Research on Energy Supply Optimization of Diets for Songliao Black Growing and Fattening Pigs at a Low Ambient Temperature
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experimental Design
2.3. Experimental Feed
2.4. Management of Experimental Animal Feeding
3. Sample Collection and Indicator Determination
3.1. Growth Performance
- Average daily weight gain = (final weight − initial weight) ÷ days
- Average daily feed intake = dietary intake during the formal trial period ÷ days
- Feed-to-gain ratio = average daily dietary intake ÷ average daily weight gain
3.2. Nutrient Digestibility Rate
- Fat digestibility (%) = (fat intake − fat content in feces) ÷ fat intake × 100
- Protein digestibility (%) = (protein intake − protein content in feces) ÷ protein intake × 100
- Energy digestibility (%) = (gross energy intake of diets − energy content in feces) ÷ gross energy intake of diets × 100
3.3. Nitrogen Balance Test
- Nitrogen deposition (g/d) = ingested nitrogen (g/d) − fecal nitrogen (g/d) − urinary nitrogen (g/d)
- Apparent nitrogen digestibility (%) = [ingested nitrogen (g/d) − fecal nitrogen (g/d)] ÷ ingested nitrogen (g/d) × 100
- Nitrogen deposition rate (%) = nitrogen deposition (g/d) ÷ ingested nitrogen (g/d) × 100
- protein deposition (g/d) = nitrogen deposition (g/d) × 6.25
3.4. Energy Metabolism Test
- O2 consumption (L/min) = [air entering the respiration chamber (L/min) × outdoor air O2% − Gas exiting the respiration chamber (L/min) × indoor O2%]
- CO2 production (L/min) = [air entering the respiration chamber (L/min) × indoor CO2% − Gas exiting the respiration chamber (L/min) × outdoor CO2%]
- Respiratory quotient (RQ) = CO2 production (L/d) ÷ O2 consumption (L/d)
- HP (kJ/d) = 16.18 × O2 (L/d) + 5.02 × CO2 (L/d) − 2.17 × CH4 (L/d) − 5.99 × UN (g/d)
- RE (kJ/d) = GE (kJ/d) − FE (kJ/d) − UN (kJ/d) − HP (kJ/d)
- Protein deposition energy (kJ/d) = nitrogen deposition (g/d) × 6.25 × 23.86 (kJ/g)
- Fat deposition energy (kJ/d) = RE (kJ/d) − protein deposition energy (kJ/d)
- Protein oxidation (OXPRO) (kJ) = UN (g) × 6.25 × 18.42 (kJ/g)
- Carbohydrate oxidation (OXCHO) (kJ) = [−2.968 × O2 (L) + 4.174 × CO2 (L) − 2.446 × UN (g)] × 17.58 (kJ/g)
- Fat oxidation (OXFAT) (kJ) = [(1.719 × O2 (L) − 1.719 × CO2 (L) − 1.963 × UN (g)] × 39.76 (kJ/g)
3.5. Collection and Measurement of Blood Samples
3.6. Slaughter Performance
- Live lean meat mass (kg) = −6.9144 + 0.6154X1 − 2.6893X2, where X1 was the pre-slaughter live weight (kg); X2 was the backfat thickness between the 6th and 7th ribs (cm)
- Live fat mass (kg) = −26.4 + 0.221EBW + 1.331P2, where EBW was the empty live weight (kg); EBW = 0.905 × BW1.013; BW was the live weight (kg); P2 was the backfat thickness at the last rib of the left carcass (mm)
- Live lean meat percentage (%) = live lean meat mass ÷ pre-slaughter live weight
- Live fat percentage (%) = live fat mass ÷ pre-slaughter live weight
3.7. Meat Quality
3.8. Statistical Analysis
4. Results
4.1. Growth Performance
4.2. Nutrient Digestibility
4.3. Nitrogen Balance Test
4.4. Energy Metabolism
4.5. Serum Biochemical Indicators
4.6. Slaughter Performance
4.7. Unit Body Composition and Consumption of Digestible Protein and Energy
4.8. Meat Quality
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Wu, W.; Liu, Z.; Li, Y.; Jin, X.; Li, Z.; Li, N.; Zhao, X.; Liu, Q.; Zhang, Z. Breeding of Songliao Black Pig. Pig Ind. China 2012, 7, 28–29. [Google Scholar] [CrossRef]
