Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = black holes shadow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 10802 KiB  
Article
Shadow Analysis of an Approximate Rotating Black Hole Solution with Weakly Coupled Global Monopole Charge
by Mohsen Fathi
Universe 2025, 11(4), 111; https://doi.org/10.3390/universe11040111 - 27 Mar 2025
Viewed by 333
Abstract
In this paper, we investigate the shadow properties of a rotating black hole with a weakly coupled global monopole charge using a modified Newman–Janis algorithm. This study explores how these charge and rotational effects shape the black hole’s shadow, causal structure, and ergoregions, [...] Read more.
In this paper, we investigate the shadow properties of a rotating black hole with a weakly coupled global monopole charge using a modified Newman–Janis algorithm. This study explores how these charge and rotational effects shape the black hole’s shadow, causal structure, and ergoregions, with implications for distinguishing it from Kerr-like solutions. Analysis of null geodesics reveals observable features that may constrain the global monopole charge and weak coupling parameters within nonminimal gravity frameworks. Observational data from M87* and Sgr A* constrain the global monopole charge and coupling constant to 0γ0.036 and 0.2α0, respectively. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

34 pages, 435 KiB  
Review
Black Hole Thermodynamics and Generalised Non-Extensive Entropy
by Emilio Elizalde, Shin’ichi Nojiri and Sergei D. Odintsov
Universe 2025, 11(2), 60; https://doi.org/10.3390/universe11020060 - 11 Feb 2025
Cited by 3 | Viewed by 1115
Abstract
The first part of this work provides a review of recent research on generalised entropies and their origin, as well as its application to black hole thermodynamics. To start, it is shown that the Hawking temperature and the Bekenstein–Hawking entropy are, respectively, the [...] Read more.
The first part of this work provides a review of recent research on generalised entropies and their origin, as well as its application to black hole thermodynamics. To start, it is shown that the Hawking temperature and the Bekenstein–Hawking entropy are, respectively, the only possible thermodynamical temperature and entropy of the Schwarzschild black hole. Moreover, it is investigated if the other known generalised entropies, which include Rényi’s entropy, Tsallis entropy, and the four- and five-parameter generalised entropies, could correctly yield the Hawking temperature and the ADM mass. The possibility that generalised entropies could describe hairy black hole thermodynamics is also considered, both for the Reissner–Nordström black hole and for Einstein’s gravity coupled with two scalar fields. Two possibilities are investigated, namely, the case when the ADM mass does not yield the Bekenstein–Hawking entropy, and the case in which the effective mass expressing the energy inside the horizon does not yield the Hawking temperature. For the model with two scalar fields, the radii of the photon sphere and of the black hole shadow are calculated, which gives constraints on the BH parameters. These constraints are seen to be consistent, provided that the black hole is of the Schwarzschild type. Subsequently, the origin of the generalised entropies is investigated, by using their microscopic particle descriptions in the frameworks of a microcanonical ensemble and canonical ensemble, respectively. Finally, the McLaughlin expansion for the generalised entropies is used to derive, in each case, the microscopic interpretation of the generalised entropies, via the canonical and the grand canonical ensembles. Full article
(This article belongs to the Section Gravitation)
40 pages, 8293 KiB  
Article
Fractional Einstein–Gauss–Bonnet Scalar Field Cosmology
by Bayron Micolta-Riascos, Alfredo D. Millano, Genly Leon, Byron Droguett, Esteban González and Juan Magaña
Fractal Fract. 2024, 8(11), 626; https://doi.org/10.3390/fractalfract8110626 - 24 Oct 2024
Cited by 2 | Viewed by 1796
Abstract
Our paper introduces a new theoretical framework called the Fractional Einstein–Gauss–Bonnet scalar field cosmology, which has important physical implications. Using fractional calculus to modify the gravitational action integral, we derived a modified Friedmann equation and a modified Klein–Gordon equation. Our research reveals non-trivial [...] Read more.
Our paper introduces a new theoretical framework called the Fractional Einstein–Gauss–Bonnet scalar field cosmology, which has important physical implications. Using fractional calculus to modify the gravitational action integral, we derived a modified Friedmann equation and a modified Klein–Gordon equation. Our research reveals non-trivial solutions associated with exponential potential, exponential couplings to the Gauss–Bonnet term, and a logarithmic scalar field, which are dependent on two cosmological parameters, m and α0=t0H0 and the fractional derivative order μ. By employing linear stability theory, we reveal the phase space structure and analyze the dynamic effects of the Gauss–Bonnet couplings. The scaling behavior at some equilibrium points reveals that the geometric corrections in the coupling to the Gauss–Bonnet scalar can mimic the behavior of the dark sector in modified gravity. Using data from cosmic chronometers, type Ia supernovae, supermassive Black Hole Shadows, and strong gravitational lensing, we estimated the values of m and α0, indicating that the solution is consistent with an accelerated expansion at late times with the values α0=1.38±0.05, m=1.44±0.05, and μ=1.48±0.17 (consistent with Ωm,0=0.311±0.016 and h=0.712±0.007), resulting in an age of the Universe t0=19.0±0.7 [Gyr] at 1σ CL. Ultimately, we obtained late-time accelerating power-law solutions supported by the most recent cosmological data, and we proposed an alternative explanation for the origin of cosmic acceleration other than ΛCDM. Our results generalize and significantly improve previous achievements in the literature, highlighting the practical implications of fractional calculus in cosmology. Full article
Show Figures

