Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = blood C5-carnitine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1787 KiB  
Article
Plasma TMAO Concentrations and Gut Microbiota Composition in Subjects with and Without Metabolic Syndrome: Results from Pilot Study
by Mohammed E. Hefni, Cornelia M. Witthöft, Patrik Hellström, Ingegerd Johansson and Anders Esberg
Metabolites 2025, 15(6), 364; https://doi.org/10.3390/metabo15060364 - 30 May 2025
Viewed by 576
Abstract
Background/Objectives: Trimethylamine N-oxide (TMAO) is a gut microbiota-dependent metabolite considered as a risk metabolite for various non-communicable diseases. This study aims to identify differences in the gut microbiota composition and concentrations of TMAO and related metabolites in subjects with and without metabolic [...] Read more.
Background/Objectives: Trimethylamine N-oxide (TMAO) is a gut microbiota-dependent metabolite considered as a risk metabolite for various non-communicable diseases. This study aims to identify differences in the gut microbiota composition and concentrations of TMAO and related metabolites in subjects with and without metabolic syndrome (MetS). Methods: Plasma samples were collected following an overnight fast on two occasions from subjects with (n = 12) and without (n = 21) MetS. Feces samples were collected on the day before the first blood sampling. The gut microbiota was profiled using 16S rRNA full-gene amplification sequencing. TMAO and related methylamines were quantified using UPLC-MSMS. The fasted plasma glucose, plasma lipid profile, and HbA1c were determined, and blood pressure, circumference, height, and weight were measured. Results: A divergent gut microbiota composition was observed in feces samples from both groups. In contrast to subjects without MetS, subjects with MetS had a reduced microbial diversity, with lower Blautia glucerasea and higher Ruminococcus torques—a pattern associated with (increased) inflammation. Trimethylamine (TMA)-producing bacteria were low in abundance across both groups. While plasma TMAO and related methylamines displayed no significant differences between both groups, L-carnitine was elevated (p = 0.0191) in subjects with MetS. A strong positive correlation was detected between TMAO and TMA (r = 0.439, p = 0.003), with a tendency to correlate with carnitine (r = 0.212, p = 0.087). Conclusions: Subjects with MetS were characterized by gut microbiota favoring inflammation-associated species but not TMA producers. This suggests that TMAO may not play a role in MetS subjects without overt comorbidities, e.g., CVD or T2D. The influence of the gut microbiota on early MetS is likely mediated through inflammatory mechanisms driven by specific bacterial shifts rather than TMAO production. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

14 pages, 2223 KiB  
Article
Targeted Detection of 76 Carnitine Indicators Combined with a Machine Learning Algorithm Based on HPLC-MS/MS in the Diagnosis of Rheumatoid Arthritis
by Rui Zhang, Juan Wang, Xiaonan Zhai, Yuanbing Guo, Lei Zhou, Xiaoyan Hao, Liu Yang, Ruiqing Xing, Juanjuan Hu, Jiawei Gao, Fengjuan Wang, Jun Yang and Jiayun Liu
Metabolites 2025, 15(3), 205; https://doi.org/10.3390/metabo15030205 - 18 Mar 2025
Viewed by 650
Abstract
Background/Objectives: Early diagnosis and treatment of rheumatoid arthritis (RA) are essential to reducing disability. However, the diagnostic criteria remain unclear, relying on clinical symptoms and blood markers. Methods: Using high-performance liquid chromatography–mass spectrometry (HPLC-MS/MS) targeted detection, we evaluated 76 carnitine indicators (55 carnitines [...] Read more.
Background/Objectives: Early diagnosis and treatment of rheumatoid arthritis (RA) are essential to reducing disability. However, the diagnostic criteria remain unclear, relying on clinical symptoms and blood markers. Methods: Using high-performance liquid chromatography–mass spectrometry (HPLC-MS/MS) targeted detection, we evaluated 76 carnitine indicators (55 carnitines and 21 corresponding ratios) in the serum of patients with RA to investigate the role of carnitine in RA. A total of 359 patients (207 patients with RA and 152 healthy controls) were included in the study. Screening involved three methods and integrated 76 carnitine indicators and 128 clinical indicators to identify candidate markers to establish a theoretical basis for RA diagnosis and new therapeutic targets. The diagnostic model derived from the screened markers was validated using three machine learning algorithms. Results: The model was refined using eight candidate indicators (C0, C10:1, LYMPH, platelet distribution width, anti-keratin antibody, glucose, urobilinogen, and erythrocyte sedimentation rate (ESR)). The receiver operating characteristic curve, sensitivity, specificity, and accuracy of the V8 model obtained from the training set were >0.948, 79.46%, 92.99%, and 89.18%, whereas those of the test set were >0.925, 78.89%, 89.22%, and 85.87%, respectively. Twenty-four carnitines were identified as risk factors of RA, with three significantly correlating with ESR, four with anti-cyclic citrullinated peptide antibody activity, two with C-reactive protein, five with immunoglobulin-G, eight with immunoglobulin-A levels, and eleven with immunoglobulin-M levels. Conclusions: Carnitine is integral in the progression of RA. The diagnostic model developed shows excellent diagnostic capacity, improving early detection and enabling timely intervention to minimize disability associated with RA. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

