] Read more.
Integrating a fan with a boundary layer ingestion (BLI) configuration into an aircraft fuselage can improve propulsion efficiency by utilizing the lower momentum airflow in the boundary layer developed due to the surface drag of the fuselage. As a consequence, velocity and total pressure variations distort the flow field entering the fan in both the circumferential and radial directions. Such variations can negatively affect fan aerodynamics and give rise to vibration issues. A fan configuration to benefit from BLI needs to allow for distortion without large penalties. Full annulus unsteady computational fluid dynamics (CFD) with all blades and vanes is used to evaluate the effects on aerodynamic loading and forcing on a fan designed to be mounted on an adapted rear fuselage of a Fokker 100 aircraft, i.e., a tail cone thruster. The distortion pattern used as a boundary condition on the fan is taken from a CFD analysis of the whole aircraft with a simplified model of the installed fan. Detailed simulations of the fan are conducted to better understand the relation between ingested distortion and the harmonic forcing. The results suggest that the normalized harmonic forcing spectrum is primarily correlated to the circumferential variation of inlet total pressure. In this study, the evaluated harmonic forces correlate with the total pressure variation at the inlet for the first 12 engine orders, with some exceptions where the response is very low. At higher harmonics, the distortion content as well as the response become very low, with amplitudes in the order of magnitude lower than the principal disturbances. The change in harmonic forcing resulting from raising the working line, thus, increasing the incidence on the fan rotor, increases the forcing moderately. The distortion transfers through the fan resulting in a non-axisymmetric aerodynamic loading of the outlet guide vane (OGV) that has a clear effect on the aerodynamics. The time average aerodynamic load and also the harmonic forcing of the OGV vary strongly around the circumference. In particular, this is the case for some of the vanes at higher back pressure, most likely due to an interaction with separations starting to occur on vanes operating in unfavorable conditions. Full article
Show Figures

Figure 1

Back to TopTop