- China Statistical Yearbook. Edited by National Bureau of Statistics; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Polasik, D.; Tyra, M.; Szyndler-Nędza, M.; Korpal, A.; Woźniak-Męch, K.; Terman, A. Relationship between VRTN Gene Pol ymorphism and Growth, Slaughter and Meat Quality Traits in Three Polish Pig Breeds. Ciênc. Agrotec. 2018, 42, 540–549. [Google Scholar] [CrossRef]
- Urriola, P.E.; Stein, H.H. Comparative Digestibility of Energy and Nutrients in Fibrous Feed Ingredients Fed to Meishan and Yorkshire Pigs. J. Anim. Sci. 2012, 90, 802–812. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhou, Q.; Yang, L.; Tian, Z.; Wang, X.; Xiao, Y.; Shi, D. Breed Differences in Pig Liver Esterase (PLE) between Tong cheng (Chinese Local Breed) and Large White Pigs. Sci. Rep. 2018, 8, 16364. [Google Scholar] [CrossRef] [PubMed]
- Malagelada, J.-R.; Azpiroz, F. Determinants of Gastric Emptying and Transit in the Small Intestine. In Comprehensive Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 909–937. ISBN 978-0-470-65071-4. [Google Scholar]
- Rinaldo, D.; Le Dividich, J. Assessment of Optimal Temperature for Performance and Chemical Body Composition of Growing Pigs. Livest. Prod. Sci. 1991, 29, 61–75. [Google Scholar] [CrossRef]
- Han, R.; Jiang, H.; Che, D.; Bao, N.; Xiang, D.; Liu, F.; Yang, H.; Ban, Z.; Qin, G. Effects of Environmental Temperature and Dietary Fat Content on The Performance and Heat Production and Substrate Oxidation in Growing Pigs. Protein Pept. Lett. 2017, 24, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Jiang, D.; Yan, X.; Qin, G.; Che, D.; Han, R.; Jiang, H. Effects of Dietary Energy Profiles on Energy Metabolic Partition and Excreta in Songliao Black Pigs Under Different Ambient Temperature. Animals 2024, 14, 3061. [Google Scholar] [CrossRef]
- Li, D.F. Nutrient Requirements of Swine in China, 1st ed.; China Agriculture Press: Beijing, China, 2020. [Google Scholar]
- GB/T 6432-2018; Determination of Crude Protein in Feeds—Kjeldahl Method. Standards for Use of Food Additives. State Administration for Market Regulation: Beijing, China, 2018.
- GB/T 6433-2006; Determination of Crude Fat in Feeds. Standards for Use of Food Additives. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2006.
- GB/T 6434-2006; Feeding Stuffs―Determination of Crude Fiber Content Method with Intermediate Filtration. Standards for Use of Food Additives. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2006.
- GB/T 6438-2007; Animal Feeding Stuffs—Determination of Crude Ash. Standards for Use of Food Additives. Standardization Administration of the People’s Republic of China: Beijing, China, 2007.
- GB/T 39235-2020; Nutrient Requirements of Swine. State Administration for Market Regulation (SAMR), Standardization Administration of China (SAC): Beijing, China, 2020.
- Brouwer, E. Report of Sub-Committee on Constants and Factors. In Proceedings of the 3rd Symposium on Energy Metabolism; Academic Press: London, UK, 1965; pp. 441–443. [Google Scholar]
- Chwalibog, A.; Jakobsen, K.; Henckel, S.; Thorbek, G. Estimation of Quantitative Oxidation and Fat Retention from Carbohy drate, Protein and Fat in Growing Pigs. J. Anim. Physiol. Anim. Nutr. 1992, 68, 123–135. [Google Scholar] [CrossRef]
- NY/T 825-2004; Technical Specification for Lean-Type Pig Carcass Traits Measurement. Ministry of Agriculture: Beijing, China, 2004.
