Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = bottlenose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1262 KiB  
Article
Bycatch in Cetaceans from the North-Western Mediterranean Sea: Retrospective Study of Lesions and Utility of Bycatch Criteria
by Laura Martino, Mariona Leiva Forns, Marina Cid Cañete, Lola Pérez, Cèlia Pradas and Mariano Domingo
Vet. Sci. 2025, 12(8), 711; https://doi.org/10.3390/vetsci12080711 - 29 Jul 2025
Viewed by 448
Abstract
Bycatch is the most common cause of death of small delphinids worldwide, including the Mediterranean Sea. The diagnosis of bycatch as cause of death in stranded cetaceans depends on the cumulative presence of multiple findings, termed bycatch criteria. In this study, we retrospectively [...] Read more.
Bycatch is the most common cause of death of small delphinids worldwide, including the Mediterranean Sea. The diagnosis of bycatch as cause of death in stranded cetaceans depends on the cumulative presence of multiple findings, termed bycatch criteria. In this study, we retrospectively evaluated the presence of bycatch criteria in 138 necropsied cetaceans, 136 stranded and 2 confirmed bycaught, in the Catalan Mediterranean Sea across a 13-year period. With the aim of identifying the most specific and reliable bycatch criteria, the animals’ cause of death was classified as either bycaught or other causes. Animals were necropsied according to standard procedures with complete histopathological examination and ancillary diagnostic techniques. We reviewed the necropsy reports and photographs of 138 cetaceans of seven species. Bycatch had been determined as the cause of death/stranding in 40 (29%) necropsied cetaceans. Both sexes were equally represented in the bycatch group. Bycatch was diagnosed in the Mediterranean common bottlenose dolphin (10/14; 71.4%), striped dolphin (29/108; 26.9%), and Risso’s dolphin (1/11; 9.1%). Sixty-seven out of 98 (68.3%) cetaceans that had been classified as non-bycatch had one or two bycatch criteria. Cetaceans with two and three major criteria had an overlap of causes of death, as some animals were diagnosed with bycatch and others with other causes of mortality. Animals with four criteria were invariably diagnosed as being bycaught. Recent feeding, absence of disease, good nutritional status, marks of fishing gear, multiorgan intravascular gas bubbles, hyphema and amputations or sharp incisions presumably inflicted by humans were significantly more likely to result in a diagnosis of bycatch, while loss of teeth and cranial fractures were not. None of the dolphins diagnosed as bycatch had ingested fishing gear. Our results highlight the relevance of bycatch as the cause of death of dolphins in the Mediterranean and suggest that some criteria traditionally linked to bycatch are not specific for bycatch in our region. Full article
(This article belongs to the Special Issue Pathology of Marine Large Vertebrates)
Show Figures

Figure 1

14 pages, 1681 KiB  
Article
Potential of Bioinspired Artificial Vaginas to Improve Semen Quality in Dolphins
by Jacquline Rich, Guillermo J. Sánchez-Contreras, Jonathan R. Cowart and Dara N. Orbach
J. Mar. Sci. Eng. 2025, 13(7), 1376; https://doi.org/10.3390/jmse13071376 - 19 Jul 2025
Viewed by 1368
Abstract
Semen collection is an important component of conservation and animal husbandry. Semen quality is generally improved using voluntary collection methods, particularly artificial vaginas (AVs). Most commercially available AVs are tube-shaped with few species-specific design augmentations. As genitalia are highly variable across taxa, incorporating [...] Read more.
Semen collection is an important component of conservation and animal husbandry. Semen quality is generally improved using voluntary collection methods, particularly artificial vaginas (AVs). Most commercially available AVs are tube-shaped with few species-specific design augmentations. As genitalia are highly variable across taxa, incorporating species-specific genital morphologies into AV designs may enhance collected semen quality. We compared dolphin semen quality using: (1) silicone bioinspired artificial vaginas (BAVs) that reflect the internal shape of dolphin vaginas, and (2) manual stimulation. Sperm motility and kinematic parameters of five bottlenose dolphins (Tursiops sp.) were assessed using computer-aided sperm analysis (CASA). Sperm collected using BAVs showed non-significant increases in median progressive and rapid motility, and increases in median and mean linear motility, supporting a sexual selection functional hypothesis for the biodiverse vaginal folds unique to whales, dolphins, and porpoises. Sperm concentration decreased with BAV collection, while no consistent trends were detected in volume, pH, velocity, or plasma membrane integrity. Modifications to AVs for other species that incorporate genital morphologies may also optimize collected semen quality for application to artificial insemination. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Graphical abstract