30 pages, 6408 KiB  
Article
Metabolomic Insights into Smoking-Induced Metabolic Dysfunctions: A Comprehensive Analysis of Lipid and Amino Acid Metabolomes
by Muhammad Amtiaz Aslam, Hajra Iqbal, Kainat Ilyas, Kanwal Rehman, Amjad Hussain, Muhammad Sajid Hamid Akash, Mudassar Shahid and Shuqing Chen
Metabolites 2025, 15(2), 96; https://doi.org/10.3390/metabo15020096 - 4 Feb 2025
Cited by 1 | Viewed by 1371
Abstract
Background: Cigarette smoking is a leading cause of preventable mortality, largely due to the absence of effective, non-invasive biomarkers for early disease detection. Profiling serum metabolomics to identify metabolic changes holds the potential to accelerate the detection process and identify individuals at risk [...] Read more.
Background: Cigarette smoking is a leading cause of preventable mortality, largely due to the absence of effective, non-invasive biomarkers for early disease detection. Profiling serum metabolomics to identify metabolic changes holds the potential to accelerate the detection process and identify individuals at risk of developing smoking-related diseases. Objectives: This study investigated the biochemical and metabolomic changes induced by nicotine exposure, with a focus on disruptions in amino acid, lipid, and carbohydrate metabolism. Methods: Liquid chromatography–tandem mass spectrometry (LC-MS/MS) was employed to observe significant disruptions in lipid and amino acid metabolism, along with alterations in key metabolic pathways. A total of 400 smokers and 100 non-smokers were included to evaluate the biomarkers related to insulin resistance, blood lipid profile, inflammation, and kidney and liver function. Results: The results demonstrated significantly elevated (p < 0.05) levels of glycemic markers in smokers, including fasting blood glucose; glycated hemoglobin (HbA1c); and inflammatory markers such as interleukin-6 (IL-6) and C-reactive protein (CRP). Smokers also exhibited dyslipidemia, with increased total cholesterol (154.888 ± 35.565) and LDL levels (117.545 ± 24.138). Impaired liver and kidney function was evident, with significantly higher levels (p < 0.05) of AST, ALP, ALT, blood urea nitrogen, and creatinine in smokers. A total of 930 metabolites were identified, of which 343 exhibited significant alterations (p < 0.05) in smokers compared to non-smokers. Among these, 116 metabolites were upregulated, and 127 were downregulated. Metabolomic pathway analysis revealed eight significant pathways. The study also identified three lipid metabolites specific to smokers and seven unique to non-smokers. Through LC-MS/MS, fragments of phenylalanine, tryptophan, valine, histidine, carnitine, and sphinganine were detected. Several lipidomic changes associated with insulin resistance and cardiovascular complications were observed. Cadmium (Cd) levels were higher in smokers than non-smokers (1.264 ppb vs. 0.624 ppb) and showed a strong negative correlation (R2 = 0.8061, p-value = 0.015) with serum zinc (Zn), likely due to Cd displacing Zn in proteins and causing nephrotoxicity through accumulation. Conclusions: This study highlights the distinct metabolic disruptions caused by smoking that could serve as potential biomarkers for the early detection of metabolic diseases. It emphasizes the importance of metabolomics in identifying systemic indicators of smoking-related health issues, providing new opportunities for preventive and therapeutic interventions. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