Figure 1

10 pages, 1492 KiB  
Communication
Sgr A* Shadow Study with KTN Space Time and Investigation of NUT Charge Existence
by Masoumeh Ghasemi-Nodehi
Universe 2024, 10(9), 378; https://doi.org/10.3390/universe10090378 - 23 Sep 2024
Cited by 3 | Viewed by 805
Abstract
In this paper, I investigate the existence of the NUT charge through the KTN spacetime using shadow observations of Sgr A*. I report that the range of my constraint for the NUT charge is between −0.5 and 0.5 for Schwarzschild-like and very slowly [...] Read more.
In this paper, I investigate the existence of the NUT charge through the KTN spacetime using shadow observations of Sgr A*. I report that the range of my constraint for the NUT charge is between −0.5 and 0.5 for Schwarzschild-like and very slowly rotating KTN black holes. This range extends to 1.5 for spins up to −2 and −1.5 for spins up to 2 based on Keck observations for both 40° and 10° viewing angles. For VLTI observations, Schwarzschild-like and very slowly rotating KTN black holes are excluded for a 40° viewing angle, and the NUT charge is constrained to a very narrow range for a 10° viewing angle. I report that the possibility of having KTN naked singularities in Sgr A* is small, considering the uncertainties in the shadow size. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

19 pages, 1250 KiB  
Article
Testing a Nonlinear Solution of the Israel–Stewart Theory
by Miguel Cruz, Norman Cruz, Esteban González and Samuel Lepe
Galaxies 2024, 12(5), 52; https://doi.org/10.3390/galaxies12050052 - 12 Sep 2024
Cited by 2 | Viewed by 1179
Abstract
In this work, we test the ability of an exact solution, found in the framework of a nonlinear extension of the Israel–Stewart theory, to fit the supernovae Ia, gravitational lensing, and black hole shadow data. This exact solution is a generalization of one [...] Read more.
In this work, we test the ability of an exact solution, found in the framework of a nonlinear extension of the Israel–Stewart theory, to fit the supernovae Ia, gravitational lensing, and black hole shadow data. This exact solution is a generalization of one previously found for a dissipative unified dark matter model in the context of the near-equilibrium description of dissipative processes, where we do not have the full regime of the nonlinear picture. This generalized solution is restricted to the case where a positive entropy production is guaranteed and is tested under the condition that ensures its causality, local existence, and uniqueness. From the observational constraints, we found that this generalized solution is a good candidate in the description of the observational late-time data used in this work, with best-fit values of H0=73.20.9+0.8km/sMpc, q0=0.410.03+0.03, ξ^0=0.880.17+0.09, ϵ=0.340.04+0.03, and k=0.270.20+0.37, at a 1σ(68.3%) of confidence level. We show that the nonlinear regime of the Israel–Stewart theory consistently describes the recent accelerated expansion of the universe without the inclusion of some kind of dark energy component and also provides a more realistic description of the fluids that make up the late universe. Full article
Show Figures