12 pages, 1845 KiB  
Article
Serum Concentrations of Imidazole Dipeptides and Serum Amyloid A in a Bottlenose Dolphin (Tursiops truncatus) with Rhabdomyolysis: Potential Biomarkers for Muscular Damage
by Nanami Arakawa, Mika Otsuka, Takahisa Hamano, Momochika Kumagai, Sanae Kato, Takuya Hirai, Akira Yabuki and Osamu Yamato
Animals 2025, 15(13), 1950; https://doi.org/10.3390/ani15131950 - 2 Jul 2025
Viewed by 409
Abstract
Imidazole dipeptides (IDPs), including anserine, carnosine, and balenine, are predominantly found in the skeletal muscles of vertebrates. Balenine is the major IDP in cetaceans. Serum amyloid A (SAA) is an acute phase protein released in response to damage or injury in various tissues, [...] Read more.
Imidazole dipeptides (IDPs), including anserine, carnosine, and balenine, are predominantly found in the skeletal muscles of vertebrates. Balenine is the major IDP in cetaceans. Serum amyloid A (SAA) is an acute phase protein released in response to damage or injury in various tissues, including skeletal muscles. A captive bottlenose dolphin (Tursiops truncatus) died due to rhabdomyolysis and subsequent acute kidney injury that probably originated from accidental muscle trauma. In this study, concentrations of IDPs and SAA were measured using stored serum collected from the affected dolphin with intermittent continuous damage of skeletal muscles to demonstrate the pathological relevance of these parameters and their usefulness as biomarkers for muscle damage in dolphins. The IDP concentration was measured using the high-performance liquid chromatography-ultraviolet method. The SAA concentration was measured using an enzyme-linked immunosorbent assay (ELISA) specific to dolphin SAA and a latex turbidimetric immunoassay (LTI) specific to human SAA. Herein, the IDP concentration was altered similarly to serum muscular enzymes, including creatinine kinase (CK) and aspartate aminotransferase (AST). However, IDP concentrations were elevated one day earlier than CK and AST levels at disease onset. Furthermore, IDP concentrations were similarly altered when assessed using both ELISA- and LTI-SAAs, and the change in IDP concentration coincided with that in LTI-SAA based on the statistical analysis. These data suggest that IDP concentration could detect muscle damage and injury, including necrosis and inflammation, in dolphins. Full article
(This article belongs to the Special Issue Diseases of Marine Mammals: Prevention, Control and Beyond)
Show Figures

Figure 1

12 pages, 853 KiB  
Article
Bottlenose Dolphins’ Clicks Comply with Three Laws of Efficient Communication
by Arthur Stepanov, Hristo Zhivomirov, Ivaylo Nedelchev, Todor Ganchev and Penka Stateva
Algorithms 2025, 18(7), 392; https://doi.org/10.3390/a18070392 - 27 Jun 2025
Viewed by 1099
Abstract
Bottlenose dolphins’ broadband click vocalisations are well-studied in the literature concerning their echolocation function. Their potential use for communication among conspecifics has long been speculated but has yet to be conclusively established. In this study, we first categorised dolphins’ click production based on [...] Read more.
Bottlenose dolphins’ broadband click vocalisations are well-studied in the literature concerning their echolocation function. Their potential use for communication among conspecifics has long been speculated but has yet to be conclusively established. In this study, we first categorised dolphins’ click production based on their amplitude contour and then analysed the distribution of individual clicks and click sequences against their duration and length. The results show that the repertoire and composition of clicks and click sequences adhere to the three essential linguistic laws of efficient communication: Zipf’s rank–frequency law, the law of brevity, and the Menzerath–Altmann law. Conforming to the rank–frequency law suggests that clicks may form a linguistic code subject to selective pressures for unification, on the one hand, and diversification, on the other. Conforming to the other two laws also implies that dolphins use clicks according to the compression criterion or minimisation of code length without losing information. Such conformity of dolphin clicks might indicate that these linguistic laws are more general, which produces an exciting research perspective on animal communication. Full article
(This article belongs to the Collection Feature Papers in Algorithms)
Show Figures

