Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = black pig

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5772 KiB  
Article
Integrated Analysis of miRNA and mRNA Expression Profiles Associated with Development of Skeletal Muscle of Jiangquan Black Pigs
by Yarui Gao, Shiyin Li, Wei Chen, Jianmin Zhang, Zhanchi Ren, Zhao Ma, Yunzhou Wang and Yongqing Zeng
Genes 2025, 16(6), 701; https://doi.org/10.3390/genes16060701 - 12 Jun 2025
Viewed by 569
Abstract
Background: Hypertrophy, myogenic differentiation, and mass gain of porcine skeletal muscle are key factors in meat production efficiency, regulated by miRNAs through post-transcriptional mechanisms. This study aims to identify miRNA-mRNA pairs linked to growth and muscle development in Jiangquan Black pigs with differing [...] Read more.
Background: Hypertrophy, myogenic differentiation, and mass gain of porcine skeletal muscle are key factors in meat production efficiency, regulated by miRNAs through post-transcriptional mechanisms. This study aims to identify miRNA-mRNA pairs linked to growth and muscle development in Jiangquan Black pigs with differing average daily gains (ADGs), providing a foundation for molecular breeding in this breed. Methods: This study divided eight pigs into two groups and analyzed the skeletal muscle characteristics of Jiangquan Black pigs with different average daily weight gains using HE staining. RNA-Seq was conducted to identify differentially expressed miRNAs and mRNAs, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed, and an integrated miRNA-mRNA regulatory network was subsequently constructed. Results: RNA sequencing analysis identified 255 differentially expressed genes (DEmRNAs, |FC| > 1.5) and 27 differentially expressed miRNAs (DE miRNAs, |FC| > 2). Bioinformatics analysis revealed 330 significantly negatively correlated miRNA-mRNA regulatory pairs, with key pathways, including the MAPK, mTOR, insulin, FoxO, Wnt, and TGF-β signaling pathways, being implicated in muscular development. Quantitative real-time PCR (qRT-PCR) validation confirmed the reliability of the sequencing data. Conclusions: Different ADGs among half-sibling Jiangquan Black pigs with the same diet may be due to the DE miRNAs and DEmRNAs related to skeletal muscle growth and development. These findings reveal the potential regulatory mechanisms of DE miRNAs and DEmRNAs in porcine skeletal muscle growth, providing valuable insights for the next steps in molecular breeding strategies for Jiangquan Black pigs. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3311 KiB  
Communication
Initial Screening of Extrachromosomal Circular DNA Candidates for Pork Meat Quality Traits Using Circle-Seq and RNA-Seq Analysis
by Liyao Bai, Jiahao Wu, Tengfei Dou, Donghui Chu, Xinjian Li, Xuelei Han, Ruimin Qiao, Kejun Wang, Feng Yang and Xiuling Li
Animals 2025, 15(11), 1590; https://doi.org/10.3390/ani15111590 - 29 May 2025
Viewed by 372
Abstract
Yunong Black (YN) pigs and Yunong Black × Landrace (YL) hybrid pigs exhibit significant differences in meat quality characteristics. Studies have suggested that extrachromosomal circular DNA (eccDNA) may play a regulatory role in muscle development. In order to study the differences in eccDNA [...] Read more.
Yunong Black (YN) pigs and Yunong Black × Landrace (YL) hybrid pigs exhibit significant differences in meat quality characteristics. Studies have suggested that extrachromosomal circular DNA (eccDNA) may play a regulatory role in muscle development. In order to study the differences in eccDNA between two groups with different meat quality traits and their potential biological significance, this study used the Circle-seq method to detect eccDNA in the longest dorsal muscle (LDM) of Yunong Black pigs (YN) (n = 3) and Yunong Black × Landrace hybrid pigs (YL) (n = 3). EccDNA-related differentially expressed genes (eccDEGs) were then analyzed in combination with RNA-seq to explore the mechanisms by which eccDNA affects meat quality. The results showed that 1325 and 1304 differentially expressed eccDNAs were identified in the YN and YL groups, varying in size and distributed across multiple genomic functional regions. These eccDNAs were also annotated according to several protein-coding genes. Combined analysis with RNA-seq results revealed 19 and 27 eccDEGs in the YN and YL groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis enriched many lipid-related pathways, such as chemokine signals and ADP metabolic processes. By constructing a regulatory network, several potential regulatory networks that might be related to pork quality, for example, ecc_sus_8665/ssc-miR-212/ADAMTS16, were identified. In summary, we identified several potential eccDNAs that may regulate pig muscle, offering insights into the regulation of pig muscle traits for breeding. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