35 pages, 8876 KiB  
Article
Unravelling Faecal Microbiota Variations in Equine Atypical Myopathy: Correlation with Blood Markers and Contribution of Microbiome
by Anne-Christine François, Carla Cesarini, Bernard Taminiau, Benoît Renaud, Caroline-Julia Kruse, François Boemer, Gunther van Loon, Katrien Palmers, Georges Daube, Clovis P. Wouters, Laureline Lecoq, Pascal Gustin and Dominique-Marie Votion
Animals 2025, 15(3), 354; https://doi.org/10.3390/ani15030354 - 26 Jan 2025
Viewed by 795
Abstract
Hypoglycin A and methylenecyclopropylglycine are protoxins responsible for atypical myopathy in equids. These protoxins are converted into toxins that inhibit fatty acid β-oxidation, leading to blood accumulation of acylcarnitines and toxin conjugates, such as methylenecyclopropylacetyl-carnitine. The enzymes involved in this activation are [...] Read more.
Hypoglycin A and methylenecyclopropylglycine are protoxins responsible for atypical myopathy in equids. These protoxins are converted into toxins that inhibit fatty acid β-oxidation, leading to blood accumulation of acylcarnitines and toxin conjugates, such as methylenecyclopropylacetyl-carnitine. The enzymes involved in this activation are also present in some prokaryotic cells, raising questions about the potential role of intestinal microbiota in the development of intoxication. Differences have been noted between the faecal microbiota of cograzers and atypical myopathy-affected horses. However, recent blood acylcarnitines profiling revealed subclinical cases among cograzers, challenging their status as a control group. This study investigates the faecal microbiota of horses clinically affected by atypical myopathy, their cograzers, and a control group of toxin-free horses while analysing correlations between microbiota composition and blood parameters. Faecal samples were analysed using 16S amplicon sequencing, revealing significant differences in α-diversity, evenness, and β-diversity. Notable differences were found between several genera, especially Clostridia_ge, Bacteria_ge, Firmicutes_ge, Fibrobacter, and NK4A214_group. Blood levels of methylenecyclopropylacetyl-carnitine and C14:1 correlated with variations in faecal microbial composition. The theoretical presence of enzymes in bacterial populations was also investigated. These results underscore the critical need to investigate the potential role of intestinal microbiota in this poisoning and may provide insights for developing prevention and treatment strategies. Full article
(This article belongs to the Special Issue Pasture-Associated Poisoning in Grazing Animals)
Show Figures

Figure 1

16 pages, 484 KiB  
Article
Fatty Acid β-Oxidation May Be Associated with the Erythropoietin Resistance Index in Stable Patients Undergoing Haemodialysis
by Shuhei Kidoguchi, Kunio Torii, Toshiharu Okada, Tomoko Yamano, Nanami Iwamura, Kyoko Miyagi, Tadashi Toyama, Masayuki Iwano, Ryoichi Miyazaki, Yosuke Shigematsu and Hideki Kimura
Diagnostics 2024, 14(20), 2295; https://doi.org/10.3390/diagnostics14202295 - 16 Oct 2024
Viewed by 1611
Abstract
Background/Objectives: Lipid metabolism and adiponectin modulate erythropoiesis in vitro and in general population studies and may also affect responsiveness to erythropoietin in patients undergoing haemodialysis (HD). However, little is known about the impact of lipid-associated biomarkers on reticulocyte production and erythropoietin resistance index [...] Read more.
Background/Objectives: Lipid metabolism and adiponectin modulate erythropoiesis in vitro and in general population studies and may also affect responsiveness to erythropoietin in patients undergoing haemodialysis (HD). However, little is known about the impact of lipid-associated biomarkers on reticulocyte production and erythropoietin resistance index (ERI) in patients undergoing HD. Therefore, we aimed to investigate their impacts in 167 stable patients undergoing HD. Methods: Pre-dialysis blood samples were collected and analysed for reticulocyte counts and serum lipid profiles by routine analyses and serum carnitine profiles (C0–C18) by LC-MS/MS. ERI was calculated as erythropoietin dose/kg/week normalized for haemoglobin levels. Results: The independent positive determinants of reticulocyte count were log [Triglyceride (TG)] and logC18:1. A large proportion of longer-chain acylcarnitines was positively correlated with reticulocyte counts, possibly resulting from the accumulation of acylcarnitines in mitochondria undergoing fateful exocytosis from reticulocytes. These results indicate a possible association between reticulocyte formation and reduced β-oxidation, which occurs during the peripheral phase of erythroblast enucleation. Total cholesterol (TC) and log [C2/(C16 + C18:1)] as a putative marker of β-oxidation efficiency were negative independent determinants of ERI. Moreover, acyl chain length had a significantly positive impact on the correlation coefficients of individual acylcarnitines with ERI, suggesting that enhanced β-oxidation may be associated with reduced ERI. Finally, adiponectin had no independent association with reticulocyte counts or ERI despite its negative association with HDL-C levels. Conclusions: Enhanced fatty acid β-oxidation and higher TC levels may be associated with lower ERI, whereas higher TG levels and longer acylcarnitines may be related to the latest production of reticulocytes in stable patients undergoing HD. Full article
Show Figures