Figure 1

17 pages, 2178 KiB  
Article
Tissue Element Levels and Heavy Metal Burdens in Bottlenose Dolphins That Stranded in the Mississippi Sound Surrounding the 2019 Unusual Mortality Event
by Nelmarie Landrau-Giovannetti, Ryanne Murray, Stephen Reichley, Debra Moore, Theresa Madrigal, Ashli Brown, Ashley Meredith, Christina Childers, Darrell Sparks, Moby Solangi, Anna Linhoss, Beth Peterman, Mark Lawrence and Barbara L. F. Kaplan
Toxics 2025, 13(6), 511; https://doi.org/10.3390/toxics13060511 - 18 Jun 2025
Viewed by 893
Abstract
In 2019, an unusual mortality event (UME) affected bottlenose dolphins (Tursiops truncatus) in the Mississippi Sound (MSS) following an extended dual opening of the Bonnet Carré Spillway (BCS), which prevents flooding in New Orleans. This resulted in low salinity, skin lesions, and [...] Read more.
In 2019, an unusual mortality event (UME) affected bottlenose dolphins (Tursiops truncatus) in the Mississippi Sound (MSS) following an extended dual opening of the Bonnet Carré Spillway (BCS), which prevents flooding in New Orleans. This resulted in low salinity, skin lesions, and electrolyte imbalances in dolphins. Additionally, the influx likely altered the MSS’s environmental chemical composition, including levels of heavy metals and metalloids; thus, we quantified heavy metals, metalloids, and essential elements in the tissues of dolphins that stranded in the MSS before and after the 2019 UME. We hypothesized that levels of heavy metals and metalloids (such as mercury (Hg), arsenic (As), lead (Pb), and cadmium (Cd)) would not show significant changes post-UME. Indeed, we found no major changes associated with the UME in most metals; sodium (Na) and magnesium (Mg) levels were lower in several tissues after 2019, which correlated with the average yearly salinity measured from the MSS. Toxic metals and metalloids were detectable with some changes over time; however, the selenium (Se):Hg molar ratio increased in some tissues post-2019. Additionally, we confirmed that Hg can bioaccumulate, with positive correlations between Hg levels and dolphin size as assessed by straight length. Overall, our findings indicate that freshwater incursions into the MSS can alter dolphin exposure to essential and toxic elements. Full article
Show Figures