18 pages, 2663 KiB  
Article
A Comprehensive Characterization of the Differences in Meat Quality, Nonvolatile and Volatile Flavor Substances Between Taoyuan Black and Duroc Pigs
by Hanjing Shi, Sisi Chen, Wenyue Zhou, Junfei Xu, Zekun Yang, Liu Guo, Qilong Li, Qiuping Guo, Yehui Duan, Jianzhong Li and Fengna Li
Foods 2025, 14(11), 1935; https://doi.org/10.3390/foods14111935 - 29 May 2025
Cited by 2 | Viewed by 544
Abstract
To compare the differences in meat quality between obese-type Chinese pig breeds and lean-type foreign pig breeds, we selected Taoyuan Black (TB) pigs and Duroc pigs at 180 and 210 days of age and analyzed their meat quality, chemical composition, and flavor compounds [...] Read more.
To compare the differences in meat quality between obese-type Chinese pig breeds and lean-type foreign pig breeds, we selected Taoyuan Black (TB) pigs and Duroc pigs at 180 and 210 days of age and analyzed their meat quality, chemical composition, and flavor compounds using an electronic tongue, chromatographic techniques, and two-dimensional gas chromatography-time-of-flight-mass-spectrometry (GC×GC-TOF-MS). A total of 16 main fatty acids, 18 main free amino acids, and 249 flavor compounds were identified. The results showed that TB pigs exhibited redder meat color, higher intramuscular fat, and lower shear force than Duroc pigs (p < 0.05). TB pigs displayed higher levels of flavor nucleotides, free amino acids, and monounsaturated fatty acids (p < 0.05). Furthermore, pigs at 180 days exhibited lower dripping loss and more flavor compounds than those at 210 days (p < 0.05). Electronic tongue analysis revealed higher umami values in TB pigs at 180 days of age. Among the flavor compounds in pork, the four compounds that contributed most significantly to flavor across all species were 2-nonenal, 2-octenal, heptanal, 2,3-butanedione, and 2-pentylfuran. These findings provide fundamental data and insight into pig production. Full article
Show Figures

Figure 1

25 pages, 14263 KiB  
Article
The Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) 3 Regulates the Myogenic Differentiation of Yunan Black Pig Muscle Satellite Cells (MuSCs) In Vitro via Iron Homeostasis and the PI3K/AKT Pathway
by Wei Zhang, Minying Zhang, Jiaqing Zhang, Sujuan Chen, Keke Zhang, Xuejing Xie, Chaofan Guo, Jiyuan Shen, Xiaojian Zhang, Huarun Sun, Liya Guo, Yuliang Wen, Lei Wang and Jianhe Hu
Cells 2025, 14(9), 656; https://doi.org/10.3390/cells14090656 - 29 Apr 2025
Viewed by 564
Abstract
The myogenic differentiation of muscle satellite cells (MuSCs) is an important biological process that plays a key role in the regeneration and repair of skeletal muscles. However, the mechanisms regulating myoblast myogenesis require further investigation. In this study, we found that STEAP3 is [...] Read more.
The myogenic differentiation of muscle satellite cells (MuSCs) is an important biological process that plays a key role in the regeneration and repair of skeletal muscles. However, the mechanisms regulating myoblast myogenesis require further investigation. In this study, we found that STEAP3 is involved in myogenic differentiation based on the Yunan black pig MuSCs model in vitro using cell transfection and other methods. Furthermore, the expression of myogenic differentiation marker genes MyoG and MyoD and the number of myotubes formed by the differentiation of cells from the si-STEAP3 treated group were significantly decreased but increased in the STEAP3 overexpression group compared to that in the control group. STEAP3 played a role in iron ion metabolism, affecting myogenic differentiation via the uptake of iron ions and enhancing IRP-IRE homeostasis. STEAP3 also activated the PI3K/AKT pathway, thus promoting myoblast differentiation of Yunan black pig MuSCs. The results of this study showed that STEAP3 overexpression increased intracellular iron ion content and activated the homeostatic IRP-IRE system to regulate intracellular iron ion metabolism. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