Graphical abstract

18 pages, 2769 KiB  
Article
Dried Blood Spot Metabolome Features of Ischemic–Hypoxic Encephalopathy: A Neonatal Rat Model
by Chupalav Eldarov, Natalia Starodubtseva, Yulia Shevtsova, Kirill Goryunov, Oleg Ionov, Vladimir Frankevich, Egor Plotnikov, Gennady Sukhikh, Dmitry Zorov and Denis Silachev
Int. J. Mol. Sci. 2024, 25(16), 8903; https://doi.org/10.3390/ijms25168903 - 15 Aug 2024
Cited by 4 | Viewed by 1583
Abstract
Hypoxic–ischemic encephalopathy (HIE) is a severe neurological disorder caused by perinatal asphyxia with significant consequences. Early recognition and intervention are crucial, with therapeutic hypothermia (TH) being the primary treatment, but its efficacy depends on early initiation of treatment. Accurately assessing the HIE severity [...] Read more.
Hypoxic–ischemic encephalopathy (HIE) is a severe neurological disorder caused by perinatal asphyxia with significant consequences. Early recognition and intervention are crucial, with therapeutic hypothermia (TH) being the primary treatment, but its efficacy depends on early initiation of treatment. Accurately assessing the HIE severity in neonatal care poses challenges, but omics approaches have made significant contribution to understanding its complex pathophysiology. Our study further explores the impact of HIE on the blood metabolome over time and investigated changes associated with hypothermia’s therapeutic effects. Using a rat model of hypoxic–ischemic brain injury, we comprehensively analyzed dried blood spot samples for fat-soluble compounds using HPLC-MS. Our research shows significant changes in the blood metabolome after HIE, with a particularly rapid recovery of lipid metabolism observed. Significant changes in lipid metabolites were observed after 3 h of HIE, including increases in ceramides, carnitines, certain fatty acids, phosphocholines, and phosphoethanolamines, while sphingomyelins and N-acylethanolamines (NAEs) decreased (p < 0.05). Furthermore, NAEs were found to be significant features in the OPLS-DA model for HIE diagnosis, with an area under the curve of 0.812. TH showed a notable association with decreased concentrations of ceramides. Enrichment analysis further corroborated these observations, showing modulation in several key metabolic pathways, including arachidonic acid oxylipin metabolism, eicosanoid metabolism via lipooxygenases, and leukotriene C4 synthesis deficiency. Our study reveals dynamic changes in the blood metabolome after HIE and the therapeutic effects of hypothermia, which improves our understanding of the pathophysiology of HIE and could lead to the development of new rapid diagnostic approaches for neonatal HIE. Full article
Show Figures

Figure 1

14 pages, 1448 KiB  
Article
Potential Application of the Myocardial Scintigraphy Agent [123I]BMIPP in Colon Cancer Cell Imaging
by Kakeru Sato, Yuka Hirayama, Asuka Mizutani, Jianwei Yao, Jinya Higashino, Yuto Kamitaka, Yuka Muranaka, Kana Yamazaki, Ryuichi Nishii, Masato Kobayashi and Keiichi Kawai
Int. J. Mol. Sci. 2024, 25(14), 7747; https://doi.org/10.3390/ijms25147747 - 15 Jul 2024
Viewed by 1824
Abstract
[123I]β-methyl-p-iodophenyl-pentadecanoic acid ([123I]BMIPP), which is used for nuclear medicine imaging of myocardial fatty acid metabolism, accumulates in cancer cells. However, the mechanism of accumulation remains unknown. Therefore, this study aimed to elucidate the accumulation and accumulation mechanism of [ [...] Read more.
[123I]β-methyl-p-iodophenyl-pentadecanoic acid ([123I]BMIPP), which is used for nuclear medicine imaging of myocardial fatty acid metabolism, accumulates in cancer cells. However, the mechanism of accumulation remains unknown. Therefore, this study aimed to elucidate the accumulation and accumulation mechanism of [123I]BMIPP in cancer cells. We compared the accumulation of [123I]BMIPP in cancer cells with that of [18F]FDG and found that [123I]BMIPP was a much higher accumulation than [18F]FDG. The accumulation of [123I]BMIPP was evaluated in the presence of sulfosuccinimidyl oleate (SSO), a CD36 inhibitor, and lipofermata, a fatty acid transport protein (FATP) inhibitor, under low-temperature conditions and in the presence of etomoxir, a carnitine palmitoyl transferase I (CPT1) inhibitor. The results showed that [123I]BMIPP accumulation was decreased in the presence of SSO and lipofermata in H441, LS180, and DLD-1 cells, suggesting that FATPs and CD36 are involved in [123I]BMIPP uptake in cancer cells. [123I]BMIPP accumulation in all cancer cell lines was significantly decreased at 4 °C compared to that at 37 °C and increased in the presence of etomoxir in all cancer cell lines, suggesting that the accumulation of [123I]BMIPP in cancer cells is metabolically dependent. In a biological distribution study conducted using tumor-bearing mice transplanted with LS180 cells, [123I]BMIPP highly accumulated in not only LS180 cells but also normal tissues and organs (including blood and muscle). The tumor-to-intestine or large intestine ratios of [123I]BMIPP were similar to those of [18F]FDG, and the tumor-to-large-intestine ratios exceeded 1.0 during 30 min after [123I]BMIPP administration in the in vivo study. [123I]BMIPP is taken up by cancer cells via CD36 and FATP and incorporated into mitochondria via CPT1. Therefore, [123I]BMIPP may be useful for imaging cancers with activated fatty acid metabolism, such as colon cancer. However, the development of novel imaging radiotracers based on the chemical structure analog of [123I]BMIPP is needed. Full article
(This article belongs to the Special Issue The Role of Nuclear Medicine in Cancer Diagnosis and Therapy)
Show Figures

