Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,278)

Search Parameters:
Keywords = blending technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7027 KB  
Article
BPANS: A Turbulence Model That Spans the Speed Range from Subsonic to Supersonic Flows
by Gabriel Nastac, Noah Schwalb and Abdelkader Frendi
Aerospace 2026, 13(2), 119; https://doi.org/10.3390/aerospace13020119 - 26 Jan 2026
Abstract
Unsteady turbulent flows are present in most engineering applications of practical relevance. In aeronautics, these applications span the speed range from subsonic to hypersonic flows. Thus, it is important that our mathematical models and numerical techniques can represent the various flow regimes in [...] Read more.
Unsteady turbulent flows are present in most engineering applications of practical relevance. In aeronautics, these applications span the speed range from subsonic to hypersonic flows. Thus, it is important that our mathematical models and numerical techniques can represent the various flow regimes in a seamless way. The latter is the main motivation of the current paper, which extends the PANS turbulence model to compressible and high-speed flows. The new model, called BPANS-CC, blends the (k,ε) and (k,ω) versions of PANS. In addition, compressibility correction is added to the new model to expand its simulation range into the compressible high-speed flow regime. The new model was implemented in various CFD software, both academic and commercial. Several well-known benchmark problems were used to test the new model, and the results are in good agreement with experimental data. Full article
(This article belongs to the Special Issue Advancing Fluid Dynamics in Aerospace Applications)
Show Figures

Figure 1

27 pages, 17514 KB  
Article
Respirometry and X-Ray Microtomography for a Comprehensive Assessment of Textile Biodegradation in Soil
by Ainhoa Sánchez-Martínez, Marilés Bonet-Aracil, Ignacio Montava and Jaime Gisbert-Payá
Textiles 2026, 6(1), 14; https://doi.org/10.3390/textiles6010014 - 26 Jan 2026
Abstract
The textile industry generates significant volumes of waste, making the development of reliable methods to evaluate biodegradability a pressing need. While standardised protocols exist for plastics, no specific methodologies have been established for textiles, and the quantification of non-degraded residues is commonly based [...] Read more.
The textile industry generates significant volumes of waste, making the development of reliable methods to evaluate biodegradability a pressing need. While standardised protocols exist for plastics, no specific methodologies have been established for textiles, and the quantification of non-degraded residues is commonly based on mass loss: a measurement that is prone to recovery errors. This study investigated the biodegradation of cotton, polyester, and cotton/polyester blend fabrics in soil under thermophilic conditions using a combined methodological approach. Carbon mineralisation was quantified through a respirometric assay that was specifically adapted for textile substrates, while residual solid fractions were assessed in situ by X-ray microtomography (micro-CT), thus avoiding artefacts associated with sample recovery. Complementary analyses were performed using SEM and FTIR to characterise morphological and chemical changes. Results showed substantial biodegradation of cotton, negligible degradation of polyester, and intermediate behaviour for the cotton/polyester blend. Micro-CT enabled the visualisation of fibre fragmentation and the quantification of the residual. The integration of respirometric, imaging, and spectroscopic techniques provided a comprehensive assessment of textile biodegradability. This study highlights the potential of micro-CT as a non-destructive tool to improve the accuracy and robustness of textile biodegradability assessment by enabling direct quantification of the residual solid fraction that can support future LCA studies and the development of standardised protocols for textile biodegradability. Full article
Show Figures