- Roll, S. Pig Production Practice Guide; China Agricultural Press: Beijing, China, 2017. [Google Scholar]
- Orcutt, M.W.; Forrest, J.C.; Judge, M.D.; Schinckel, A.P.; Kuei, C.H. Practical Means for Estimating Pork Carcass Composition. J. Anim. Sci. 1990, 68, 3987–3997. [Google Scholar] [CrossRef]
- Weng, G.; Yu, M.; Deng, C.; Liu, Y.; Song, M.; Deng, J.; Yin, Y.; Ma, X.; Deng, D. Effects of Dietary Brevibacillus Laterosporus BL1 Supplementation on Meat Quality, Antioxidant Capacity, and the Profiles of Muscle Amino Acids and Fatty Acids in Finishing Pigs. Meat Sci. 2025, 219, 109646. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Li, J.; Ma, X. Use of Hermetia Illucens Larvae as a Dietary Protein Source: Effects on Growth Performance, Carcass Traits, and Meat Quality in Finishing Pigs. Meat Sci. 2019, 158, 107837. [Google Scholar] [CrossRef] [PubMed]
- Tomas, K.; Savaglia, J.; Hewitt, R.J.E.; Plush, K.J.; D’Souza, D.N.; Butler, K.L.; Hemsworth, P.H.; Tilbrook, A.J. Effects of Ma ternal Contact and Positive Human Contact during Lactation on Pork Quality: Positive Human Contact to Piglets during Lactation Improves Pork Loin Muscle pH. Meat Sci. 2025, 219, 109650. [Google Scholar] [CrossRef]
- Kil, D.Y.; Ji, F.; Stewart, L.L.; Hinson, R.B.; Beaulieu, A.D.; Allee, G.L.; Patience, J.F.; Pettigrew, J.E.; Stein, H.H. Effects of Dietary Soybean Oil on Pig Growth Performance, Retention of Protein, Lipids, and Energy, and the Net Energy of Corn in Diets Fed to Growing or Finishing Pigs. J. Anim. Sci. 2013, 91, 3283–3290. [Google Scholar] [CrossRef] [PubMed]
- Han, R. The Effects of Environmental Temperature and Dietary Energy Structure on Energy Metabolism and CO2 Emission in Growing Pigs. Ph.D. Dissertation, Jilin Agricultural University: Changchun, China, 2018. [Google Scholar]
- Chen, J.; Chen, F.; Lin, X.; Wang, Y.; He, J.; Zhao, Y. Effect of Excessive or Restrictive Energy on Growth Performance, Meat Quality, and Intramuscular Fat Deposition in Finishing Ningxiang Pigs. Animals 2020, 11, 27. [Google Scholar] [CrossRef]
- Yi, W.; Huang, Q.; Wang, Y.; Shan, T. Lipo-Nutritional Quality of Pork: The Lipid Composition, Regulation, and Molecular Mechanisms of Fatty Acid Deposition. Anim. Nutr. 2023, 13, 373–385. [Google Scholar] [CrossRef]
- Park, S.; Choe, J.; Cho, J.H.; Jang, K.B.; Kyoung, H.; Park, K.I.; Kim, Y.; Ahn, J.; Kim, H.B.; Song, M. Determination of Optimal Energy System and Level for Growing Pigs. J. Anim. Sci. Technol. 2024, 66, 514–522. [Google Scholar] [CrossRef]
- Chen, F.; Yang, L.; Zhe, L.; Jlali, M.; Zhuo, Y.; Jiang, X.; Huang, L.; Wu, F.; Zhang, R.; Xu, S.; et al. Supplementation of a Multi-Carbohydrase and Phytase Complex in Diets Regardless of Nutritional Levels, Improved Nutrients Digestibility, Growth Performance, and Bone Mineralization of Growing-Finishing Pigs. Animals 2023, 13, 1557. [Google Scholar] [CrossRef]