Figure 1

5 pages, 176 KiB  
Commentary
Highly Pathogenic Avian Influenza A(H5N1) Virus: How Far Are We from a New Pandemic?
by Giovanni Di Guardo
Vet. Sci. 2025, 12(6), 566; https://doi.org/10.3390/vetsci12060566 - 9 Jun 2025
Cited by 2 | Viewed by 1100
Abstract
The focus of this commentary is represented by the pandemic risk associated with the highly pathogenic avian influenza (HPAI) A(H5N1) virus, clade 2.3.4.4b. More in detail, the herein dealt pandemic alarm appears to be primarily justified by the huge and progressively growing number [...] Read more.
The focus of this commentary is represented by the pandemic risk associated with the highly pathogenic avian influenza (HPAI) A(H5N1) virus, clade 2.3.4.4b. More in detail, the herein dealt pandemic alarm appears to be primarily justified by the huge and progressively growing number of virus-susceptible domestic and wild birds and mammals, including threatened marine mammal species like South American sea lions and elephant seals as well as harbour porpoises, bottlenose dolphins and polar bears. Of major concern is the susceptibility of dairy cattle to HPAI A(H5N1) virus, particularly the documented and unprecedented colonization of host’s mammary gland tissue, resulting in viral shedding through the milk alongside a large series of cases of infection in dairy farm workers in several USA locations. Despite well-documented zoonotic capability, no evidences of a sustained and efficient HPAI A(H5N1) viral transmission between people have been hitherto reported. If this were to happen sooner or later, a new pandemic might consequently arise. Therefore, keeping all this in mind and based upon the lessons taught by the COVID-19 pandemic, a “One Health, One Earth, One Ocean”-centered approach would be absolutely needed in order to deal in the most appropriate way with the HPAI A(H5N1) virus-associated zoonotic and pandemic risk. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
24 pages, 1771 KiB  
Article
Essential Trace Elements in Three Species of Dolphins Stranded in the Croatian Part of the Adriatic Sea from 1995 to 2013
by Maja Đokić, Nina Bilandžić, Marija Sedak, Tomislav Bolanča, Tomislav Gomerčić, Martina Đuras and Miroslav Benić
Animals 2025, 15(11), 1535; https://doi.org/10.3390/ani15111535 - 23 May 2025
Viewed by 554
Abstract
Trace elements are widely distributed in the environment and are considered essential when their deficiency leads to impaired biological function. This study aimed to quantify concentrations of two essential trace elements—copper (Cu) and zinc (Zn)—in the tissues of three toothed whale (Odontoceti [...] Read more.
Trace elements are widely distributed in the environment and are considered essential when their deficiency leads to impaired biological function. This study aimed to quantify concentrations of two essential trace elements—copper (Cu) and zinc (Zn)—in the tissues of three toothed whale (Odontoceti) species: bottlenose (Tursiops truncatus), striped (Stenella coeruleoalba), and Risso’s dolphins (Grampus griseus) found deceased along the Croatian coast of the Adriatic Sea between 1995 and 2013. A total of 190 individuals were analyzed, comprising 159 bottlenose, 25 striped, and 6 Risso’s dolphins. Concentrations of Cu and Zn were determined in liver, muscle, kidney, skin, lung, spleen, and fat tissues using inductively coupled plasma optical emission spectrometry (ICP-OES). The highest Cu concentrations were observed in the liver and kidneys of bottlenose dolphins, followed by striped and Risso’s dolphins. Zn concentrations were the highest in the skin of bottlenose and striped dolphins, whereas the liver exhibited the highest levels in Risso’s dolphins. In 14 bottlenose and 2 striped dolphins, Cu and Zn concentrations in liver tissue exceeded critical thresholds typically regulated by homeostatic mechanisms. Regression analysis indicated significant relationships between element concentrations, and both body length and body mass. In addition, trace element concentrations were positively correlated across individuals within the same tissue type, as well as among different tissues within the same individual. Overall, Cu and Zn concentrations exhibited a declining trend over the studied period across all tissue types. These findings provide important baseline data for future ecotoxicological investigations and contribute to conservation strategies for cetacean populations inhabiting the Adriatic Sea. Full article
(This article belongs to the Special Issue Recent Progress in Anatomy and Pathology of Marine Mammals)
Show Figures

Graphical abstract

18 pages, 1837 KiB  
Article
Real-Time Dolphin Whistle Detection on Raspberry Pi Zero 2 W with a TFLite Convolutional Neural Network
by Rocco De Marco, Francesco Di Nardo, Alessandro Rongoni, Laura Screpanti and David Scaradozzi
Robotics 2025, 14(5), 67; https://doi.org/10.3390/robotics14050067 - 19 May 2025
Cited by 1 | Viewed by 1021
Abstract
The escalating conflict between cetaceans and fisheries underscores the need for efficient mitigation strategies that balance conservation priorities with economic viability. This study presents a TinyML-driven approach deploying an optimized Convolutional Neural Network (CNN) on a Raspberry Pi Zero 2 W for real-time [...] Read more.
The escalating conflict between cetaceans and fisheries underscores the need for efficient mitigation strategies that balance conservation priorities with economic viability. This study presents a TinyML-driven approach deploying an optimized Convolutional Neural Network (CNN) on a Raspberry Pi Zero 2 W for real-time detection of bottlenose dolphin whistles, leveraging spectrogram analysis to address acoustic monitoring challenges. Specifically, a CNN model previously developed for classifying dolphins’ vocalizations and originally implemented with TensorFlow was converted to TensorFlow Lite (TFLite) with architectural optimizations, reducing the model size by 76%. Both TensorFlow and TFLite models were trained on 22 h of underwater recordings taken in controlled environments and processed into 0.8 s spectrogram segments (300 × 150 pixels). Despite reducing model size, TFLite models maintained the same accuracy as the original TensorFlow model (87.8% vs. 87.0%). Throughput and latency were evaluated by varying the thread allocation (1–8 threads), revealing the best performance at 4 threads (quad-core alignment), achieving an inference latency of 120 ms and sustained throughput of 8 spectrograms/second. The system demonstrated robustness in 120 h of continuous stress tests without failure, underscoring its reliability in marine environments. This work achieved a critical balance between computational efficiency and detection fidelity (F1-score: 86.9%) by leveraging quantized, multithreaded inference. These advancements enable low-cost devices for real-time cetacean presence detection, offering transformative potential for bycatch reduction and adaptive deterrence systems. This study bridges artificial intelligence innovation with ecological stewardship, providing a scalable framework for deploying machine learning in resource-constrained settings while addressing urgent conservation challenges. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Graphical abstract