Figure 1

15 pages, 1773 KiB  
Article
Maternal Serum Metabolomics in Mid-Pregnancy Identifies Lipid Pathways as a Key Link to Offspring Obesity in Early Childhood
by Ellen C. Francis, Katerina Kechris, Randi K. Johnson, Shristi Rawal, Wimal Pathmasiri, Blake R. Rushing, Xiuxia Du, Thomas Jansson, Dana Dabelea, Susan J. Sumner and Wei Perng
Int. J. Mol. Sci. 2024, 25(14), 7620; https://doi.org/10.3390/ijms25147620 - 11 Jul 2024
Cited by 4 | Viewed by 2225
Abstract
Maternal metabolism during pregnancy shapes offspring health via in utero programming. In the Healthy Start study, we identified five subgroups of pregnant women based on conventional metabolic biomarkers: Reference (n = 360); High HDL-C (n = 289); Dyslipidemic–High TG (n [...] Read more.
Maternal metabolism during pregnancy shapes offspring health via in utero programming. In the Healthy Start study, we identified five subgroups of pregnant women based on conventional metabolic biomarkers: Reference (n = 360); High HDL-C (n = 289); Dyslipidemic–High TG (n = 149); Dyslipidemic–High FFA (n = 180); Insulin Resistant (IR)–Hyperglycemic (n = 87). These subgroups not only captured metabolic heterogeneity among pregnant participants but were also associated with offspring obesity in early childhood, even among women without obesity or diabetes. Here, we utilize metabolomics data to enrich characterization of the metabolic subgroups and identify key compounds driving between-group differences. We analyzed fasting blood samples from 1065 pregnant women at 18 gestational weeks using untargeted metabolomics. We used weighted gene correlation network analysis (WGCNA) to derive a global network based on the Reference subgroup and characterized distinct metabolite modules representative of the different metabolomic profiles. We used the mummichog algorithm for pathway enrichment and identified key compounds that differed across the subgroups. Eight metabolite modules representing pathways such as the carnitine–acylcarnitine translocase system, fatty acid biosynthesis and activation, and glycerophospholipid metabolism were identified. A module that included 189 compounds related to DHA peroxidation, oxidative stress, and sex hormone biosynthesis was elevated in the Insulin Resistant–Hyperglycemic vs. the Reference subgroup. This module was positively correlated with total cholesterol (R:0.10; p-value < 0.0001) and free fatty acids (R:0.07; p-value < 0.05). Oxidative stress and inflammatory pathways may underlie insulin resistance during pregnancy, even below clinical diabetes thresholds. These findings highlight potential therapeutic targets and strategies for pregnancy risk stratification and reveal mechanisms underlying the developmental origins of metabolic disease risk. Full article
Show Figures