- Massuquetto, A.; Panisson, J.C.; Schramm, V.G.; Surek, D.; Krabbe, E.L.; Maiorka, A. Effects of Feed Form and Energy Levels on Growth Performance, Carcass Yield and Nutrient Digestibility in Broilers. Animal 2020, 14, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- DeRouchey, J.M.; Hancock, J.D.; Hines, R.H.; Maloney, C.A.; Lee, D.J.; Cao, H.; Dean, D.W.; Park, J.S. Effects of Rancidity and Free Fatty Acids in Choice White Grease on Growth Performance and Nutrient Digestibility in Weanling Pigs. J. Anim. Sci. 2004, 82, 2937–2944. [Google Scholar] [CrossRef]
- Pérez de Nanclares, M.; Marcussen, C.; Tauson, A.-H.; Hansen, J.Ø.; Kjos, N.P.; Mydland, L.T.; Bach Knudsen, K.E.; Øverland, M. Increasing Levels of Rapeseed Expeller Meal in Diets for Pigs: Effects on Protein and Energy Metabolism. Animal 2019, 13, 273–282. [Google Scholar] [CrossRef]
- David, J.M.; Chatziioannou, A.F.; Taschereau, R.; Wang, H.; Stout, D.B. The Hidden Cost of Housing Practices: Using Nonin vasive Imaging to Quantify the Metabolic Demands of Chronic Cold Stress of Laboratory Mice. Comp. Med. 2013, 63, 386–391. [Google Scholar] [PubMed]
- Pettigrew, J.E.; Esnaola, M.A. Swine Nutrition and Pork Quality: A Review1. J. Anim. Sci. 2001, 79, E316–E342. [Google Scholar] [CrossRef]
- Rathwa, S.D.; Vasava, A.A.; Pathan, M.M.; Madhira, S.P.; Patel, Y.G.; Pande, A.M. Effect of Season on Physiological, Biochem ical, Hormonal, and Oxidative Stress Parameters of Indigenous Sheep. Vet World 2017, 10, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Aerts, P.; Mielke, F.; Vanden Hole, C.; Van Gorp, M.J.W.; Van Ginneken, C. Early Development of Locomotion in the Term Piglet Model: Does Size Matter? Integr. Comp. Biol. 2023, 63, 610–624. [Google Scholar] [CrossRef] [PubMed]
- Casas, G.A.; Stein, H.H. Effects of Full Fat or Defatted Rice Bran on Growth Performance and Blood Characteristics of Weanling Pigs. J. Anim. Sci. 2016, 94, 4179–4187. [Google Scholar] [CrossRef]
- Vasan, R.S. Biomarkers of Cardiovascular Disease: Molecular Basis and Practical Considerations. Circulation 2006, 113, 2335–2362. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.A.; Choi, G.Y.; Desai, M.; Lee, S.H.; Pang, M.-G.; Jo, I.; Kim, Y.J. Feed Restriction during Pregnancy/Lactation Induces Programmed Changes in Lipid, Adiponectin and Leptin Levels with Gender Differences in Rat Offspring. J. Matern. Fetal Neonatal Med. 2013, 26, 908–914. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, J.; Yang, C.; Mou, S.; Xie, Y.; Duan, X.; Li, Z.; Bi, Z.; Liu, T.; Li, F.; et al. Energy and Arginine Density in the Diets of Arbor Acre Hens from 40 to 50 Weeks of Age: Effects on Development and Lipid Metabolism of Embryos. Animals 2023, 13, 3737. [Google Scholar] [CrossRef]
- Smit, M.N.; Zhou, X.; Landero, J.L.; Young, M.G.; Beltranena, E. Dietary Energy Level, Feeder Space, and Group Size on Growth Performance and Carcass Characteristics of Growing-Finishing Barrows and Gilts. Transl. Anim. Sci. 2021, 5, txab122. [Google Scholar] [CrossRef]
- Suarez-Belloch, J.; Sanz, M.A.; Joy, M.; Latorre, M.A. Impact of Increasing Dietary Energy Level during the Finishing Period on Growth Performance, Pork Quality and Fatty Acid Profile in Heavy Pigs. Meat Sci. 2013, 93, 796–801. [Google Scholar] [CrossRef]