12 pages, 254 KiB  
Article
Assessing Bottlenose Dolphins’ (Tursiops truncatus) Health Status Through Functional Muscle Analysis, and Oxidative and Metabolic Stress Evaluation: A Preliminary Study
by Claudia Gatta, Eugenio Luigi Iorio, Carla Genovese, Barbara Biancani, Alessandro Mores, Daniele La Monaca, Chiara Caterino, Luigi Avallone, Guillermo J. Sanchez-Contreras, Immaculata De Vivo, Francesca Ciani and Simona Tafuri
Animals 2025, 15(9), 1215; https://doi.org/10.3390/ani15091215 - 25 Apr 2025
Viewed by 972
Abstract
Oxidative stress (OS) occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body’s antioxidant defenses, causing damage to lipids, proteins, and DNA. In marine mammals, physiological adaptation to aquatic life conditions, such as prolonged and repeated [...] Read more.
Oxidative stress (OS) occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body’s antioxidant defenses, causing damage to lipids, proteins, and DNA. In marine mammals, physiological adaptation to aquatic life conditions, such as prolonged and repeated dives resulting in cycles of hypoxia followed by reperfusion, is associated with increased production of ROS. This study examines the relationship between oxidative stress, muscular stress, and metabolic damage in the blood serum of eleven captive bottlenose dolphins (Tursiops truncatus), six males and five females. This relationship is investigated using oxidative stress markers (d-ROMs, OXY, and Oxidative Stress index, OSi) and biochemical parameter measurements, including glucose (GLU), aspartate aminotransferase (AST), creatine kinase (CK), and lactate dehydrogenase (LDH). Pearson’s sex correlation was performed, and males exhibited significantly higher pro-oxidant levels than females, suggesting a potential protective role of female hormones. Also, a positive correlation between pro-oxidants and antioxidants has been observed in relation to age, as older dolphins produced more ROS but also exhibited higher antioxidant capacity, likely to compensate for oxidative damage. Results show no significant correlation between biochemical parameters and oxidative stress markers. However, a moderately positive correlation between LDH and antioxidant (OXY) capacity was observed (r = 0.458), suggesting a possible association between tissue turnover and antioxidant defenses. The results indicate that the biochemical markers analyzed are not strong predictors of oxidative stress in bottlenose dolphins. However, the correlation between LDH and antioxidant capacity suggests that tissue turnover may affect antioxidant defenses. This is a preliminary study, and further research is needed to clarify these relationships in order to better understand physiological adaptations in dolphins and their implications for management, health, and welfare. Full article
(This article belongs to the Special Issue Recent Progress in Anatomy and Pathology of Marine Mammals)
12 pages, 2593 KiB  
Article
Multiclass CNN Approach for Automatic Classification of Dolphin Vocalizations
by Francesco Di Nardo, Rocco De Marco, Daniel Li Veli, Laura Screpanti, Benedetta Castagna, Alessandro Lucchetti and David Scaradozzi
Sensors 2025, 25(8), 2499; https://doi.org/10.3390/s25082499 - 16 Apr 2025
Cited by 1 | Viewed by 888
Abstract
Monitoring dolphins in the open sea is essential for understanding their behavior and the impact of human activities on the marine ecosystems. Passive Acoustic Monitoring (PAM) is a non-invasive technique for tracking dolphins, providing continuous data. This study presents a novel approach for [...] Read more.