Figure 1

19 pages, 7798 KiB  
Article
Effects of Fat and Carnitine on the Expression of Carnitine Acetyltransferase and Enoyl-CoA Hydratase Short-Chain 1 in the Liver of Juvenile GIFT (Oreochromis niloticus)
by Ruijie Guo, Kai Huang, Kai Yu, Jinghua Li, Jiao Huang, Dandan Wang and Yuda Li
Genes 2024, 15(4), 480; https://doi.org/10.3390/genes15040480 - 10 Apr 2024
Viewed by 1430
Abstract
Carnitine acetyltransferase (CAT) and Enoyl-CoA hydratase short-chain 1 (ECHS1) are considered key enzymes that regulate the β-oxidation of fatty acids. However, very few studies have investigated their full length and expression in genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture [...] Read more.
Carnitine acetyltransferase (CAT) and Enoyl-CoA hydratase short-chain 1 (ECHS1) are considered key enzymes that regulate the β-oxidation of fatty acids. However, very few studies have investigated their full length and expression in genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China. Here, we cloned CAT and ECHS1 full-length cDNA via the rapid amplification of cDNA ends, and the expressions of CAT and ECHS1 in the liver of juvenile GIFT were detected in different fat and carnitine diets, as were the changes in the lipometabolic enzymes and serum biochemical indexes of juvenile GIFT in diets with different fat and carnitine levels. CAT cDNA possesses an open reading frame (ORF) of 2167 bp and encodes 461 amino acids, and the ECHS1 cDNA sequence is 1354 bp in full length, the ORF of which encodes a peptide of 391 amino acids. We found that juvenile GIFT had higher lipometabolic enzyme activity and lower blood CHOL, TG, HDL-C, and LDL-C contents when the dietary fat level was 2% or 6% and when the carnitine level was 500 mg/kg. We also found that the expression of ECHS1 and CAT genes in the liver of juvenile GIFT can be promoted by a 500 mg/kg carnitine level and 6% fat level feeding. These results suggested that CAT and ECHS1 may participate in regulating lipid metabolism, and when 2% or 6% fat and 500 mg/kg carnitine are added to the feed, it is the most beneficial to the liver and lipid metabolism of juvenile GIFT. Our results may provide a theoretical basis for GIFT feeding and treating fatty liver disease. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2232 KiB  
Article
Metabolic Profiles and Blood Biomarkers to Discriminate between Benign Thyroid Nodules and Papillary Carcinoma, Based on UHPLC-QTOF-ESI+-MS Analysis
by Gabriela Maria Berinde, Andreea Iulia Socaciu, Mihai Adrian Socaciu, Gabriel Emil Petre, Carmen Socaciu and Doina Piciu
Int. J. Mol. Sci. 2024, 25(6), 3495; https://doi.org/10.3390/ijms25063495 - 20 Mar 2024
Cited by 6 | Viewed by 2001
Abstract
In this study, serum metabolic profiling of patients diagnosed with papillary thyroid carcinoma (PTC) and benign thyroid pathologies (BT) aimed to identify specific biomarkers and altered pathways when compared with healthy controls (C). The blood was collected after a histological confirmation from PTC [...] Read more.
In this study, serum metabolic profiling of patients diagnosed with papillary thyroid carcinoma (PTC) and benign thyroid pathologies (BT) aimed to identify specific biomarkers and altered pathways when compared with healthy controls (C). The blood was collected after a histological confirmation from PTC (n = 24) and BT patients (n = 31) in parallel with healthy controls (n = 81). The untargeted metabolomics protocol was applied by UHPLC-QTOF-ESI+-MS analysis and the statistical analysis was performed using the MetaboAnalyst 5.0 platform. The partial least squares-discrimination analysis, including VIP values, random forest graphs, and heatmaps (p < 0.05), was complemented with biomarker analysis (with AUROC ranking) and pathway analysis, suggesting a model for abnormal metabolic pathways in PTC and BT based on 166 identified metabolites. There were 11 classes of putative biomarkers selected that were involved in altered metabolic pathways, e.g., polar molecules (amino acids and glycolysis metabolites, purines and pyrimidines, and selenium complexes) and lipids including free fatty acids, bile acids, acylated carnitines, corticosteroids, prostaglandins, and phospholipids. Specific biomarkers of discrimination were identified in each class of metabolites and upregulated or downregulated comparative to controls, PTC group, and BT group. The lipidomic window was revealed to be more relevant for finding biomarkers related to thyroid carcinoma or benign thyroid nodules, since our study reflected a stronger involvement of lipids and selenium-related molecules in metabolic discrimination. Full article
(This article belongs to the Special Issue New Advances in Thyroid Cancer)
Show Figures

Figure 1

12 pages, 3518 KiB  
Article
Maternal Acylcarnitine Disruption as a Potential Predictor of Preterm Birth in Primigravida: A Preliminary Investigation
by Ying-Chieh Han, Katarina Laketic, Kylie K. Hornaday, Donna M. Slater, Chunlong Mu, Suzanne C. Tough and Jane Shearer
Nutrients 2024, 16(5), 595; https://doi.org/10.3390/nu16050595 - 22 Feb 2024
Cited by 3 | Viewed by 1787
Abstract
Preterm birth, defined as any birth before 37 weeks of completed gestation, poses adverse health risks to both mothers and infants. Despite preterm birth being associated with several risk factors, its relationship to maternal metabolism remains unclear, especially in first-time mothers. Aims of [...] Read more.
Preterm birth, defined as any birth before 37 weeks of completed gestation, poses adverse health risks to both mothers and infants. Despite preterm birth being associated with several risk factors, its relationship to maternal metabolism remains unclear, especially in first-time mothers. Aims of the present study were to identify maternal metabolic disruptions associated with preterm birth and to evaluate their predictive potentials. Blood was collected, and the serum harvested from the mothers of 24 preterm and 42 term births at 28–32 weeks gestation (onset of the 3rd trimester). Serum samples were assayed by untargeted metabolomic analyses via liquid chromatography/mass spectrometry (QTOF-LC/MS). Metabolites were annotated by inputting the observed mass-to-charge ratio into the Human Metabolome Database (HMDB). Analysis of 181 identified metabolites by PLS-DA modeling using SIMCA (v17) showed reasonable separation between the two groups (CV-ANOVA, p = 0.02). Further statistical analysis revealed lower serum levels of various acyl carnitines and amino acid metabolites in preterm mothers. Butenylcarnitine (C4:1), a short-chain acylcarnitine, was found to be the most predictive of preterm birth (AUROC = 0.73, [CI] 0.60–0.86). These observations, in conjuncture with past literature, reveal disruptions in fatty acid oxidation and energy metabolism in preterm primigravida. While these findings require validation, they reflect altered metabolic pathways that may be predictive of preterm delivery in primigravida. Full article
Show Figures