Graphical abstract

40 pages, 5950 KB  
Review
Innovative Physical and Chemical Strategies for the Modification and Development of Polymeric Microfiltration Membranes—A Review
by Mohammad Ebrahimi
Polymers 2026, 18(3), 311; https://doi.org/10.3390/polym18030311 - 23 Jan 2026
Viewed by 196
Abstract
Polymeric microfiltration membranes are among the most utilized pressure-driven membranes due to their excellent permeation flux, moderate removal efficiency, low operating pressure, low cost, as well as their potential for reusability and cleanability. Therefore, these membranes are used in different crucial sectors, including [...] Read more.
Polymeric microfiltration membranes are among the most utilized pressure-driven membranes due to their excellent permeation flux, moderate removal efficiency, low operating pressure, low cost, as well as their potential for reusability and cleanability. Therefore, these membranes are used in different crucial sectors, including the water and wastewater, dairy, beverage, and pharmaceutical industries. However, well-known polymeric microfiltration membranes suffer from their poor hydrophilic properties, causing fouling phenomenon. A reduction in permeate flux, a shortened operational lifespan, and increased energy consumption are the primary negative consequences of membrane fouling. Over the years, a broad spectrum of studies has been performed to modify polymeric microfiltration membranes to improve their hydrophilic, transport, and antifouling characteristics. Despite extensive research, this issue remains a subject of ongoing discussion and scrutiny within the scientific community. This review article provides promising information about different physical and chemical modification methods—such as polymer blending, the incorporation of nanomaterials, surface coating, chemical crosslinking, in situ nanoparticle immobilization, and chemical surface functionalization—for polymeric microfiltration membranes. The physical and chemical modification methods are comparatively evaluated, highlighting their positive and negative aspects, supported by findings from recent investigations. Moreover, promising ideas and future-oriented techniques were proposed to obtain polymeric microfiltration membranes containing superior efficiency, extended service life, and mechanical strength. Full article
(This article belongs to the Special Issue Innovative Polymers and Technology for Membrane Fabrication)
56 pages, 5116 KB  
Review
Biobased Polymers in Printed Electronics: From Renewable Resources to Functional Devices
by Dimitra Karavasili, Kyriaki Lazaridou, Maria Angeliki Ntrivala, Andreas Chrysovalantis Pitsavas, Zafeiria Baziakou, Maria Papadimitriou, Nikolaos D. Bikiaris, Evangelia Balla and Ζoi Terzopoulou
Polymers 2026, 18(2), 301; https://doi.org/10.3390/polym18020301 - 22 Jan 2026
Viewed by 127
Abstract
Printed electronics (PE) have emerged as a rapidly growing technology owing to their potential for low-cost fabrication, flexibility, and scalable device manufacturing. The dependence on fossil-based components raises environmental concerns, leading the scientific community toward sustainable solutions, aiming to reduce the accumulation of [...] Read more.
Printed electronics (PE) have emerged as a rapidly growing technology owing to their potential for low-cost fabrication, flexibility, and scalable device manufacturing. The dependence on fossil-based components raises environmental concerns, leading the scientific community toward sustainable solutions, aiming to reduce the accumulation of electronic waste (e-waste) in the environment and the emission of toxic gases, as well as to offer a circular solution in the sector. This review presents an in-depth overview of biobased polymeric materials in printed and organic (bio-)electronics. Firstly, the principal printing techniques are presented in detail. The review proceeds by outlining the various biobased synthetic and natural polymers, along with their blends, that are employed in the fabrication of biobased substrates for printed devices. Finally, the review emphasizes the existing challenges and constraints in the field of PE, along with the promising opportunities for its future advancement. Full article
(This article belongs to the Collection Biodegradable Polymers and Polymeric Composite)
Show Figures

Graphical abstract

13 pages, 1600 KB  
Article
An Accessible Method for the Quantitative Determination of Succinimide Additives in Diesel Fuel
by Marcella Frauscher, Bettina Ronai, Nicole Dörr and Alexandra Rögner
Fuels 2026, 7(1), 4; https://doi.org/10.3390/fuels7010004 - 19 Jan 2026
Viewed by 160
Abstract
Succinimide additives play an important role in combating engine deposits and are therefore commonly blended in fuels. As many of the methods currently used to quantify them in fuel rely on time-consuming techniques and the use of expensive laboratory equipment, a more practical [...] Read more.
Succinimide additives play an important role in combating engine deposits and are therefore commonly blended in fuels. As many of the methods currently used to quantify them in fuel rely on time-consuming techniques and the use of expensive laboratory equipment, a more practical approach was explored. For this purpose, an existing method for aqueous samples involving a colour reaction with Rose Bengal dye and spectrophotometric detection in the UV/Vis range was modified for usage in the nonpolar fuel matrix and tested for applicability. The result was an accessible method for determining the succinimide additive content of diesel fuel—including biodiesel—that is easy to implement in the laboratory routine. Full article
Show Figures