Monitoring dolphins in the open sea is essential for understanding their behavior and the impact of human activities on the marine ecosystems. Passive Acoustic Monitoring (PAM) is a non-invasive technique for tracking dolphins, providing continuous data. This study presents a novel approach for classifying dolphin vocalizations from a PAM acoustic recording using a convolutional neural network (CNN). Four types of common bottlenose dolphin (Tursiops truncatus) vocalizations were identified from underwater recordings: whistles, echolocation clicks, burst pulse sounds, and feeding buzzes. To enhance classification performances, edge-detection filters were applied to spectrograms, with the aim of removing unwanted noise components. A dataset of nearly 10,000 spectrograms was used to train and test the CNN through a 10-fold cross-validation procedure. The results showed that the CNN achieved an average accuracy of 95.2% and an F1-score of 87.8%. The class-specific results showed a high accuracy for whistles (97.9%), followed by echolocation clicks (94.5%), feeding buzzes (94.0%), and burst pulse sounds (92.3%). The highest F1-score was obtained for whistles, exceeding 95%, while the other three vocalization typologies maintained an F1-score above 80%. This method provides a promising step toward improving the passive acoustic monitoring of dolphins, contributing to both species conservation and the mitigation of conflicts with fisheries. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 5945 KiB  
Article
Aging-Associated Amyloid-β Plaques and Neuroinflammation in Bottlenose Dolphins (Tursiops truncatus) and Novel Cognitive Health-Supporting Roles of Pentadecanoic Acid (C15:0)
by Stephanie Venn-Watson and Eric D. Jensen
Int. J. Mol. Sci. 2025, 26(8), 3746; https://doi.org/10.3390/ijms26083746 - 16 Apr 2025
Cited by 1 | Viewed by 4671
Abstract
There is an urgent need to identify interventions that broadly target aging-related cognitive decline and progression to Alzheimer’s disease (AD). Bottlenose dolphins (Tursiops truncatus) have histologic changes similar to AD in humans, and they also develop shared age-associated co-morbidities identified as [...] Read more.
There is an urgent need to identify interventions that broadly target aging-related cognitive decline and progression to Alzheimer’s disease (AD). Bottlenose dolphins (Tursiops truncatus) have histologic changes similar to AD in humans, and they also develop shared age-associated co-morbidities identified as risk factors for AD in humans, including type 2 diabetes, ferroptosis, and iron overload, which can be driven by nutritional C15:0 deficiency. We hypothesized that (1) dolphins would have amyloid beta (Aβ) plaques and neuroinflammation that paralleled that of humans in relation to age-related progression, quantitative concentration, and brain region; and (2) C15:0 would have dose-dependent activities relevant to protecting cognitive health. Quantitative immunohistochemistry staining was used to assess 68 tissues from archived brains of 19 Navy dolphins to evaluate associations among amyloid beta (Aβ) plaques and neuroinflammation by brain region, sex, and age group. Further, dose-dependent C15:0 activities, using a third-party panel intended to screen for potential AD therapeutics, were evaluated. Similar to humans, dolphins had the highest Aβ plaque density variation in the hippocampus (90th percentile of 4.95 plaques/mm2), where plaque density increased with age (p = 0.05). All measured markers of neuroinflammation were detected, including the highest concentrations of activated microglia (CD68+) in the hippocampus (0.46 ± 0.38 cells/mm2). C15:0 was a dose-dependent inhibitor of two targets, fatty acid amide hydrolase (FAAH) (IC50 2.5 µM, 89% maximum inhibition at 50 µM relative to URB597) and monoamine oxidase B (MAO-B) (IC50 19.4 µM, 70% maximum inhibition at 50 µM relative to R(-)-Deprenyl). These activities have demonstrated efficacy against Aβ formation and neuroinflammation, including protection of cognitive function in the hippocampus. These findings suggest that, in addition to protecting against AD co-morbidities, C15:0 may play a distinct role in supporting cognitive health, especially at higher concentrations. Full article
Show Figures