13 pages, 4580 KiB  
Article
Analysis of Genetic Diversity and Population Structure of Liangshan Black Pigs, a New Indigenous Pig Breed in Shandong Province
by Jingxuan Li, Xin Zhang, Kaifeng Zhou, Jiying Wang, Yanping Wang, Xingyan Zhao and Xueyan Zhao
Agriculture 2025, 15(9), 952; https://doi.org/10.3390/agriculture15090952 - 27 Apr 2025
Viewed by 426
Abstract
Liangshan Black pigs are a new Chinese indigenous breed discovered during the Third National Survey of Livestock and Plant Genetic Resources. To uncover genetic diversity, population structure, and potential exotic introgression in this breed, we sampled 191 Liangshan Black pigs from the conservation [...] Read more.
Liangshan Black pigs are a new Chinese indigenous breed discovered during the Third National Survey of Livestock and Plant Genetic Resources. To uncover genetic diversity, population structure, and potential exotic introgression in this breed, we sampled 191 Liangshan Black pigs from the conservation population and genotyped these individuals using the “Zhongxin-I” porcine chip, then conducted in-depth population genetic analyses in the context of pigs from five introduced breeds. The results revealed that the tested individuals exhibited significant genetic diversity, displayed uneven kinship relationships, and were assigned to nine families according to their clustering patterns in the phylogenetic tree. Further relationship analyses with the five introduced breeds demonstrated that Liangshan Black pigs were clustered separately from the introduced breeds, had larger evolutionary distances with the introduced breeds, and possessed certain genetic components of the introduced breeds, especially those of Duroc. These findings demonstrate that Liangshan Black pigs are generally an indigenous breed independent of the introduced breeds but are slightly affected by the introduced breeds. In summary, the results of our study not only contribute to an in-depth understanding of the population genetic characteristics of Liangshan Black pigs but also provide the necessary data for the implementation of conservation programs. Full article
Show Figures

Figure 1

36 pages, 1281 KiB  
Review
Microbiota-Based Intervention Alleviates High-Fat Diet Consequences Through Host-Microbe Environment Remodeling
by Lanlan Yi, Zhipeng Li, Hong Xu, Dejia Shi, Ying Huang, Hongbin Pan, Yanguang Zhao, Hongye Zhao, Minghua Yang, Hongjiang Wei and Sumei Zhao
Nutrients 2025, 17(9), 1402; https://doi.org/10.3390/nu17091402 - 22 Apr 2025
Cited by 1 | Viewed by 1106
Abstract
A high-fat diet leads to metabolic disturbances, which are important factors in the development of obesity. Gut microbial composition and diversity are altered by a high-fat diet. In general, a high-fat diet resulted in increased Firmicutes abundance and decreased alpha diversity. Bile acids [...] Read more.
A high-fat diet leads to metabolic disturbances, which are important factors in the development of obesity. Gut microbial composition and diversity are altered by a high-fat diet. In general, a high-fat diet resulted in increased Firmicutes abundance and decreased alpha diversity. Bile acids (BAs) are involved in the digestion and absorption of fats in the small intestine and are also the metabolic substrates of microorganisms with bile salt hydrolase (BSH) activity. High-fat diets (HFDs) have been shown to alter gut microbiota composition and BA profiles in murine models. Similarly, probiotic supplementation reverses HFD-induced adverse effects. This review focuses on the energy composition characteristics of a high-fat diet and its effects on body weight, plasma lipid-related biochemical markers, changes in gut microbiome characteristics, and the important role of BAs. The regular mechanism by which a high-fat diet affects the intestinal microenvironment was attempted to be found. Full article
(This article belongs to the Special Issue Hot Topics in Nutrition and Obesity)
Show Figures