Figure 1

14 pages, 1789 KiB  
Article
4D Embedded Rotating Black Hole as a Particle Accelerator in the Presence of Magnetic Fields
by Abraão J. S. Capistrano, Carlos Henrique Coimbra-Araújo and Rita de Cássia dos Anjos
Universe 2024, 10(9), 355; https://doi.org/10.3390/universe10090355 - 4 Sep 2024
Viewed by 1310
Abstract
We analyze a rotating black hole (BH) in a four-dimensional space-time embedded in five-dimensional flat bulk. In Boyer–Lindquist coordinates, we use a generic extension of the Kerr metric by the line element of Gürses–Gürsey metric. We discuss their horizon properties and shadow cast [...] Read more.
We analyze a rotating black hole (BH) in a four-dimensional space-time embedded in five-dimensional flat bulk. In Boyer–Lindquist coordinates, we use a generic extension of the Kerr metric by the line element of Gürses–Gürsey metric. We discuss their horizon properties and shadow cast which is tailored by the influence of the extrinsic curvature. By means of the model based on the Nash–Greene theorem, we analyze the Gürses–Gürsey metric embedded in five dimensions acting as a rotating “charged” BH which may be regarded as a source of ultrahigh-energy cosmic rays (UHECRs). We also show that this type of BH presents a different structure of the accretion disk which is modified by the extrinsic curvature leading to an enlargement of the photons ring and an increase in the BH’s inner shadow. In the presence of a magnetic field, our initial results suggest that such BHs may be efficient free-test particle accelerators orbiting the inner stable circular orbit (ISCO). Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Show Figures

Figure 1

18 pages, 8503 KiB  
Article
Effects of Two Quantum Correction Parameters on Chaotic Dynamics of Particles near Renormalized Group Improved Schwarzschild Black Holes
by Junjie Lu and Xin Wu
Universe 2024, 10(7), 277; https://doi.org/10.3390/universe10070277 - 26 Jun 2024
Cited by 2 | Viewed by 1723
Abstract
A renormalized group improved Schwarzschild black hole spacetime contains two quantum correction parameters. One parameter γ represents the identification of cutoff of the distance scale, and another parameter Ω stems from nonperturbative renormalization group theory. The two parameters are constrained by the data [...] Read more.
A renormalized group improved Schwarzschild black hole spacetime contains two quantum correction parameters. One parameter γ represents the identification of cutoff of the distance scale, and another parameter Ω stems from nonperturbative renormalization group theory. The two parameters are constrained by the data from the shadow of M87* central black hole. The dynamics of electrically charged test particles around the black hole are integrable. However, when the black hole is immersed in an external asymptotically uniform magnetic field, the dynamics are not integrable and may allow for the occurrence of chaos. Employing an explicit symplectic integrator, we survey the contributions of the two parameters to the chaotic dynamical behavior. It is found that a small change of the parameter γ constrained by the shadow of M87* black hole has an almost negligible effect on the dynamical transition of particles from order to chaos. However, a small decrease in the parameter Ω leads to an enhancement in the strength of chaos from the global phase space structure. A theoretical interpretation is given to the different contributions. The term with the parameter Ω dominates the term with the parameter γ, even if the two parameters have same values. In particular, the parameter Ω acts as a repulsive force, and its decrease means a weakening of the repulsive force or equivalently enhancing the attractive force from the black hole. On the other hand, there is a positive Lyapunov exponent that is universally given by the surface gravity of the black hole when Ω0 is small and the external magnetic field vanishes. In this case, the horizon would influence chaotic behavior in the motion of charged particles around the black hole surrounded by the external magnetic field. This point can explain why a smaller value of the renormalization group parameter would much easily induce chaos than a larger value. Full article
Show Figures

Figure 1

20 pages, 2961 KiB  
Article
Observable Properties of Thin Accretion Disk in the γ Spacetime
by Bobur Turimov and Bobomurat Ahmedov
Symmetry 2023, 15(10), 1858; https://doi.org/10.3390/sym15101858 - 3 Oct 2023
Cited by 4 | Viewed by 1461
Abstract
We study matter accretion in a static, axially symmetric and vacuum geometry describing the exterior gravitational field of a black hole mimicker called the γ metric. We evaluate the thermal and optical properties of thin accretion disks, including the emission rate, luminosity and [...] Read more.
We study matter accretion in a static, axially symmetric and vacuum geometry describing the exterior gravitational field of a black hole mimicker called the γ metric. We evaluate the thermal and optical properties of thin accretion disks, including the emission rate, luminosity and shadow, in the gamma spacetime. Also, we explore the radial accretion of polytropic matter fields onto the central source and evaluate the thermal and optical properties of the infalling gas, such as temperature and luminosity. The results are discussed in the context of evaluating the possibility that the true nature of astrophysical black hole candidates may not be a black hole but some exotic compact object possessing a non-vanishing mass quadrupole moment. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

3 pages, 2759 KiB  
Editorial
From Vision to Instrument: Creating a Next-Generation Event Horizon Telescope for a New Era of Black Hole Science
by Michael D. Johnson, Sheperd S. Doeleman, José L. Gómez and Avery E. Broderick
Galaxies 2023, 11(5), 92; https://doi.org/10.3390/galaxies11050092 - 22 Aug 2023
Cited by 3 | Viewed by 1784
Abstract
In April 2019, the Event Horizon Telescope (EHT) Collaboration successfully imaged a supermassive black hole (SMBH) for the first time, revealing the apparent “shadow” cast by the dark compact object M87* in the center of the elliptical galaxy Virgo A [...] [...] Read more.
In April 2019, the Event Horizon Telescope (EHT) Collaboration successfully imaged a supermassive black hole (SMBH) for the first time, revealing the apparent “shadow” cast by the dark compact object M87* in the center of the elliptical galaxy Virgo A [...] Full article
Show Figures

Figure 1

12 pages, 2389 KiB  
Communication
Spins of Supermassive Black Holes M87* and SgrA* Revealed from the Size of Dark Spots in Event Horizon Telescope Images
by Vyacheslav Ivanovich Dokuchaev
Astronomy 2023, 2(3), 141-152; https://doi.org/10.3390/astronomy2030010 - 19 Jul 2023
Cited by 9 | Viewed by 3147
Abstract
We reconstructed dark spots in the images of supermassive black holes SgrA* and M87* provided by the Event Horizon Telescope (EHT) collaboration by using the geometrically thin accretion disk model. In this model, the black hole is highlighted by the hot accretion matter [...] Read more.
We reconstructed dark spots in the images of supermassive black holes SgrA* and M87* provided by the Event Horizon Telescope (EHT) collaboration by using the geometrically thin accretion disk model. In this model, the black hole is highlighted by the hot accretion matter up to the very vicinity of the black hole event horizon. The existence of hot accretion matter in the vicinity of black hole event horizons is predicted by the Blandford–Znajek mechanism, which is confirmed by recent general relativistic MHD simulations in supercomputers. A dark spot in the black hole image in the described model is a gravitationally lensed image of an event horizon globe. The lensed images of event horizons are always projected at the celestial sphere inside the awaited positions of the classical black hole shadows, which are invisible in both cases of M87* and SgrA*. We used the sizes of dark spots in the images of SgrA* and M87* for inferring their spins, 0.65<a<0.9 and a>0.75, accordingly. Full article
Show Figures

Figure 1

30 pages, 2037 KiB  
Article
Probing Modified Gravity Theories with Scalar Fields Using Black-Hole Images
by Georgios Antoniou, Alexandros Papageorgiou and Panagiota Kanti
Universe 2023, 9(3), 147; https://doi.org/10.3390/universe9030147 - 11 Mar 2023
Cited by 11 | Viewed by 2802
Abstract
We study a number of well-motivated theories of modified gravity with the common overarching theme that they predict the existence of compact objects, such as black holes and wormholes endowed with scalar hair. We compute the shadow radius of the resulting compact objects [...] Read more.
We study a number of well-motivated theories of modified gravity with the common overarching theme that they predict the existence of compact objects, such as black holes and wormholes endowed with scalar hair. We compute the shadow radius of the resulting compact objects and demonstrate that black hole images, such as that of M87* or the more recent SgrA* by the Event Horizon Telescope (EHT) collaboration, could provide a powerful way to constrain deviations of the metric functions from what is expected from general relativity (GR) solutions. We focus our attention on Einstein-scalar-Gauss–Bonnet (EsGB) theory with three well-motivated couplings, including the dilatonic and Z2 symmetric cases. We then analyze the shadow radius of black holes in the context of the spontaneous scalarization scenario within EsGB theory with an additional coupling to the Ricci scalar (EsRGB). Finally, we turn our attention to spontaneous scalarization in the Einstein–Maxwell-Scalar (EMS) theory and demonstrate the impact of the parameters on the black hole shadow. Our results show that black hole imaging is an important tool for constraining black holes with scalar hair, and, for some part of the parameter space, black hole solutions with scalar hair may be marginally favored compared to solutions of GR. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

16 pages, 2659 KiB  
Article
Strong Deflection Gravitational Lensing for the Photons Coupled to the Weyl Tensor in a Conformal Gravity Black Hole
by Ghulam Abbas, Ali Övgün, Asif Mahmood and Muhammad Zubair
Universe 2023, 9(3), 130; https://doi.org/10.3390/universe9030130 - 2 Mar 2023
Cited by 2 | Viewed by 1874
Abstract
In the present paper, strong deflection gravitational lensing is studied in a conformal gravity black hole. With the help of geometric optics limits, we have formulated the light cone conditions for the photons coupled to the Weyl tensor in a conformal gravity black [...] Read more.
In the present paper, strong deflection gravitational lensing is studied in a conformal gravity black hole. With the help of geometric optics limits, we have formulated the light cone conditions for the photons coupled to the Weyl tensor in a conformal gravity black hole. It is explicitly found that strong deflection gravitational lensing depends on the coupling with the Weyl tensor, the polarization directions, and the black hole configuration parameters. We have applied the results of the strong deflection gravitational lensing to the supermassive black holes SgrA* and M87* and studied the possibility of encountering quantum improvement. It is not practicable to recognize similar black holes through the strong deflection gravitational lensing observables in the near future, except for the possible size of the black hole’s shadow. We also notice that by directly adopting the constraint of the measured shadow of M87*, the quantum effect demands immense care. Full article
Show Figures

Figure 1

26 pages, 6147 KiB  
Review
Observational and Energetic Properties of Astrophysical and Galactic Black Holes
by Bakhtiyor Narzilloev and Bobomurat Ahmedov
Symmetry 2023, 15(2), 293; https://doi.org/10.3390/sym15020293 - 20 Jan 2023
Cited by 18 | Viewed by 3244
Abstract
The work reviews the investigation of electromagnetic, optical, and energetic properties of astrophysical and galactic black holes and surrounding matter. The astrophysical applications of the theoretical models of black hole environment to the description of various observed phenomena, such as cosmic rays of [...] Read more.
The work reviews the investigation of electromagnetic, optical, and energetic properties of astrophysical and galactic black holes and surrounding matter. The astrophysical applications of the theoretical models of black hole environment to the description of various observed phenomena, such as cosmic rays of the ultra-high-energy, black hole shadow, gravitational lensing, quasinormal modes, jets showing relativistic effects such as the Doppler beaming, thermal radiation from the accretion discs, quasiperiodic oscillations are discussed. It has been demonstrated that the observational data strongly depends on the structure and evolution of the accretion disk surrounding the central black hole. It has been shown that the simulated images of supermassive black holes obtained are in agreement with the observational images obtained by event horizon telescope collaboration. High energetic activity from supermassive black holes due to the magnetic Penrose process discussed in the work is in agreement with the highly energetic cosmic rays observed. The astronomical observation of black holes provides rich fundamental physics laboratories for experimental tests and verification of various models of black hole accretion and different theories of gravity in the regime of strong gravity. Full article
(This article belongs to the Special Issue Noether and Space-Time Symmetries in Physics)
Show Figures

Figure 1

19 pages, 1050 KiB  
Review
Orbits of Particles and Photons around Regular Rotating Black Holes and Solitons
by Irina Dymnikova and Anna Dobosz
Symmetry 2023, 15(2), 273; https://doi.org/10.3390/sym15020273 - 18 Jan 2023
Cited by 2 | Viewed by 2235
Abstract
We briefly overview the basic properties and generic behavior of circular equatorial particle orbits and light rings around regular rotating compact objects with dark energy interiors, which are described by regular metrics of the Kerr–Schild class and include rotating black holes and self-gravitating [...] Read more.
We briefly overview the basic properties and generic behavior of circular equatorial particle orbits and light rings around regular rotating compact objects with dark energy interiors, which are described by regular metrics of the Kerr–Schild class and include rotating black holes and self-gravitating spinning solitons replacing naked singularities. These objects have an internal de Sitter vacuum disk and can have two types of dark interiors, depending on the energy conditions. The first type reduces to the de Sitter disk, the second contains a closed de Sitter surface and an S surface with the de Sitter disk as the bridge and an anisotropic phantom fluid in the regions between the S surface and the disk. In regular geometry, the potentials decrease from V(r) to their minima, which ensures the existence of the innermost stable photon and particle orbits that are essential for processes of energy extraction occurring within the ergoregions, which for the second type of interiors contain the phantom energy. The innermost orbits provide a diagnostic tool for investigation of dark interiors of de Sitter–Kerr objects. They include light rings which confine these objects and ensure the most informative observational signature for rotating black holes presented by their shadows. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry: Feature Review Papers)
Show Figures

Figure 1

18 pages, 2866 KiB  
Article
Event Horizon and Environs (ETHER): A Curated Database for EHT and ngEHT Targets and Science
by Venkatessh Ramakrishnan, Neil Nagar, Vicente Arratia, Joaquín Hernández-Yévenes, Dominic W. Pesce, Dhanya G. Nair, Bidisha Bandyopadhyay, Catalina Medina-Porcile, Thomas P. Krichbaum, Sheperd Doeleman, Angelo Ricarte, Vincent L. Fish, Lindy Blackburn, Heino Falcke, Geoffrey Bower and Priyamvada Natarajan
Galaxies 2023, 11(1), 15; https://doi.org/10.3390/galaxies11010015 - 12 Jan 2023
Cited by 17 | Viewed by 3666
Abstract
The next generation Event Horizon Telescope (ngEHT) will observe multiple supermassive black hole (SMBH) candidates down to a few tens of mJy, and profoundly transform our understanding of the local SMBH population. Given the impossibility of large-area high-resolution millimeter surveys, multi-frequency spectral energy [...] Read more.
The next generation Event Horizon Telescope (ngEHT) will observe multiple supermassive black hole (SMBH) candidates down to a few tens of mJy, and profoundly transform our understanding of the local SMBH population. Given the impossibility of large-area high-resolution millimeter surveys, multi-frequency spectral energy densities (SEDs), and models are required to both identify source samples tailored to specific science goals, and to predict the feasibility of detection of individual interesting sources. Here, we present the Event Horizon and Environs (ETHER) source and SED model database whose primary use is to enable the selection and optimization of targets for EHT and ngEHT science. The living ETHER database currently consolidates 1.6 million black hole mass estimates, ∼15,500 milliarcsec-scale radio fluxes, ∼14,000 hard X-ray fluxes (expected to grow by factor ≳40 with the eROSITA data release) and SED information as obtained from catalogs and database queries, the literature, and our own new observations. Jet and accretion flow models are fit to individual SEDs in an automated way in order to predict the ngEHT observable fluxes from the jet base and accretion inflow. The database can be filtered by parameters or cross matched to a user source list, with the automated SED fitting models optionally fine tuned by the user. We have identified an initial ngEHT ‘gold sample’ for jet base studies and potentially black hole shadows; this sample will grow significantly in the coming years. While the ngEHT requires and will best exploit the ETHER database, six (eleven) ETHER sources have already been observed (scheduled) with the EHT in 2022 (2023), and the database has wide ranging applications in galaxy and black hole mass evolution studies. Full article
Show Figures

Figure 1

Back to TopTop