Figure 1

28 pages, 11026 KiB  
Article
Dolphin Pituitary Gland: Immunohistochemistry and Ultrastructural Cell Characterization Following a Novel Anatomical Dissection Protocol and Non-Invasive Imaging (MRI)
by Paula Alonso-Almorox, Alfonso Blanco, Carla Fiorito, Eva Sierra, Cristian Suárez-Santana, Francesco Consolli, Manuel Arbelo, Raiden Grandía Guzmán, Ignacio Molpeceres-Diego, Antonio Fernández Gómez, Javier Almunia, Ayoze Castro-Alonso and Antonio Fernández
Animals 2025, 15(5), 735; https://doi.org/10.3390/ani15050735 - 4 Mar 2025
Viewed by 1922
Abstract
The pituitary gland regulates essential physiological processes in mammals. Despite its importance, research on its anatomy and ultrastructure in dolphins remains scarce. Using non-invasive imaging technology (MRI) and a novel skull-opening and dissection protocol, this study characterizes the dolphin pituitary through immunohistochemistry (IHC) [...] Read more.
The pituitary gland regulates essential physiological processes in mammals. Despite its importance, research on its anatomy and ultrastructure in dolphins remains scarce. Using non-invasive imaging technology (MRI) and a novel skull-opening and dissection protocol, this study characterizes the dolphin pituitary through immunohistochemistry (IHC) and transmission electron microscopy (TEM). A total of 47 pituitaries were collected from stranded common bottlenose dolphins (Tursiops truncatus). common dolphins (Delphinus delphis), and Atlantic spotted dolphins (Stenella frontalis). as well as from captive common bottlenose dolphins. MRI allowed visualization of the gland’s anatomy and its spatial relationship with the hypothalamus and surrounding structures. A modified skull-opening and pituitary extraction protocol ensured the preservation of the adenohypophysis and neurohypophysis for detailed analysis. Histological, immunohistochemical, and ultrastructural studies confirmed the gland’s structural organization, identifying eight distinct adenohypophyseal cell types: corticotrophs (ACTH), somatotrophs (GH), gonadotrophs (FSH and LH), lactotrophs (LTH), melanotrophs (MSH), thyrotrophs (TSH), follicular cells, and capsular cells. This study presents the first immunolabelling of thyrotrophs in cetacean adenohypophysis and the first detailed ultrastructural characterization of adenohypophyseal cells in cetaceans, providing baseline data for future research. By integrating multidisciplinary techniques, it advances the understanding of dolphin neuroendocrinology and highlights broader implications for cetacean health, welfare, and conservation. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

10 pages, 2892 KiB  
Case Report
Successful Treatment of Fungal Dermatitis in a Bottlenose Dolphin (Tursiops truncatus)
by Takashi Kamio, Honoka Nojo, Rui Kano, Mami Murakami, Yukako Odani, Koji Kanda, Tomoko Mori, Yuichiro Akune, Masanori Kurita, Ayaka Okada and Yasuo Inoshima
Microorganisms 2025, 13(1), 106; https://doi.org/10.3390/microorganisms13010106 - 7 Jan 2025
Viewed by 1599
Abstract
In recent decades, many fungi have emerged as major causes of disease in marine mammals. This study reports on the detection of filamentous fungi in the subcutaneous tissue and wound surface on the tail fin of a managed bottlenose dolphin (Tursiops truncatus [...] Read more.
In recent decades, many fungi have emerged as major causes of disease in marine mammals. This study reports on the detection of filamentous fungi in the subcutaneous tissue and wound surface on the tail fin of a managed bottlenose dolphin (Tursiops truncatus) emaciated due to severe digestive problems. Immunosuppression by chronic diseases and starvation decreased resistance against opportunistic infections. Sequencing analysis revealed that the fungi on the wound surface were Fusarium oxysporum, and antifungal susceptibility testing was performed. In the subcutaneous tissue, dematiaceous fungi were identified using histopathological examination. Combination antifungal treatment with voriconazole and terbinafine and surgical resection were performed, in addition to daily debridement with polyaminopropyl biguanide (PHMB) and betaine. Hematological examination revealed a reduction in inflammatory markers after antifungal treatment and surgical resection of necrotic tissue on the edge of the tail fin. The co-administration of synergistic agents voriconazole and terbinafine, in conjunction with surgical debridement, successfully eliminated pheohyphomycosis and fusariomycosis in the bottlenose dolphin. Wound healing was achieved using systematic antifungals and daily debridement with PHMB and betaine. This is the first report of successful treatment of pheohyphomycosis and fusariomycosis in a bottlenose dolphin using voriconazole and terbinafine combination therapy and surgical resection. Full article
(This article belongs to the Special Issue Veterinary Microbiology and Diagnostics)
Show Figures