- Benz, J.M.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; Derouchey, J.M.; Sulabo, R.C.; Goodband, R.D. Effects of Increasing Choice White Grease in Corn- and Sorghum-Based Diets on Growth Performance, Carcass Characteristics, and Fat Quality Characteristics of Finishing Pigs. J. Anim. Sci. 2011, 89, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Hinson, R.B.; Wiegand, B.R.; Ritter, M.J.; Allee, G.L.; Carr, S.N. Impact of Dietary Energy Level and Ractopamine on Growth Performance, Carcass Characteristics, and Meat Quality of Finishing Pigs. J. Anim. Sci. 2011, 89, 3572–3579. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Kim, S.C.; Lee, S.D.; Jang, H.C.; Kim, N.K.; Lee, S.H.; Jung, H.J.; Kim, I.C.; Seong, H.H.; Choi, B.H. Effects of Dietary Fat Types on Growth Performance, Pork Quality, and Gene Expression in Growing-Finishing Pigs. Asian-Australas. J. Anim. Sci. 2012, 25, 1759. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Richardson, R.I.; Sheard, P.R. Manipulating Meat Quality and Composition. Proc. Nutr. Soc. 1999, 58, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.O.; Higbie, A.D.; Southern, L.L.; Coombs, D.F.; Bidner, T.D.; Odgaard, R.L. Effect of Chromium Propionate and Metabolizable Energy on Growth, Carcass Traits, and Pork Quality of Growing-Finishing Pigs. J. Anim. Sci. 2003, 81, 191–196. [Google Scholar] [CrossRef]
- Zeng, Z.; Yu, B.; Mao, X.; Chen, D. Effects of Dietary Digestible Energy Concentration on Growth, Meat Quality, and PPARγ Gene Expression in Muscle and Adipose Tissues of Rongchang Piglets. Meat Sci. 2012, 90, 66–70. [Google Scholar] [CrossRef]
- Goh, T.W.; Kim, H.J.; Moon, K.; Kim, Y.Y. Effects of β-Glucan with Vitamin E Supplementation on the Growth Performance, Blood Profiles, Immune Response, Pork Quality, Pork Flavor, and Economic Benefit in Growing and Finishing Pigs. Anim. Biosci. 2023, 36, 929–942. [Google Scholar] [CrossRef]
Items | Growing Stage (30–60 kg) | Fattening Stage (60–110 kg) | ||
---|---|---|---|---|
CON | TES | CON | TES | |
Corn | 46.97% | 37.59% | 58.46% | 47.47% |
Corn starch | 18.50% | 19.90% | 15.00% | 17.97% |
Wheat bran | 7.35% | 8.86% | 6.10% | 9.99% |
Soybean meal | 23.24% | 24.44% | 13.32% | 13.89% |
Calcium hydrogen phosphate | 0.80% | 0.80% | 0.49% | 0.46% |
Stone flour | 0.83% | 0.82% | 0.85% | 0.93% |
Salt | 0.25% | 0.25% | 0.20% | 0.20% |
Soybean oil | 0.70% | 6.00% | 1.00% | 6.00% |
Alfalfa meal | 0.10% | 0.10% | 3.56% | 1.89% |
Lysine | 0.39% | 0.37% | 0.31% | 0.31% |
Methionine | 0.14% | 0.15% | 0.06% | 0.08% |
Threonine | 0.14% | 0.14% | 0.10% | 0.11% |
Tryptophan | 0.02% | 0.02% | 0.01% | 0.02% |
Valine | 0.07% | 0.06% | 0.04% | 0.18% |
Premix (1) | 0.50% | 0.50% | 0.50% | 0.50% |
Total | 100% | 100.00% | 100.00% | 100.00% |
Nutrient levels (2) | ||||
Digestible energy (MJ/kg) | 14.20 | 15.34 | 14.02 | 15.14 |
Crude protein (%) | 16.90 | 16.60 | 13.69 | 13.86 |