Figure 1

27 pages, 6733 KB  
Article
Structural and Chemical Degradation of Archeological Wood: Synchrotron XRD and FTIR Analysis of a 26th Dynasty Egyptian Polychrome Wood Statuette
by Dina M. Atwa, Rageh K. Hussein, Ihab F. Mohamed, Shimaa Ibrahim, Emam Abdullah, G. Omar, Moez A. Ibrahim and Ahmed Refaat
Polymers 2026, 18(2), 258; https://doi.org/10.3390/polym18020258 - 17 Jan 2026
Viewed by 312
Abstract
This study investigates a 26th Dynasty Ptah–Sokar–Osiris wooden statuette excavated from the Tari cemetery, Giza Pyramids area, to decode ancient Egyptian manufacturing techniques and establish evidence-based conservation strategies of such wooden objects. Using minimal sampling (1.0–2.0 mm2), integrated XRF, synchrotron-based X-ray [...] Read more.
This study investigates a 26th Dynasty Ptah–Sokar–Osiris wooden statuette excavated from the Tari cemetery, Giza Pyramids area, to decode ancient Egyptian manufacturing techniques and establish evidence-based conservation strategies of such wooden objects. Using minimal sampling (1.0–2.0 mm2), integrated XRF, synchrotron-based X-ray diffraction, FTIR, and confocal microscopy distinguished original technological choices from burial-induced alterations. The 85 cm Vachellia nilotica sculpture exhibits moderate structural preservation (cellulose crystallinity index 62.9%) with partial chemical deterioration (carbonyl index 2.22). Complete pigment characterization identified carbon black, Egyptian Blue (cuprorivaite, 55 ± 5 wt %), atacamite-dominated green (65 ± 5 wt %) with residual malachite (10 ± 2 wt %), orpiment (60 ± 5 wt %), red ochre (hematite, 60% ± 5 wt %), white pigments (93 ± 5 wt % calcite), and metallic gold (40 ± 5 wt %). Confocal microscopy revealed sophisticated multi-pigment mixing strategies, with black carbon systematically blended with chromophores for nuanced color effects. Atacamite predominance over malachite provides evidence for chloride-mediated diagenetic transformation over 2600 years of burial. Consistent calcite detection (~ 20–45%) across colored layers confirms systematic ground layer application, establishing technological baseline data for 26th Dynasty Lower Egyptian workshops. Near-complete organic binder loss, severe lignin oxidation, and ongoing salt-mediated mineral transformations indicate urgent conservation needs requiring specialized consolidants, paint layer stabilization, and controlled environmental storage. This investigation demonstrates synchrotron methods’ advantages while establishing a minimally invasive framework for studying polychrome wooden artifacts. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials, 4th Edition)
Show Figures

Figure 1

32 pages, 13039 KB  
Article
Freeze-Thaw Behavior and Damage Prediction of Mixed Recycled Coarse Aggregate Concrete
by Huaiqin Liu, Jiale Chen, Ping Zhang, Weina Li, Wei Su, Tian Su, Shangwei Gong and Bangxiang Li
Buildings 2026, 16(2), 368; https://doi.org/10.3390/buildings16020368 - 15 Jan 2026
Cited by 1 | Viewed by 185
Abstract
To address the freeze-thaw (F-T) durability of concrete structures in severely cold plateau regions, this study investigates recycled coarse aggregate concrete (RCAC) by designing mixtures with varying replacement ratios of recycled brick aggregate (RBA). Rapid freeze-thaw cycling tests are conducted in combination with [...] Read more.
To address the freeze-thaw (F-T) durability of concrete structures in severely cold plateau regions, this study investigates recycled coarse aggregate concrete (RCAC) by designing mixtures with varying replacement ratios of recycled brick aggregate (RBA). Rapid freeze-thaw cycling tests are conducted in combination with macro- and microscale analytical techniques to systematically elucidate the frost resistance and damage mechanisms of mixed recycled coarse aggregate concrete. When the RBA content is 50%, the concrete demonstrates relatively better frost resistance within the mixed recycled aggregate system. This is evidenced by the lowest mass loss rate coupled with the highest retention ratios for both the relative dynamic elastic modulus (RDEM) and the compressive strength. Micro-analysis indicates that an appropriate amount of RBA can optimize the pore structure, exerting a “micro air-cushion” buffering effect. Blending RBA with recycled concrete aggregate (RCA) may create functional complementarity between pores and the skeleton, effectively delaying freeze–thaw damage. A GM (1,1) damage prediction model based on gray system theory is established, which demonstrates high accuracy (R2 > 0.92). This study provides a reliable theoretical basis and a predictive tool for the durability design and service life assessment of mixed recycled coarse aggregate concrete engineering in severely cold regions. Full article
(This article belongs to the Special Issue Low-Carbon Materials and Advanced Engineering Technologies)
Show Figures