Figure 1

22 pages, 3734 KiB  
Article
Identification of Two Common Bottlenose Dolphin (Tursiops truncatus) Ecotypes in the Guadeloupe Archipelago, Eastern Caribbean
by Rachel Haderlé, Laurent Bouveret, Bruno Serranito, Paula Méndez-Fernandez, Olivier Adam, Mélodie Penel, Jérôme Couvat, Iwan Le Berre and Jean-Luc Jung
Animals 2025, 15(1), 108; https://doi.org/10.3390/ani15010108 - 5 Jan 2025
Viewed by 3031
Abstract
The common bottlenose dolphin (Tursiops truncatus) exhibits significant intraspecific diversity globally, with distinct ecotypes identified in various regions. In the Guadeloupe archipelago, the citizen science NGO OMMAG has been monitoring these dolphins for over a decade, documenting two distinct morphotypes. This [...] Read more.
The common bottlenose dolphin (Tursiops truncatus) exhibits significant intraspecific diversity globally, with distinct ecotypes identified in various regions. In the Guadeloupe archipelago, the citizen science NGO OMMAG has been monitoring these dolphins for over a decade, documenting two distinct morphotypes. This study investigates whether these morphotypes represent coastal and oceanic ecotypes, which have not been previously identified in the region. We characterized morphological differences between the two morphotypes, analyzed genetic variation in individuals stranded around Guadeloupe over the past ten years, and modeled their habitats. Results revealed that these morphotypes align with the ecotypes described in the Atlantic Ocean, forming two distinct genetic groups corresponding to Caribbean ecotypes. Habitat modeling showed differences in habitat preferences between the morphotypes. These findings provide strong evidence for the existence of two distinct ecotypes of T. truncatus in Guadeloupe. Considering the varied risks of exposure to maritime traffic, our study suggests that these ecotypes should be managed as separate units within the species to better inform conservation strategies in the region. Full article
(This article belongs to the Special Issue Wildlife Genetic Diversity)
Show Figures

Figure 1

16 pages, 8319 KiB  
Article
Liver Lesions in Estuarine Dolphins in the Indian River Lagoon, Florida: Does Microcystin Play a Role?
by Ami Krasner, Wendy Noke Durden, Megan Stolen, Teresa Jablonski, Agatha Fabry, Annie Page, Wendy Marks, Cecilia Costa, H. C. D. Marley and Spencer Fire
Toxics 2024, 12(12), 858; https://doi.org/10.3390/toxics12120858 - 27 Nov 2024
Cited by 1 | Viewed by 1317
Abstract
Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC [...] Read more.
Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC exposure along the IRL include an increased risk of non-alcoholic liver disease among area residents. Yet, there are limited studies characterizing liver disease, as well as the potential role of MC, in humans and animals in this region. Thus, histopathology reports (n = 133) were reviewed in the stranded common bottlenose dolphin (Tursiops truncatus truncatus) (n = 156, 2005–2024) to describe liver lesions in this important IRL sentinel. Liver and fecal samples (n = 161) from stranded individuals were screened for MC via an enzyme immunoassay (ELISA). These samples were then confirmed via the 2-methyl-3-methoxy-4-phenylbutyric acid technique (MMPB) to evaluate whether liver histopathologic lesions were linked to MC exposure. Minimally invasive MC screening methods were also assessed using respiratory swabs and vapor. Inflammation (24%, n = 32), fibrosis (23%, n = 31), lipidosis/vacuolation (11%, n = 15), and necrosis (11%, n = 14) were the most common liver anomalies observed. These non-specific lesions have been reported to be associated with MC exposure in numerous species in the peer-reviewed literature. Ten bottlenose dolphins tested positive for the toxin via ELISA, including two individuals with hepatic lipidosis, but none were confirmed by MMPB. Thus, this study did not provide evidence for MC-induced liver disease in IRL bottlenose dolphins. Other causes should be considered for the lesions observed (e.g., heavy metals, metabolic disease, and endoparasites). Respiratory swabs require further validation as a pre-mortem MC screening tool in free-ranging wildlife. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

Back to TopTop