Ether extract (%) | 3.15 | 8.09 | 3.69 | 8.33 |
Crude fiber (%) | 5.59 | 4.45 | 3.73 | 3.38 |
Ash (%) | 5.09 | 3.66 | 3.80 | 3.52 |
Digestible crude protein (%) | 13.19 | 13.19 | 10.06 | 10.06 |
Lysine salt (%) | 0.97 | 0.97 | 0.70 | 0.70 |
Tryptophan (%) | 0.17 | 0.17 | 0.12 | 0.12 |
Methionine + cystine (%) | 0.55 | 0.55 | 0.40 | 0.40 |
Threonine (%) | 0.60 | 0.60 | 0.45 | 0.45 |
Calcium (%) | 0.63 | 0.63 | 0.56 | 0.56 |
Available phosphorus (%) | 0.27 | 0.27 | 0.19 | 0.19 |
Items | CON | TES | p-Value |
---|---|---|---|
30 to 60 kg Stage | |||
Initial Body Weight (kg) | 34.06 ± 6.90 | 34.68 ± 4.21 | 0.745 |
Final Body Weight (kg) | 58.70 ± 7.37 | 59.80 ± 5.84 | 0.624 |
Average Daily Weight Gain (kg/d) | 0.57 ± 0.02 | 0.58 ± 0.03 | 0.388 |
Average Daily Feed Intake (kg/d) | 2.07 ± 0.13 b | 1.89 ± 0.07 a | 0.02 |
Feed-to-Gain Ratio | 3.63 ± 0.04 | 3.26 ± 0.03 | 0.08 |
60 to 110 kg Stage | |||
Initial Body Weight (kg) | 59.23 ± 7.26 | 60.12 ± 6.40 | 0.679 |
Final Body Weight (kg) | 107.28 ± 10.17 | 110.31 ± 8.93 | 0.316 |
Average Daily Weight Gain (kg/d) | 0.74 ± 0.01 | 0.76 ± 0.02 | 0.163 |
Average Daily Feed Intake (kg/d) | 2.93 ± 0.16 b | 2.63 ± 0.04 a | 0.01 |
Feed-to-Gain Ratio | 3.98 ± 0.48 b | 3.45 ± 0.13 a | <0.01 |
Items | CON | TES | p-Value |
---|---|---|---|
Energy Digestibility (%) | 86.49 ± 2.42 | 88.03 ± 1.75 | 0.422 |
Crude Protein Digestibility (%) | 78.99 ± 3.08 | 80.88 ± 2.96 | 0.485 |
Crude Fat Digestibility (%) | 67.16 ± 1.88 a | 84.38 ± 0.94 b | <0.01 |
Items | CON | TES | p-Value |
---|---|---|---|
Intake Nitrogen (g/d) | 61.53 ± 0.21 b | 59.51 ± 0.23 a | <0.01 |
Fecal Nitrogen (g/d) | 12.93 ± 1.94 | 11.38 ± 1.80 | 0.367 |
Urinary Nitrogen (g/d) | 10.65 ± 1.08 b | 8.51 ± 1.02 a | 0.032 |
Apparent Nitrogen Digestibility (%) | 78.99 ± 3.08 | 80.88 ± 2.96 | 0.485 |
Nitrogen Deposition Rate (%) | 61.68 ± 2.30 | 66.59 ± 3.50 | 0.112 |
Items | CON | TES | p-Value |
---|---|---|---|
Respiratory Quotient | 0.98 ± 0.02 | 0.96 ± 0.02 | 0.358 |
Carbon Dioxide Emissions (L/d) | 1065.96 ± 40.27 | 1021.86 ± 46.61 | 0.166 |
Oxygen Consumption (L/d) | 1087.71 ± 28.60 | 1069.33 ± 49.02 | 0.792 |
Gross Energy (MJ/d) | 49.75 ± 0.17 | 49.53 ± 0.19 | 0.206 |
Heat Production (MJ/d) | 23.30 ± 0.63 | 22.03 ± 2.55 | 0.448 |
Fecal Energy (MJ/d) | 6.72 ± 1.22 | 5.93 ± 0.89 | 0.415 |
Urinary Energy (MJ/d) | 1.17 ± 0.03 b | 1.07 ± 0.02 a | 0.034 |
Deposition Energy (MJ/d) | 18.55 ± 0.99 a | 21.94 ± 1.30 b | 0.003 |
Energy Deposition Rate (%) | 37.30 ± 2.11 a | 42.43 ± 0.76 b | 0.017 |
Deposition Energy of Protein (MJ/d) | 5.66 ± 0.19 | 5.91 ± 0.30 | 0.288 |
Deposition Energy of Fat (MJ/d) | 12.89 ± 0.80 a | 15.93 ± 1.10 b | 0.018 |
OXCHO (MJ/d) | 27.27 ± 1.90 b | 18.86 ± 2.24 a | 0.003 |
OXPRO (MJ/d) | 1.17 ± 0.16 b | 0.88 ± 0.22 a | 0.032 |
OXFAT (MJ/d) | 0.66 ± 0.03 a | 1.35 ± 0.02 b | 0.010 |
Items | CON | TES | p-Value |
---|---|---|---|
ALT (U/L) | 34.60 ± 1.52 b | 33.60 ± 2.70 a | 0.041 |
AST (U/L) | 34.52 ± 1.21 b | 33.67 ± 2.53 a | 0.034 |
TP (g/L) | 77.52 ± 4.75 | 77.77 ± 5.20 | 0.872 |
GLU (mmol/L) | 4.60 ± 0.61 | 4.80 ± 0.83 | 0.386 |
BUN (mmol/L) | 4.46 ± 0.48 | 4.23 ± 0.36 | 0.372 |
HDL (mmol/L) | 0.98 ± 0.16 a | 1.10 ± 0.13 b | 0.012 |
LDL (mmol/L) | 1.12 ± 0.15 a | 1.19 ± 0.15 b | 0.044 |
TG (mmol/L) | 0.41 ± 0.16 a | 0.65 ± 0.23 b | 0.001 |
Items | CON | TES | p-Value |
---|---|---|---|
Pre-slaughter Live Weight (kg) | 107.28 ± 10.17 | 110.31 ± 8.93 | 0.316 |
Carcass Weight (kg) | 76.32 ± 2.90 | 80.90 ± 2.43 | 0.053 |
Dressing Percentage (%) | 71.72 ± 1.16 | 73.34 ± 1.02 | 0.132 |
Live Lean Meat Percentage (%) | 50.65 ± 0.65 | 50.14 ± 0.54 | 0.266 |
Live Lean Meat Mass (kg) | 54.09 ± 0.51 | 55.11 ± 0.67 | 0.079 |
Live Fat Percentage (%) | 13.84 ± 3.13 | 16.94 ± 2.20 | 0.157 |
Live Fat Mass (kg) | 14.13 ± 3.50 | 18.90 ± 2.43 | 0.084 |
Backfat Thickness (mm) | 15.50 ± 1.96 a | 18.74 ± 0.99 b | 0.039 |
Eye Muscle Area (cm2) | 40.12 ± 1.24 | 41.75 ± 1.97 | 0.210 |
Items | CON | TES | p-Value |
---|---|---|---|
Weight Gain/Digestible Protein (g/g) | 17.40 ± 0.06 a | 19.80 ± 0.05 b | 0.006 |
Weight Gain/Digestibility Energy (g/MJ) | 18.55 ± 0.60 | 19.48 ± 0.52 | 0.112 |
Live Fat Mass/Digestible Protein (g/g) | 3.70 ± 0.09 | 5.00 ± 0.06 | 0.068 |
Live Fat Mass/Digestibility Energy (g/MJ) | 4.00 ± 0.99 | 4.92 ± 0.63 | 0.166 |
Live Lean Meat Mass/Digestible Protein (g/g) | 13.30 ± 0.08 a | 14.60 ± 0.02 b | 0.023 |
Live Lean Meat Mass/Digestibility Energy (g/MJ) | 14.24 ± 0.84 | 14.36 ± 0.19 | 0.798 |
Items | CON | TES | p-Value |
---|---|---|---|
L*45min | 45.74 ± 2.71 | 46.07 ± 4.59 | 0.763 |
a*45min | 6.33 ± 0.93 | 6.72 ± 0.89 | 0.185 |
b*45min | 10.69 ± 0.69 a | 11.20 ± 0.74 b | 0.029 |
Marbling (score) | 2.59 ± 0.36 | 2.66 ± 0.45 | 0.553 |
pH24h | 5.51 ± 0.05 | 5.53 ± 0.04 | 0.231 |
Cooking Loss Rate (%) | 28.35 ± 1.80 | 27.40 ± 2.51 | 0.202 |
Drip Loss Rate (%) | 7.76 ± 2.28 | 7.70 ± 2.35 | 0.924 |
Shear Force (N) | 49.86 ± 6.18 b | 45.66 ± 4.57 a | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Zhang, Y.; Han, R.; Qin, G.; Jiang, H.; Jiang, D.; Che, D. Research on Energy Supply Optimization of Diets for Songliao Black Growing and Fattening Pigs at a Low Ambient Temperature. Animals 2025, 15, 846. https://doi.org/10.3390/ani15060846
Qi Z, Zhang Y, Han R, Qin G, Jiang H, Jiang D, Che D. Research on Energy Supply Optimization of Diets for Songliao Black Growing and Fattening Pigs at a Low Ambient Temperature. Animals. 2025; 15(6):846. https://doi.org/10.3390/ani15060846
Chicago/Turabian StyleQi, Zhaoyang, Yu Zhang, Rui Han, Guixin Qin, Hailong Jiang, Dan Jiang, and Dongsheng Che. 2025. "Research on Energy Supply Optimization of Diets for Songliao Black Growing and Fattening Pigs at a Low Ambient Temperature" Animals 15, no. 6: 846. https://doi.org/10.3390/ani15060846
APA StyleQi, Z., Zhang, Y., Han, R., Qin, G., Jiang, H., Jiang, D., & Che, D. (2025). Research on Energy Supply Optimization of Diets for Songliao Black Growing and Fattening Pigs at a Low Ambient Temperature. Animals, 15(6), 846. https://doi.org/10.3390/ani15060846