Graphical abstract

12 pages, 1462 KiB  
Article
Using the C14:1/Medium-Chain Acylcarnitine Ratio Instead of C14:1 to Reduce False-Positive Results for Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency in Newborn Screening in Japan
by Go Tajima, Junko Aisaki, Keiichi Hara, Miyuki Tsumura, Reiko Kagawa, Fumiaki Sakura, Hideo Sasai, Miori Yuasa, Yosuke Shigematsu and Satoshi Okada
Int. J. Neonatal Screen. 2024, 10(1), 15; https://doi.org/10.3390/ijns10010015 - 20 Feb 2024
Cited by 3 | Viewed by 2685
Abstract
Very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a long-chain fatty acid oxidation disorder that manifests as either a severe phenotype associated with cardiomyopathy, a hypoglycemic phenotype, or a myopathic phenotype. As the hypoglycemic phenotype can cause sudden infant death, VLCAD deficiency is included in [...] Read more.
Very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a long-chain fatty acid oxidation disorder that manifests as either a severe phenotype associated with cardiomyopathy, a hypoglycemic phenotype, or a myopathic phenotype. As the hypoglycemic phenotype can cause sudden infant death, VLCAD deficiency is included in newborn screening (NBS) panels in many countries. The tetradecenoylcarnitine (C14:1) level in dried blood specimens is commonly used as a primary marker for VLCAD deficiency in NBS panels. Its ratio to acetylcarnitine (C2) and various other acylcarnitines is used as secondary markers. In Japan, tandem mass spectrometry-based NBS, initially launched as a pilot study in 1997, was introduced to the nationwide NBS program in 2013. In the present study, we evaluated levels of acylcarnitine with various chain lengths (C18 to C2), free carnitine, and their ratios in 175 infants who tested positive for VLCAD deficiency with C14:1 and C14:1/C2 ratios. Our analyses indicated that the ratios of C14:1 to medium-chain acylcarnitines (C10, C8, and C6) were the most effective markers in reducing false-positive rates. Their use with appropriate cutoffs is expected to improve NBS performance for VLCAD deficiency. Full article
(This article belongs to the Collection Newborn Screening in Japan)
Show Figures

Figure 1

14 pages, 787 KiB  
Article
Cord Blood Metabolite Profiles and Their Association with Autistic Traits in Childhood
by Christin S. Kaupper, Sophia M. Blaauwendraad, Charlotte A. M. Cecil, Rosa H. Mulder, Romy Gaillard, Romy Goncalves, Ingo Borggraefe, Berthold Koletzko and Vincent W. V. Jaddoe
Metabolites 2023, 13(11), 1140; https://doi.org/10.3390/metabo13111140 - 9 Nov 2023
Cited by 2 | Viewed by 2389
Abstract
Autism Spectrum Disorder (ASD) is a diverse neurodevelopmental condition. Gene–environmental interactions in early stages of life might alter metabolic pathways, possibly contributing to ASD pathophysiology. Metabolomics may serve as a tool to identify underlying metabolic mechanisms contributing to ASD phenotype and could help [...] Read more.
Autism Spectrum Disorder (ASD) is a diverse neurodevelopmental condition. Gene–environmental interactions in early stages of life might alter metabolic pathways, possibly contributing to ASD pathophysiology. Metabolomics may serve as a tool to identify underlying metabolic mechanisms contributing to ASD phenotype and could help to unravel its complex etiology. In a population-based, prospective cohort study among 783 mother–child pairs, cord blood serum concentrations of amino acids, non-esterified fatty acids, phospholipids, and carnitines were obtained using liquid chromatography coupled with tandem mass spectrometry. Autistic traits were measured at the children’s ages of 6 (n = 716) and 13 (n = 648) years using the parent-reported Social Responsiveness Scale. Lower cord blood concentrations of SM.C.39.2 and NEFA16:1/16:0 were associated with higher autistic traits among 6-year-old children, adjusted for sex and age at outcome. After more stringent adjustment for confounders, no significant associations of cord blood metabolites and autistic traits at ages 6 and 13 were detected. Differences in lipid metabolism (SM and NEFA) might be involved in ASD-related pathways and are worth further investigation. Full article
Show Figures