Figure 1

18 pages, 1527 KB  
Article
Optimization of Biodiesel Production from Waste Cooking Oil Using a Construction Industry Waste Cement as a Heterogeneous and Reusable Catalyst
by Jing Sun, Hongwei Chen, Hongjian Shen, Xiang Luo, Zezhou Lin and Honglei Zhang
Nanomaterials 2026, 16(2), 108; https://doi.org/10.3390/nano16020108 - 14 Jan 2026
Viewed by 199
Abstract
Biodiesel, which is a blend of fatty acid methyl esters (FAME), has garnered significant attention as a promising alternative to petroleum-based diesel fuel. Nevertheless, the commercial production of biodiesel faces challenges due to the high costs associated with feedstock and the non-recyclable homogeneous [...] Read more.
Biodiesel, which is a blend of fatty acid methyl esters (FAME), has garnered significant attention as a promising alternative to petroleum-based diesel fuel. Nevertheless, the commercial production of biodiesel faces challenges due to the high costs associated with feedstock and the non-recyclable homogeneous catalyst system. To address these issues, a solid catalyst derived from construction industry waste cement was synthesized and utilized for biodiesel production from waste cooking oil (WCO). The catalyst’s surface and physical characteristics were analyzed through various techniques, including Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier Transform Infrared Spectroscopy (FTIR). The waste-cement catalyst demonstrated remarkable catalytic performance and reusability in the transesterification of WCO with methanol for biodiesel synthesis. A maximum biodiesel yield of 98.1% was obtained under the optimal reaction conditions of reaction temperature 65 °C; methanol/WCO molar ratio 16:1; calcined cement dosage 3 g; and reaction time 8 h. The apparent activation energy (Ea) from the reaction kinetic study is 35.78 KJ·mol−1, suggesting that the transesterification reaction is governed by kinetic control rather than diffusion. The biodiesel produced exhibited high-quality properties and can be utilized in existing diesel engines without any modifications. This research presents a scalable, environmentally benign pathway for WCO transesterification, thereby contributing significantly to the economic viability and long-term sustainability of the global biodiesel industry. Full article
Show Figures

Figure 1

22 pages, 4100 KB  
Article
Transition Behavior in Blended Material Large Format Additive Manufacturing
by James Brackett, Elijah Charles, Matthew Charles, Ethan Strickland, Nina Bhat, Tyler Smith, Vlastimil Kunc and Chad Duty
Polymers 2026, 18(2), 178; https://doi.org/10.3390/polym18020178 - 8 Jan 2026
Viewed by 271
Abstract
Large-Format Additive Manufacturing (LFAM) offers the ability to 3D print composites at multi-meter scale and high throughput by utilizing a screw-based extrusion system that is compatible with pelletized feedstock. As such, LFAM systems like the Big Area Additive Manufacturing (BAAM) system provide a [...] Read more.
Large-Format Additive Manufacturing (LFAM) offers the ability to 3D print composites at multi-meter scale and high throughput by utilizing a screw-based extrusion system that is compatible with pelletized feedstock. As such, LFAM systems like the Big Area Additive Manufacturing (BAAM) system provide a pathway for incorporating AM techniques into industry-scale production. Despite significant growth in LFAM techniques and usage in recent years, typical Multi-Material (MM) techniques induce weak points at discrete material boundaries and encounter a higher frequency of delamination failures. A novel dual-hopper configuration was developed for the BAAM platform to enable in situ switching between material feedstocks that creates a graded transition region in the printed part. This research studied the influence of extrusion screw speed, component design, transition direction, and material viscosity on the transition behavior. Material transitions were monitored using compositional analysis as a function of extruded volume and modeled using a standard Weibull cumulative distribution function (CDF). Screw speed had a negligible influence on transition behavior, but averaging the Weibull CDF parameters of transitions printed using the same configurations demonstrated that designs intended to improve mixing increased the size of the blended material region. Further investigation showed that the relative difference and change in complex viscosity influenced the size of the blended region. These results indicate that tunable properties and material transitions can be achieved through selection and modification of composite feedstocks and their complex viscosities. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymer Based Materials)
Show Figures

Figure 1

32 pages, 2496 KB  
Article
Intercultural Dialogue Begins at the Dining Table: A Unilateral Kosovo Perspective on Turkish–Kosovar Fusion Cuisine
by Ceyhun Uçuk, Çağın Çevik, Onurcan Arman and Charles Spence
Foods 2026, 15(2), 222; https://doi.org/10.3390/foods15020222 - 8 Jan 2026
Viewed by 386
Abstract
Fusion cuisine blends ingredients, cooking techniques, and flavours from different cultures, yet little is known about how it is perceived within the context of gastrodiplomacy. This study explores perceptions of fusion cuisine at a multicultural gastrodiplomacy event held in Kosovo, where the participants [...] Read more.
Fusion cuisine blends ingredients, cooking techniques, and flavours from different cultures, yet little is known about how it is perceived within the context of gastrodiplomacy. This study explores perceptions of fusion cuisine at a multicultural gastrodiplomacy event held in Kosovo, where the participants first sampled Turkish–Kosovar fusion dishes during tasting sessions and subsequently completed an online questionnaire designed to assess their experience. In this event, participants attended structured tasting activities in Prizren and Pristina, where they sampled dishes combining elements of both culinary traditions, and then completed an online structured questionnaire consisting of 5-point Likert-type items evaluating their fusion cuisine preferences. The study was conducted in Kosovo as part of a unilateral gastrodiplomatic initiative. A total of 451 participants responded to an online questionnaire, which included fusion cuisine preference scores and metaphorical descriptions of their culinary experiences. A key contextual characteristic of this study is that data were collected exclusively during a fusion cuisine event held in Kosovo, with participation from a multinational audience who attended the event. Therefore, the sample reflects diverse cultural backgrounds within a single-location setting. The results indicate that younger, highly educated, and higher-income participants exhibited significantly greater openness to culinary diversity. These findings advance the state of knowledge by demonstrating that public reception of gastrodiplomacy is stratified by socioeconomic factors rather than defined solely by national background. Practically, this implies that effective fusion-based diplomacy requires targeted strategies to bridge demographic gaps and ensure broader social inclusivity, rather than relying on a one-size-fits-all approach. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Graphical abstract

33 pages, 2607 KB  
Article
Efficient Blended Models for Analysis and Detection of Neuropathic Pain from EEG Signals Using Machine Learning
by Sunil Kumar Prabhakar, Keun-Tae Kim and Dong-Ok Won
Bioengineering 2026, 13(1), 67; https://doi.org/10.3390/bioengineering13010067 - 7 Jan 2026
Viewed by 292
Abstract
Due to the damage happening in the nervous system, neuropathic pain occurs and it affects the quality of life of the patient to a great extent. Therefore, some clinical evaluations are required to assess the diagnostic outcomes precisely. A lot of information about [...] Read more.
Due to the damage happening in the nervous system, neuropathic pain occurs and it affects the quality of life of the patient to a great extent. Therefore, some clinical evaluations are required to assess the diagnostic outcomes precisely. A lot of information about the activities of the brain is provided by Electroencephalography (EEG) signals and neuropathic pain can be assessed and classified with the aid of EEG and machine learning. In this work, two approaches are proposed in terms of efficient blended models for the classification of neuropathic pain through EEG signals. In the first blended model, once the features are extracted using Discrete Wavelet Transform (DWT), statistical features, and Fuzzy C-Means (FCM) clustering techniques, the features are selected using Grey Wolf Optimization (GWO), Feature Correlation Clustering Technique (FCCT), F-test, and Bayesian Optimization Algorithm (BOA) and it is classified with the help of three hybrid classification models like Spider Monkey Optimization-based Gradient Boosting Machine (SMO-GBM) classifier, hybrid deep kernel learning with Support Vector Machine (DKL-SVM) classifier, and CatBoost classifier. In the second blended model, once the features are extracted, the features are selected using Hybrid Feature Selection—Majority Voting System (HFS-MVS), Hybrid Salp Swarm Optimization—Particle Swarm Optimization (SSO-PSO), Pearson Correlation Coefficient (PCC), and Mutual Information (MI) and it is classified with the help of three hybrid classification models like Partial Least Squares (PLS) variant classification models combined with Kernel-based SVM, ensemble classification model with soft voting strategy, and Extreme Gradient Boosting (XGBoost) classifier. The proposed blended models are evaluated on a publicly available dataset and the best results are shown when the FCM features are selected with SSO-PSO feature selection technique and classified with Polynomial Kernel-based PLS-SVM Classifier, reporting a high classification accuracy of 92.68% in this work. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

17 pages, 1279 KB  
Review
Polysulfone Membranes: Here, There and Everywhere
by Pere Verdugo, Iwona Gulaczyk, Magdalena Olkiewicz, Josep M. Montornes, Marta Woźniak-Budych, Filip F. Pniewski, Iga Hołyńska-Iwan and Bartosz Tylkowski
Membranes 2026, 16(1), 35; https://doi.org/10.3390/membranes16010035 - 5 Jan 2026
Viewed by 553
Abstract
Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains [...] Read more.
Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains the predominant method for membrane synthesis, allowing precise control over morphology and performance. Functional enhancements through blending, chemical grafting, and incorporation of nanomaterials—such as metal–organic frameworks (MOFs), carbon nanotubes, and zwitterionic polymers—have significantly improved gas separation, and water purification., In gas separation, PSU-based mixed matrix membranes demonstrate enhanced CO2/CH4 selectivity, particularly when integrated with MOFs like ZIF-7 and ZIF-8. In water treatment, PSU membranes effectively remove algal toxins and heavy metals, with surface modifications improving hydrophilicity and antifouling properties. Despite these advancements, challenges remain in optimizing cross-linking strategies and understanding structure–property relationships. This review provides a comprehensive overview of PSU membrane technologies and outlines future directions for their development in sustainable and high-performance separation systems. Full article
Show Figures

Figure 1

25 pages, 520 KB  
Article
Modelling Extreme Rainfall in KwaZulu-Natal Province of South Africa Using Extreme Value Theory
by Hulisani Lutombo, Daniel Maposa and Simon Setsweke Nkoane
Math. Comput. Appl. 2026, 31(1), 6; https://doi.org/10.3390/mca31010006 - 4 Jan 2026
Viewed by 353
Abstract
This study reviews advanced extreme value theory techniques and applies them to extreme rainfall events recorded at two meteorological stations, Port Edward and Virginia, in the KwaZulu-Natal province of South Africa. The study aims to provide a comparative analysis of the performance of [...] Read more.
This study reviews advanced extreme value theory techniques and applies them to extreme rainfall events recorded at two meteorological stations, Port Edward and Virginia, in the KwaZulu-Natal province of South Africa. The study aims to provide a comparative analysis of the performance of three extreme value theory models—the generalised extreme value distribution (GEVD), the generalised extreme value distribution for r-largest order statistics (GEVDr), and the blended generalised extreme value distribution (bGEVD)—in modelling extreme rainfall events. The monthly maximum rainfall data used in the study was obtained from the South African Weather Service. The Shapiro–Wilk test demonstrated the non-normality of the rainfall datasets. Parameter estimation was performed using maximum likelihood estimation and Bayesian estimation methods, both yielding positive shape parameters consistent with the Fréchet class of distributions. The goodness-of-fit tests confirmed the suitability of the GEVD model for the data. The results of both the standard GEVD and GEVDr models provided consistent return level estimates, suggesting strong model performance. The bGEVD model produced lower return level estimates compared to the GEVD and GEVDr models. Overall, the findings of the study offer valuable insights into the behaviour of extreme rainfall in KwaZulu-Natal province, with significant implications for risk management, infrastructure planning, and disaster preparedness. This study will add value to the literature and knowledge of statistics. Full article
(This article belongs to the Section Natural Sciences)
Show Figures

Figure 1

23 pages, 4355 KB  
Article
Impedance Spectroscopy Study of Solid Co(II/III) Redox Mediators Prepared with Poly(Ethylene Oxide), Succinonitrile, Cobalt Salts, and Lithium Perchlorate for Dye-Sensitized Solar Cells
by Ravindra Kumar Gupta, Ahamad Imran, Aslam Khan, Muhammad Ali Shar, Khalid M. Alotaibi, Idriss Bedja and Abdullah Saleh Aldwayyan
Polymers 2026, 18(1), 142; https://doi.org/10.3390/polym18010142 - 4 Jan 2026
Viewed by 342
Abstract
Countries like Saudi Arabia receive abundant sunshine with exceptionally high solar irradiance. High temperatures in desert regions and the sunray angle dependence of solar modules are some of the key challenges of conventional solar cells. Dye-sensitized solar cells present a compelling alternative with [...] Read more.
Countries like Saudi Arabia receive abundant sunshine with exceptionally high solar irradiance. High temperatures in desert regions and the sunray angle dependence of solar modules are some of the key challenges of conventional solar cells. Dye-sensitized solar cells present a compelling alternative with the simple cell design and use of non-toxic materials without angle dependence, but their performance hinges on the solid redox mediators used for dye regeneration. These mediators must have an electrical conductivity (σ25°C) of more than 10−4 S cm−1 with an activation energy of less than 0.3 eV for device application. Our work focused on novel solid Co(II/III) redox mediators using cobalt complexes and LiClO4 in different matrices: pure PEO (an abbreviation for poly(ethylene oxide) with its redox mediator as M1), a [PEO–SN] blend (M2A and M2B with ethylene oxide to lithium ions molar ratio of 112.9 and 225.8, respectively), and pure SN (an abbreviation for succinonitrile with its redox mediator as M3). Impedance spectroscopy was the key technique, showing M1 and M2 behave like a mediator explainable with an (R1–C)-type circuit, while M3 is explainable with an (R1 − [R2‖C])-type circuit. M3 achieved the highest value of σ25°C with 2 × 10−3 S cm−1, while M1 had the lowest σ25°C, 3 × 10−5 S cm−1. M2 achieved an optimal balance with σ25°C of 4 × 10−4 S cm−1 (M2A) and 1.5 × 10−4 S cm−1 (M2B). M2 exhibited a remarkably low pseudo-activation energy of 0.042 eV and a Vogel–Tammann–Fulcher behavior ideal for consistent performance across temperatures. In contrast, M1 and M3 showed higher Arrhenius-type activation energies (>0.74 eV) in their solid states. These results correlated with those of the XRD, FT-IR spectroscopy, XPS, SEM, DSC, and TGA analyses. Ultimately, the [PEO–SN] blend emerges as a robust matrix, enabling the combination of high conductivity and low activation energy needed for a durable device in harsh environments. Full article
(This article belongs to the Special Issue Flexible, Highly Efficient Polymer Solar Cells)
Show Figures

Figure 1

16 pages, 3708 KB  
Article
Development and Application of a Polymerase Spiral Reaction (PSR)-Based Isothermal Assay for Rapid Detection of Yak (Bos grunniens) Meat
by Moon Moon Mech, Hanumant Singh Rathore, Arockiasamy Arun Prince Milton, Nagappa Karabasanavar, Sapunii Stephen Hanah, Kandhan Srinivas, Sabia Khan, Zakir Hussain, Harshit Kumar, Vikram Ramesh, Samir Das, Sandeep Ghatak, Shubham Loat, Martina Pukhrambam, Vijay Kumar Vidyarthi, Mihir Sarkar and Girish Patil Shivanagowda
Foods 2026, 15(1), 115; https://doi.org/10.3390/foods15010115 - 31 Dec 2025
Viewed by 425
Abstract
The growing demand for robust food authentication methods has driven the establishment of fast, sensitive, and field-based detection systems for identifying meat species. This study presents a colorimetric-based PSR approach for identifying yak (Bos grunniens) meat within fresh, thermally processed, and [...] Read more.
The growing demand for robust food authentication methods has driven the establishment of fast, sensitive, and field-based detection systems for identifying meat species. This study presents a colorimetric-based PSR approach for identifying yak (Bos grunniens) meat within fresh, thermally processed, and blended meat samples. Targeting the mitochondrial D-loop locus, the assay incorporates a simple alkaline lysis (AL) procedure for efficient DNA extraction, eliminating the requirement for specialized instrumentation. The PSR assay demonstrated high specificity, showing no evidence of cross-reactivity with closely associated food animals such as buffalo, cattle, goat, sheep, mithun, and pig. Sensitivity assessment revealed the assay’s capability to detect 1 pg of yak DNA, with reliable performance in samples exposed to thermal conditions up to 121 °C. Additionally, the technique detected yak meat down to a concentration of 0.1% in binary beef mixtures. This method provides a significant improvement in sensitivity over end-point PCR and is particularly well-suited for field applications due to its practical simplicity, affordability, as well as no reliance on sophisticated instrument. This is, to the best of our understanding, the first reported PSR-based approach developed for the identification of yak meat, offering a robust tool for food origin verification, regulatory enforcement, and product integrity monitoring. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

Back to TopTop