Figure 1

14 pages, 287 KiB  
Article
Partial Replacement of Soyabean Meal with Defatted Black Soldier Fly (Hermetia illucens L.) Larvae Meal Influences Blood Biochemistry and Modulate Oxidative Stress, but Not Growth Performance of Pigs
by Gergana Yordanova, Radka Dimitrova Nedeva, Apostol Petrov Apostolov, Stephen Charles Mansbridge, Isobel Margaret Whiting, Alexander Mackay Mackenzie, Galina Dimitrova Nikolova, Yanka Dimitrova Karamalakova and Vasil Radoslavov Pirgozliev
Animals 2025, 15(8), 1077; https://doi.org/10.3390/ani15081077 - 8 Apr 2025
Viewed by 770
Abstract
The production of soybean meal (SBM) can be linked to various issues related to the environment (e.g., deforestation, water waste, and transportation costs), and reducing its inclusion in pig diets by using alternative protein sources, such as insect meal, is an important challenge [...] Read more.
The production of soybean meal (SBM) can be linked to various issues related to the environment (e.g., deforestation, water waste, and transportation costs), and reducing its inclusion in pig diets by using alternative protein sources, such as insect meal, is an important challenge for nutritionists. This study aimed to compare the productive performance, dietary digestible energy (DE), nutrient digestibility, and some blood indices of growing Danube White pigs fed graded levels of Black Soldier fly (Hermetia illucens L.) larvae meal (BSFLM) at 0, 30, 60, 90, and 120 g/kg of diets, in replacement of SBM for 38 days, from 119 to 157 d old. Each diet was fed to eight pigs in individual boxes following randomization. Pigs grew according to breeders’ recommendations and did not have any clinical health problems. Replacing SBM did not change (p > 0.05) the pigs’ growth performance and DE, as only dietary fat digestibility increased in a linear fashion (p < 0.001), possibly due to the high BSFLM, i.e., the high-fat inclusion rate. There was a simultaneous rise in some oxidative damage indicators and an increase in antioxidant status, thus suggesting that further research involving longer feeding periods is needed to identify a potential time sequence of events. Overall, BSFLM is a promising ingredient in pig nutrition. Full article
(This article belongs to the Special Issue Impact of Genetics and Feeding on Growth Performance of Pigs)
13 pages, 1583 KiB  
Article
Genome-Wide Association Studies of Body Weight and Average Daily Gain in Chinese Dongliao Black Pigs
by Min Huang, Wenyu Zhang, Jiangpeng Dong, Zhengyu Hu, Xuhui Tan, Hao Li, Kailing Sun, Ayong Zhao and Tao Huang
Int. J. Mol. Sci. 2025, 26(7), 3453; https://doi.org/10.3390/ijms26073453 - 7 Apr 2025
Viewed by 657
Abstract
In the domain of swine production, body weight (BW) and average daily gain (ADG) are recognized as the primary performance indicators. Nevertheless, the genetic architecture of ADG and BW in Dongliao black (DLB) pigs remains to be fully elucidated. In this study, we [...] Read more.
In the domain of swine production, body weight (BW) and average daily gain (ADG) are recognized as the primary performance indicators. Nevertheless, the genetic architecture of ADG and BW in Dongliao black (DLB) pigs remains to be fully elucidated. In this study, we performed a genome-wide association analysis of BW, ADG, and body mass index (BMI) in 358 DLB pigs of different days of age. The genome-wide association study (GWAS) showed the following: (1) The most significant single nucleotide polymorphism (SNP) detected for BW was on Sus scrofa chromosome (SSC) 11:100,808 (p-value = 1.16 × 10−6) that was also the most significant SNP for ADG. (2) The most significant SNP associated with BMI was SSC17:51,463,521 (p-value = 5.16 × 10−8). (3) SNPs SSC10:6,523,844 and SSC17:23,852,682 were identified in both BW and ADG. A meta-analysis was conducted on BW at different days and demonstrated SSC5:39,028,335 (p-value = 8.37 × 10−6) which was not identified in the results of each single trait. The regions of two SNPs (SSC11:100,808, SSC4:10,703,277) exhibited considerable influence on both BW and ADG and the related regions were selected for linkage disequilibrium (LD) analyses that exhibited a notable linkage. In addition, several genes were identified that are associated with obesity and play roles in lipid metabolism, including MACROD2, PHLPP2, CYP2E1, and STT3B. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2450 KiB  
Article
Assessment of Heterozygosity in European Local and Cosmopolitan Pig Populations
by Maria Chiara Fabbri, Katherine D. Arias, Marcos P. G. Rezende, Francesco Tiezzi, Stefano Biffani, Felix Goyache, Giuseppina Schiavo, Samuele Bovo, Luca Fontanesi, Marjeta Čandek-Potokar, Maria Muñoz, Cristina Ovilo, Klavdija Poklukar, Martin Škrlep and Riccardo Bozzi
Agriculture 2025, 15(7), 761; https://doi.org/10.3390/agriculture15070761 - 1 Apr 2025
Viewed by 565
Abstract
Researchers focused on assessing differences in gene diversity within and between populations, whether cosmopolitan or local. However, the identification of patterns of variation in non-random heterozygous genomic stretches, known as Heterozygosity-Rich regions (HRRs), has not yet been determined in European local pig breeds. [...] Read more.
Researchers focused on assessing differences in gene diversity within and between populations, whether cosmopolitan or local. However, the identification of patterns of variation in non-random heterozygous genomic stretches, known as Heterozygosity-Rich regions (HRRs), has not yet been determined in European local pig breeds. A total of 23 pig breeds (20 local and 3 cosmopolitan) were assessed and compared in terms of heterozygosity-rich regions. The breeds with the highest number of HRRs were Large White, Lithuanian Old type, and Landrace, followed by Lithuanian Native, Mora Romagnola, and Duroc. The breeds with the lowest number were Alentejana, Iberian, and Majorcan Black. No shared HRR islands were found in all breeds, but gene enrichment analysis performed in the most common HRRs revealed several biologically important genes that cluster together and play significant roles, primarily related to the immune system. Permutation analysis indicated that some local breeds serve as true reservoirs of genetic diversity, displaying distinct and unique characteristics in terms of heterozygosity. This study suggests the importance of investigating heterozygosity to develop a comprehensive picture of pig breeds, regardless of the production system, country of origin, or population size. Full article
(This article belongs to the Special Issue Genetic Diversity, Adaptation and Evolution of Livestock)
Show Figures

Figure 1

20 pages, 2231 KiB  
Article
Comparative Analysis of Short-Chain Fatty Acids and the Immune Barrier in Cecum of Dahe Pigs and Dahe Black Pigs
by Huijin Jia, Yuxiao Xie, Lanlan Yi, Wenjie Cheng, Guangyao Song, Wenzhe Shi, Junhong Zhu and Sumei Zhao
Animals 2025, 15(7), 920; https://doi.org/10.3390/ani15070920 - 23 Mar 2025
Viewed by 626
Abstract
The intestinal immune barrier is a developed and complex immune system, and there is a fine synergy between it and the induced immune response. Short-chain fatty acids (SCFAs) are the main metabolites of intestinal microbial fermentation. In the cecum of pigs, SCFAs not [...] Read more.
The intestinal immune barrier is a developed and complex immune system, and there is a fine synergy between it and the induced immune response. Short-chain fatty acids (SCFAs) are the main metabolites of intestinal microbial fermentation. In the cecum of pigs, SCFAs not only provide energy for the host but also participate in regulating the function of the intestinal immune system. The purpose of this study was to explore the mechanism of SCFAs in the regulation of immune gene expression in porcine cecum. SCFAs content and mRNA expression levels of immune genes in cecum were detected, and Gene Ontology (GO) function annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Protein-Protein Interaction Networks (PPI) network construction, key gene identification, and correlation analysis were performed. The results showed that the content of SCFAs in the cecum of Dahe black pigs (DHB) was lower than that of Dahe pigs (DH). There were significant differences in mRNA expression of some immune genes between the two groups. GO functional annotation found terms related to cytokine activity and protein heterodimerization activity; the KEGG pathway was enriched in several pathways related to intestinal immunity. The PPI network identified Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), Interleukin-17A (IL-17A), and Interleukin-18 (IL-18) as key proteins. The correlation analysis showed that acetic acid and valerate were closely related to the immune response. In this study, the differences in cecal short-chain fatty acids and the immune barrier between Dahe pigs and Dahe black pigs were compared, which provided a theoretical basis for improving the intestinal immunity of pigs. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

17 pages, 264 KiB  
Article
Research on Energy Supply Optimization of Diets for Songliao Black Growing and Fattening Pigs at a Low Ambient Temperature
by Zhaoyang Qi, Yu Zhang, Rui Han, Guixin Qin, Hailong Jiang, Dan Jiang and Dongsheng Che
Animals 2025, 15(6), 846; https://doi.org/10.3390/ani15060846 - 15 Mar 2025
Viewed by 507
Abstract
The aim of this experiment is to investigate the effects of optimizing the dietary energy supply of Songliao Black growing and fattening pigs on their growth performance, nutrient digestibility, nitrogen balance, energy metabolism and oxidation energy supply, slaughter performance, and meat quality at [...] Read more.
The aim of this experiment is to investigate the effects of optimizing the dietary energy supply of Songliao Black growing and fattening pigs on their growth performance, nutrient digestibility, nitrogen balance, energy metabolism and oxidation energy supply, slaughter performance, and meat quality at a low ambient temperature. Forty-eight 75-day-old Songliao Black growing barrows with an initial weight of 33.38 ± 1.29 kg were randomized into two groups, with four replicates in each group and six pigs in each replicate. Two groups (CON group: low fat, normal energy; TES group: high fat, high energy) were fed isonitrogenous diets with different energy levels and fat contents. The experimental animals were raised at the same ambient temperature (10 ± 1 °C) all day. After 5 days of pre-feeding, the formal experiment began. Four Songliao Black barrows weighing approximately 80 kg were selected from each group for a five-day experimental period for digestibility and metabolism and respiratory calorimetry tests. All pigs (185 days of age) were slaughtered simultaneously at the end of the 110-day experimental period when their average body weight reached approximately 110 kg. The results showed that the average daily feed intake of the TES group was lower than that of the CON group (p < 0.05). Compared with the CON group, the feed-to-gain ratio was lower in the TES group during the fattening period (p < 0.05). Compared with the CON group, the crude fat digestibility, deposition energy, energy deposition rate, deposition energy of fat, and fat oxidation were higher (p < 0.05), and the intake and urinary nitrogen, carbohydrate oxidation, urinary energy, and protein oxidation were lower in the TES group (p < 0.05). Compared with the CON group, the serum high-density lipoprotein concentration, low-density lipoprotein concentration, and triglyceride concentration were higher in the TES group (p < 0.05), while alanine aminotransferase and aspartate aminotransferase concentrations were lower in the TES group (p < 0.05). Compared with the CON group, the backfat thickness was higher in the TES group (p < 0.05). Compared with the CON group, the weight gain/digestible protein and live lean meat mass/digestible protein were higher in the TES group (p < 0.05). Compared with the CON group, the yellowness (b*45min) value of the longissimus thoracis was higher in the TES group (p < 0.05), and the shear force was lower (p < 0.05). Therefore, at a low ambient temperature, appropriately increasing the levels of dietary fat and energy was beneficial for improving the production performance and energy utilization efficiency and reducing CO2 emissions and protein oxidation, saving protein resources of Songliao Black pigs. Full article
(This article belongs to the Section Pigs)
20 pages, 5682 KiB  
Article
Gut Metagenome Reveals the Microbiome Signatures in Tibetan and Black Pigs
by Xue Bai, Yiren Gu, Diyan Li and Mingzhou Li
Animals 2025, 15(5), 753; https://doi.org/10.3390/ani15050753 - 6 Mar 2025
Viewed by 997
Abstract
The harsh conditions of the Qinghai–Tibet Plateau pose significant physiological challenges to local fauna, often resulting in gastrointestinal disorders. However, Tibetan pigs have exhibited remarkable adaptability to the high-altitude stress of the Tibetan Plateau, a phenomenon that remains not fully understood in terms [...] Read more.
The harsh conditions of the Qinghai–Tibet Plateau pose significant physiological challenges to local fauna, often resulting in gastrointestinal disorders. However, Tibetan pigs have exhibited remarkable adaptability to the high-altitude stress of the Tibetan Plateau, a phenomenon that remains not fully understood in terms of their gastrointestinal microbiota. This study collected 57 gastrointestinal tract samples from Tibetan pigs (n = 6) and plain black pigs (n = 6) with comparable genetic backgrounds. Samples from the stomach, jejunum, cecum, colon, and rectum, underwent comprehensive metagenomic analysis to elucidate the gut microbiota-related adaptive mechanisms in Tibetan pigs to the extreme high-altitude environment. A predominance of Pseudomonadota was observed within gut microbiome of Tibetan pigs. Significant differences in the microbial composition were also identified across the tested gastrointestinal segments, with 18 genera and 141 species exhibiting differential abundance. Genera such as Bifidobacterium, Megasphaera, Fusobacterium, and Mitsuokella were significantly more abundant in Tibetan pigs than in their lowland counterparts, suggesting specialized adaptations. Network analysis found greater complexity and modularity in the microbiota of Tibetan pigs compared to black pigs, indicating enhanced ecological stability and adaptability. Functional analysis revealed that the Tibetan pig microbiota was particularly enriched with bacterial species involved in metabolic pathways for propionate and butyrate, key short-chain fatty acids that support energy provision under low-oxygen conditions. The enzymatic profiles of Tibetan pigs, characterized by elevated levels of 4-hydroxybutyrate dehydrogenase and glutaconyl-CoA decarboxylase, highlighted a robust fatty acid metabolism and enhanced tricarboxylic acid cycle activity. In contrast, the gut microbiome of plain black pigs showed a reliance on the succinate pathway, with a reduced butyrate metabolism and lower metabolic flexibility. Taken together, these results demonstrate the crucial role of the gastrointestinal microbiota in the adaptation of Tibetan pigs to high-altitude environments by optimizing carbohydrate metabolism and short-chain fatty acid production for efficient energy utilization. This study not only highlights the metabolic benefits conferred by the gut microbiota of Tibetan pigs in extreme environments, but also advances our understanding of the adaptive gastrointestinal mechanisms in plateau-dwelling animals. These insights lay the foundation for exploring metabolic interventions to support health and performance in high-altitude conditions. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

15 pages, 17188 KiB  
Article
The Impact of Mutant EDNRB on the Two-End Black Coat Color Phenotype in Chinese Local Pigs
by Min Huang, Zuohao Wen, Tao Huang, Xiaolong Zhou, Zhijun Wang, Songbai Yang and Ayong Zhao
Animals 2025, 15(4), 478; https://doi.org/10.3390/ani15040478 - 7 Feb 2025
Viewed by 685
Abstract
Endothelin Receptor Type B (EDNRB) is expressed in a variety of cells during embryonic stage, including melanocyte precursors cells. Our previous studies found that 11 bp deletion of EDNRB caused the two-end black (TEB) coat color in Chinese pigs. In this [...] Read more.
Endothelin Receptor Type B (EDNRB) is expressed in a variety of cells during embryonic stage, including melanocyte precursors cells. Our previous studies found that 11 bp deletion of EDNRB caused the two-end black (TEB) coat color in Chinese pigs. In this study, we aimed to explore the mutant EDNRB on the formation of TEB coat color in Chinese pigs. We constructed recombinant plasmid for wild and mutant EDNRB and EDN1, respectively, and transfected the recombinant plasmid into mouse B16 melanoma cells in groups. Real-time fluorescent quantitative PCR (RT-qPCR) was performed to detect expression of genes that participate in melanin pathway, including PLCγ, Raf, MITF. Comparing to the wild-type EDNRB cells, expression of the three genes in the cell line expressing mutant EDNRB cells was significantly reduced. We measured the melanin content produced by transfected recombinant granulocytes of wild and mutant EDNRB and found that the amount of melanin in mutant EDNRB cells was significantly lower than that of the wild. Wound-healing assay confirmed that the migration and mobility rate of mutant EDNRB cells were significantly lower than the wild. Co-immunoprecipitation further confirmed that mutant EDNRB could not interact with the EDN1 protein. In conclusion, this study revealed that the 11 bp deletion of EDNRB reduced the melanin production, which may be caused by inhibiting the expression of PLCγ, Raf, and MITF. The mutant EDNRB reduced melanocyte migration and could not interact with the EDN1 protein. We explored the effect of mutant EDNRB in Chinese pigs with TEB coat color, and the results provided a reference for exploring molecular mechanism of mutant EDNRB on the formation of TEB coat color pigs. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

17 pages, 3489 KiB  
Article
The Joint Contribution of Host Genetics and Probiotics to Pig Growth Performance
by Jinyi Han, Mingyu Wang, Shenping Zhou, Zhenyu Wang, Dongdong Duan, Mengyu Li, Xiuling Li, Wenshui Xin and Xinjian Li
Microorganisms 2025, 13(2), 358; https://doi.org/10.3390/microorganisms13020358 - 7 Feb 2025
Viewed by 894
Abstract
Intestinal probiotics significantly regulate the growth performance of their host, with their composition being influenced by various factors. While many studies have explored how gut microbiota composition affects growth traits such as body weight and BMI, the research on probiotics influenced by host [...] Read more.
Intestinal probiotics significantly regulate the growth performance of their host, with their composition being influenced by various factors. While many studies have explored how gut microbiota composition affects growth traits such as body weight and BMI, the research on probiotics influenced by host genetic factors, and their subsequent impact on host growth performance, remains limited. To address this research gap, we collected fecal and tissue samples, as well as phenotypic data, from 193 Yunong black pigs at 280 days of age. We then sequenced and genotyped all 193 subjects using the 50K SNP BeadChip, yielding a comprehensive dataset for genetic and microbiome analyses. We then employed microbiome-wide association studies (MWAS), a meta-analysis, and microbiome-wide genetic association studies (MGWASs) to examine the relationship between host genetics, gut microbiota, and growth performance. Four key microbial taxa, namely Coprococcus, Blautia, Ruminococcaceae, and RF16, were identified as being significantly associated with body weight and BMI. The MGWAS analysis revealed that both Coprococcus and Ruminococcaceae were significantly associated with host genomic variations. A total of four important single nucleotide polymorphisms (SNPs) were mapped to two chromosomal regions, corresponding to three candidate genes. Among them, the candidate genes INPP4B, SCOC, and PABPC4L were identified as being related to the abundance of key microbes. This study provides new insights into the joint contributions of host genetics and probiotics to host growth traits, offering theoretical guidance and data support for the development of efficient and targeted breeding strategies. Full article
(This article belongs to the Special Issue Beneficial Microbes: Food, Mood and Beyond, 2nd Edition)
Show Figures

Figure 1

20 pages, 2381 KiB  
Article
Reliable Polymerase Chain Reaction Methods for Screening for Porcine Endogenous Retroviruses-C (PERV-C) in Pigs
by Hina Jhelum, Dusan Kunec, Vasileios Papatsiros, Benedikt B. Kaufer and Joachim Denner
Viruses 2025, 17(2), 164; https://doi.org/10.3390/v17020164 - 24 Jan 2025
Viewed by 1018
Abstract
Porcine endogenous retrovirus C (PERV-C) is a gammaretrovirus present in the genome of many, but not all, pigs. It is an ecotropic virus, able to infect only pig cells. In contrast, PERV-A and PERV-B, which are present in all pigs, can infect cells [...] Read more.
Porcine endogenous retrovirus C (PERV-C) is a gammaretrovirus present in the genome of many, but not all, pigs. It is an ecotropic virus, able to infect only pig cells. In contrast, PERV-A and PERV-B, which are present in all pigs, can infect cells of multiple host species, including humans, thereby posing a risk for xenotransplantation when pigs are used as donor animals. Notably, PERV-C can recombine with PERV-A to produce PERV-A/C recombinants that can infect human cells and replicate to higher titers compared to the paternal PERV-A. The objective of this study is to evaluate the reliability of both existing and newly developed polymerase chain reactions (PCR) methods for detecting PERV-C, with the aim of selecting PERV-C-free pigs to be used for xenotransplantation. To detect PERV-C by PCR, specific primers targeting the region of the envelope protein gene, which differs from that of PERV-A and PERV-B due to its unique receptor binding site, must be employed. In this study, new PCR assays were developed to detect PERV-C and a total of ten PCR assays and one real-time PCR assay were evaluated for their reliability in detecting PERV-C. These assays were used to screen indigenous Greek black pigs, Auckland Island pigs, and German slaughterhouse pigs. Two of the PCR assays consistently yielded reliable results, whereas the other PCRs and the real-time PCR gave false positive results. Using the reliable assays, it was shown that one out of four indigenous Greek black pigs (using the same method in a previous publication 11 of 21 pigs were found PERV-C-negative), one out of ten German slaughterhouse pigs, the pig kidney cell line PK15, and all the Auckland Island pigs were PERV-C-negative. The reliable PCR assays will enable the screening of PERV-C-negative donor pigs to be used in xenotransplantation. Most importantly, all the Auckland Island pigs that were genetically modified in Germany for use in clinical trials were PERV-C-negative. Full article
(This article belongs to the Special Issue Porcine Viruses 2024)
Show Figures

Figure 1

Back to TopTop