Figure 1

15 pages, 1084 KiB  
Article
A Combination of Soy Isoflavone and L-Carnitine Improves Running Endurance in Mice
by Jaewon Lee, Yoonjoe Joh, Cheoljun Choi, Kyungmin Kim and Yun-Hee Lee
Nutrients 2023, 15(17), 3678; https://doi.org/10.3390/nu15173678 - 22 Aug 2023
Cited by 1 | Viewed by 2180
Abstract
The present study aimed to investigate the effect of APIC, a mixture containing soy isoflavone and L-carnitine on running endurance. Male C57BL/6 mice were orally administered APIC for 8 weeks. The APIC group exhibited a significant increase in treadmill running time until exhaustion [...] Read more.
The present study aimed to investigate the effect of APIC, a mixture containing soy isoflavone and L-carnitine on running endurance. Male C57BL/6 mice were orally administered APIC for 8 weeks. The APIC group exhibited a significant increase in treadmill running time until exhaustion compared to the control group. The respiratory exchange ratio in the APIC group was lower, indicating an enhancement in fatty acid oxidative metabolism. Furthermore, APIC supplementation increased the proportion of oxidative myofibers. Biochemical parameters associated with endurance capacity were also affected by APIC, as evidenced by increased muscle ATP levels and decreased levels of muscle triglycerides and blood lactate. qPCR and immunoblot analysis of C2C12 myotubes and gastrocnemius muscles indicated that APIC treatment stimulated AMPK signaling, mitochondrial biogenesis, and fatty acid metabolism. Additionally, treatment with APIC led to an increased oxygen consumption rate in C2C12 myotubes. Collectively, these findings suggest that APIC supplementation enhances mitochondrial biogenesis, promotes a switch from glycolytic to oxidative fiber types, and improves fatty acid metabolism through the activation of the AMPK signaling pathway in murine skeletal muscle. Ultimately, these effects contribute to the enhancement of running endurance. Full article
(This article belongs to the Special Issue Dietary Phytoestrogens and Health)
Show Figures

Graphical abstract

9 pages, 4244 KiB  
Case Report
Delayed Biotin Therapy in a Child with Atypical Profound Biotinidase Deficiency: Late Arrival of the Truth and a Lesson Worth Thinking
by Shu Liu, Ye Zhang, Zhi Deng, Hui He, Xianhua Zheng, Qingshan Hong and Xianqiong Luo
Int. J. Mol. Sci. 2023, 24(12), 10239; https://doi.org/10.3390/ijms241210239 - 16 Jun 2023
Cited by 4 | Viewed by 3251
Abstract
Biotinidase (BTD) deficiency (OMIM 253260) is an autosomal recessively inherited metabolic disorder resulting from deficient activity of the BTD enzyme, which can cleave and release biotin from a variety of biotin-dependent carboxylases, and is therefore recognized as a tool to recycle biotin. Being [...] Read more.
Biotinidase (BTD) deficiency (OMIM 253260) is an autosomal recessively inherited metabolic disorder resulting from deficient activity of the BTD enzyme, which can cleave and release biotin from a variety of biotin-dependent carboxylases, and is therefore recognized as a tool to recycle biotin. Being a condition caused by variations on BTD gene with a consequence of free biotin shortage, BTD deficiency may impair the activity of biotin-dependent carboxylases, and thus bring about a buildup of potentially toxic compounds in the body, primarily 3-hydroxyisovaleryl-carnitine in plasma as well as 3-hydroxyisovaleric acid in urine. The phenotype of BTD deficiency may vary dramatically, from asymptomatic adults to severe neurological anomalies, even death in infancy. In the present study, we reported on a 5-month-old boy, whose parents sought for medical consultation in our clinic for their son due to his loss of consciousness, repeated tetany, and motor retardation. Detailed clinical features included severe psychomotor retardation, hypotonia, as well as failure to thrive. The brain MRI at 12 months showed cerebellar hypoplasia and multiple foci of leukodystrophy. The result of antiepileptic therapy was not satisfying. During hospitalization, BTD deficiency was suggested by elevated concentration of 3-hydroxyisovaleryl-carnitine in the blood spots and 3-hydroxyisovaleric acid in the urine. The child was then diagnosed with profound BTD deficiency based on the above findings and low BTD enzyme activity. Subsequent mutational analysis revealed a novel homozygous variant, c.637_637delC (p.H213Tfs*51) in exon 4 of BTD gene in the proband, which was recognized as a further support to the diagnosis. Therefore, biotin treatment was started immediately, eventually with satisfactory outcomes achieved in terms of prevention of epileptic seizure, performance in deep tendon reflexes, and improvement of muscular hypotonia, but unfortunately, the therapy failed to show any evident effects on poor feeding and intellectual disability. This painful lesson suggests that newborn screening for inherited metabolic diseases is essential for early identification and treatment, which should have been performed in this case to avoid this tragedy. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop