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Abstract: We study a number of well-motivated theories of modified gravity with the common
overarching theme that they predict the existence of compact objects, such as black holes and
wormholes endowed with scalar hair. We compute the shadow radius of the resulting compact
objects and demonstrate that black hole images, such as that of M87∗ or the more recent SgrA∗ by the
Event Horizon Telescope (EHT) collaboration, could provide a powerful way to constrain deviations
of the metric functions from what is expected from general relativity (GR) solutions. We focus
our attention on Einstein-scalar-Gauss–Bonnet (EsGB) theory with three well-motivated couplings,
including the dilatonic and Z2 symmetric cases. We then analyze the shadow radius of black holes
in the context of the spontaneous scalarization scenario within EsGB theory with an additional
coupling to the Ricci scalar (EsRGB). Finally, we turn our attention to spontaneous scalarization in the
Einstein–Maxwell-Scalar (EMS) theory and demonstrate the impact of the parameters on the black
hole shadow. Our results show that black hole imaging is an important tool for constraining black
holes with scalar hair, and, for some part of the parameter space, black hole solutions with scalar hair
may be marginally favored compared to solutions of GR.

Keywords: modified gravity; Gauss-Bonnet gravity; Einstein-Maxwell-scalar theory; scalarization;
hairy black holes; black-hole shadow; wormhole shadow; black-hole imaging; Event Horizon
Telescope

1. Introduction

Black holes, once considered a mere mathematical curiosity of Einstein’s General
Theory of Relativity, are now known to populate our Universe in vast numbers. Currently,
they are met at two different scales: stellar black holes with masses in the approximate
range of (5–70) M� and supermassive black holes residing at the center of galaxies with
masses as large as 1010 M�. A black hole is the most lucid manifestation of how gravity
behaves at the strong regime and can thus serve as a testbed for probing the fundamental
theory of gravitational interactions.

Although General Relativity (GR) is a beautiful mathematical theory that has so far
passed all experimental tests (see, for instance, [1–5] and reviews [6–9]), it is clear that
it cannot provide all the answers to several persisting, open questions in gravity and
cosmology: the existence of singularities, the unknown nature of dark matter and dark
energy, the difficulty in quantizing gravity and unifying it with the remaining forces in
nature, to mention a few. The common consensus among scientists is that GR is only a
low-energy limit of a more fundamental theory of gravity [10,11]. As the structure of the
final Quantum Theory of Gravity is still alluding us, the most usual approach taken in the
meantime is that of the effective field theory: GR, a linear theory in terms of curvature,
is now supplemented by higher gravitational terms, the presence of extra fields—mainly
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scalar and gauge fields—and new couplings, including higher-derivative ones between
matter and gravity.

Extending GR in this way unavoidably leads to a much richer range of gravitational
solutions. To start with, new black-hole solutions in the context of modified theories of
gravity have long been known to exist [12–20] (see also [21,22] for a review), by evading
the no-hair theorems of GR [23–35] with a plethora of additional solutions have emerged
during the last few years [36–58]. In addition, these modified theories also predict compact
solutions other than black holes, such as traversable wormholes [59–80] and particle-like
solutions [49,81–87]. The exciting prospect of having our Universe also populated by these
compact objects perhaps does not seem so unlikely nowadays.

Our first task, however, is to probe the validity of the modified gravitational theories
predicting all these new gravitational solutions. The properties of the observed black holes
or the observable signals from processes associated with black holes can serve as a valuable
tool for this purpose. Indeed, in the last few years, we have witnessed the detection of
gravitational waves from the merging processes of stellar black holes [88–90] but also
the imaging observations of the supermassive black holes residing at the center of the
M87 galaxy [91–98] and of our own Galaxy [99–104]. These observations have been used
extensively in the literature to probe the validity of General Relativity and to set limits and
constraints on modified gravitational theories (see, for example, [105–128]). Capturing the
horizon-scale image of Sagittarius A∗ in particular, the supermassive black hole located in
the center of our own Galaxy, presents a number of advantages. First, due to its proximity,
the mass-to-distance ratio of Sagittarius A∗ is much more accurately determined than that
of M87∗. In addition, Sagittarius A∗ has a much smaller mass than M87∗; this allows us to
test a curvature scale that lies between the low curvature scale of the massive M87∗ black
hole and the high curvature scale of stellar black holes.

The main feature in the horizon-scale images of supermassive black holes is the
bright photon ring that marks the boundary of a dark interior region, called the black-hole
shadow [129]. The bright ring is formed by photon trajectories originating from parts of the
universe behind the black hole that is gravitationally lensed by its gravitational field and
directed toward our line of sight. These photons have impact parameters slightly larger
than the ones that lead to their capturing in bound, circular orbits around the black hole.
The quantitative characteristics of the shadow can be calculated in the context of either
GR or a modified theory of gravity and compared to the observed value, thus probing the
validity of the theory in question.

In this work, we consider a set of modified gravitational theories, with their common
characteristic being the presence of a scalar field. This scalar field will be sourced by
either gravitational terms, leading to induced or spontaneous scalarization, or gauge fields,
leading to charged scalarized solutions. The presence of the scalar field modifies the gravi-
tational background as well as the geodesic structure of the spacetime, including the photon
trajectories and the size and shape of the black-hole shadow. We will initiate our analysis
by deriving the connection between the metric components of the line element around
a compact object and the theoretically expected shadow radius in a model-independent
way. We will then apply this formalism in order to derive the shadow radius for compact
objects in the Einstein-scalar-Gauss–Bonnet (EsGB) theory with three different forms of
coupling function between the scalar field and the GB term in a variant of the EsGB theory
with an additional coupling between the scalar field and the Ricci tensor, and finally, in the
Einstein–Maxwell-Scalar (EMS) theory with three different forms of the coupling function
between the scalar and the Maxwell fields again.

The validity of such scalar-tensor and tensor-scalar-vector theories could be probed
by present and future observational bounds on shadow radii. To this end, after deriving
the theoretically predicted shadow radii in each theory, we will employ, as an indicative
example, the bounds on the deviation of the observed black-hole shadow of Sagittarius
A∗ from that of the Schwarzschild solution 1, as these were derived by the Event Horizon
Telescope [104] in a mass-scale independent form. We demonstrate that the black-hole
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shadow bounds from Sagittarius A∗ can indeed impose restrictions on the parameter space
or on the form of the coupling function of the scalar field in the aforementioned modified
theories. However, the physical conclusions drawn depend very strongly on the particular
EHT bound, or combination of EHT bounds, employed for this purpose. Thus, the use
of individual bounds always allows amble parameter space where the majority of the
modified theories considered are viable—in certain cases, they are even favored compared
to General Relativity. In contrast, demanding that all EHT bounds are simultaneously
satisfied significantly reduces the parameter space and, at times, eliminates it.

The outline of the paper is as follows. In Section 2, we present the formalism that
allows us to derive the theoretically expected shadow radius in a model-independent
way. We focus here on black holes and wormholes and demonstrate the differences in the
shadows in each case. In Section 3, we provide a comprehensive review of the derivation of
the existing observational bounds that quantify the deviation of the black-hole shadow from
the expected GR result. Next, in Section 4, we apply the formalism of Section 2 to compute
the shadow radius of black holes and wormholes derived in the context of the EsGB theory
with three distinct coupling functions and demonstrate the effect of the bounds obtained by
the EHT observations. We perform the same tasks in Section 5, where we turn our attention
to some of the most well-established models of spontaneous scalarization, and in Section 6,
we likewise analyze the EMS theory. We outline our conclusions in Section 7.

2. Shadow Radius of Compact Objects

In this section, we present the analytic formalism, which yields the expressions for
the shadow radius of compact objects. We focus our analysis on solutions with spherical
symmetry due to the significantly larger number of such scalarized solutions in the litera-
ture. In addition, as we will argue at the end of Section 3, the black-hole spin affects the
observational value of the shadow rather feebly. In what follows, we first examine the
case where the compact object is a black hole, and then we consider the scenario where the
compact object is a wormhole.

2.1. Black Holes

We start by investigating the shadow size for a static and spherically symmetric
configuration of the following form:

ds2 = gtt dt2 + grr dr2 + r2dΩ2 . (1)

We first need to locate the photon sphere for this background. To do that, we consider the
trajectory of a photon. Since spherical symmetry is assumed, we can consider, without
loss of generality, motion on the equatorial plane θ = π/2. The Killing vectors associated
with the symmetries of this spacetime are ξ

µ
1 = (1, 0, 0, 0) and ξ

µ
2 = (0, 0, 0, 1). Then,

following [130], we can define the 4-momentum of a photon as k̃ = (kt, kr, kθ , kϕ), with
kθ = 0 (from symmetry arguments). Then, the conserved quantities, i.e., the energy
and angular momentum, are E = −ξ

µ
1 kµ = −gttkt and L = ξ

µ
2 kµ = r2kϕ, respectively.

Moreover, the constraint k̃2 = 0 fixes the kr component of the 4-momentum, so that we may
finally write:

k̃ =

(
− E

gtt
,

√
− E2

gtt grr
− L2

grr r2 , 0 ,
L
r2

)
. (2)

It is now straightforward to locate the radius for circular photon orbits by demanding
kr = 0 and dkr/dr = 0. In terms of the impact parameter b ≡ L/E, these conditions yield

b2 = − r2

gtt

∣∣∣∣
rph

= − r3(gtt g′rr + grr g′rr)

g2
tt(r g′rr + 2grr)

∣∣∣∣
rph

, (3)
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which can be simplified to give the equation for the photon circular orbit radius

Photon orbit radius: rph =
2gtt

g′tt

∣∣∣∣
rph

. (4)

Our next step is to determine the shadow radius as observed by a far-away observer
after lensing has been taken into account (see the left plot of Figure 1). For a null trajectory,
we can write gµν ẋµ ẋν = 0, which, in turn, yields

grr

(
ṙ
ϕ̇

)2
= −r2 − gtt

(
ṫ
ϕ̇

)2

, (5)

where E = −gtt ṫ and L = r2 ϕ̇. Therefore, we can equivalently solve for the radial deviation
with respect to the polar angle(

dr
dϕ

)2
= − r2

grr

(
r2

gtt b2 + 1
)

. (6)

At the point of closest radial approach r = r0, the equation above should vanish,

1
b2 = − gtt

r2

∣∣∣∣
r0

. (7)

From Figure 1a, we can also easily deduce that

cot α =

√
grr

r
dr
dϕ

∣∣∣∣
robs

(6)−→ sin2 α = − gtt b2

r2

∣∣∣∣
robs

. (8)

Then, it is obvious that the angle for the shadow of the black hole is retrieved in the limit
r0 → rph. We assume that asymptotically far away, the spacetime is flat; therefore, gtt → −1.
Then, for a far-away observer sin α ≈ α, so αsh = bcrit/robs, where bcrit is the value of the
impact parameter given in Equation (7) in the limit r0 → rph. From Figure 1(a) and for
robs � rph, we also have αsh ≈ rsh/robs. Identifying the two expressions for αsh, we can
finally deduce that

rsh = bcrit =
rph√
−gtt(rph)

. (9)

For a Schwarzschild black hole, for example, where gtt = −(1 − 2M/r), Equation (4)
readily gives rph = 3M. Employing this result in Equation (9), we easily obtain that
rsh = 3

√
3M.

2.2. Wormholes

By employing a different spherically symmetric metric, we can study other types of
compact objects, which, in fact, exhibit different shadow properties. To this end, we thus
consider the following alternative form of line element [71,72,131]

ds2 = −e2v(l) dt2 + f (l) dl2 +
(

l2 + l2
0

)
(dθ2 + sin2 θ dϕ2) , (10)

which describes a wormhole geometry with a throat located at l0. In this spacetime, the
conserved quantities are

E = −gttkt = e2v dt
dλ

, L = gϕϕkϕ =
(

l2 + l2
0

) dϕ

dλ
. (11)

b2 =
(

l2
c + l2

0

)
e−2vc . (12)
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α

robs

r0

rshPhoton sphere rph

(a) (b)

Figure 1. (a) Qualitative representation of a light ray reaching an observer at an angle α, located
at distance robs from the point singularity. The blue line traces a light ray escaping from a closed
orbit around the black hole to infinity. The red line aligns with the inferred angle of approach for the
light ray to an asymptotic observer. The point of closest approach for the light ray with respect to
the black hole is located at r = r0. If r0 = rsh the light ray escapes the photon sphere. The shaded,
circular area denotes the interior of the black-hole horizon, while the dashed, circular line corresponds
to the location of the photon sphere. (b) Same but for a wormhole geometry. Here we show the
embedding diagram depicting a finite radius throat along the vertical axis. The blue line traces a light
ray escaping from the photon sphere to infinity, while the red straight line corresponds to the inferred
line of approach to an asymptotic observer.

In order to find the photon sphere(s), we demand, as in the black-hole case, that kl = 0
and dkl/dl = 0. These yield the following equation, which holds at the photon sphere(s):

v′(lph) =
lph

l2
ph + l2

0
. (13)

Upon solving this, we obtain the radii for the circular photon orbits in this background,
namely

lph =
1±

√
1− 4 l2

0 v′2ph

2 v′ph
. (14)

Further, for a null trajectory, we now find(
dl
dϕ

)2
=

(
l2 + l2

0
)

f

[
−1 +

(
l2 + l2

0
)

e2v b2

]
. (15)

In order to reach the point of the closest approach l = lc, where the above equation vanishes,
the impact parameter must assume the following value

For the wormhole background (10), general Equation (8) for the lensing takes the form

cot α =

√
f (l)

l2 + l2
0

dl
dϕ

∣∣∣∣∣
lobs

(15)−−→ sin2 α =
e2v b2

l2 + l2
0

∣∣∣∣∣
lobs

. (16)

For lobs � l0, lph, asymptotic flatness demands that v → 0. The wormhole shadow is
retrieved again in the limit lc → lph, for which b→ bcrit according to Equation (12). Thus,
for a far-away observer, we obtain ash ≈ bcrit/lobs. Moreover, from Figure 1b, we also find

ash ≈
rsh
robs
≈

√
l2
sh + l2

0

lobs
, (17)
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where we have used the fact that the space-like coordinate l is related to the radial coordi-
nate r of the embedding diagram via the relation l2 = r2 − l2

0 . Thus, we can finally write√
l2
sh + l2

0 = bcrit = e−v(lph)
√

l2
ph + l2

0 . (18)

One may apply the above formulae in the case of the Ellis–Bronnikov wormhole [59,60],
where e2ν = f = 1. Then, Equation (14) gives lph = 0, and thus there is only one circular
photon orbit located around the throat. Then, in the limit lc → lph, Equation (12) yields that
bcrit = l0, and Equation (16) takes the simplified form

sin2 α =
l2
0

l2
obs + l2

0
, (19)

which is exact and holds for all observers either far away or close by—this result is in
agreement with Equation (72) of [132]. Applying the result bcrit = l0 in Equation (18), we
obtain that lsh = 0, or equivalently that rsh = l0. This behavior is expected to change for
wormhole spacetimes with an `-dependent gtt metric component, as in Equation (10).

3. The EHT Bounds

The Event Horizon Telescope (EHT) is a Very-Long Baseline Interferometry (VLBI)
array with Earth-scale coverage [91–98]. It is observing the sky at 1.3 mm wavelength and
has, so far, managed to provide the horizon-scale image of the two supermassive black
holes located at the center of the M87 galaxy and of our own galaxy. The diameter d̂m
of the bright photon ring surrounding the inner dark area—the most distinctive feature
of these black-hole images—may be used to test theoretical predictions of both GR and
modified theories. As noted above, in this work, we will be using the horizon-scale image
of Sagittarius A∗. Following [104], one may write:

d̂m =
d̂m

dsh
dsh = αc dsh = αc (1 + δ) dsh,th . (20)

The diameter d̂m is the value of the diameter of the photon ring obtained by using
imaging and model fitting to the Sagittarius A∗ data. The quantity αc is a calibration factor
that quantifies how accurately the ring diameter d̂m tracks the shadow diameter dsh. It
encompasses both theoretical and potential measurement biases and thus may be written as

αc = α1 α2 ≡
(

dm

dsh

)(
d̂m

dm

)
. (21)

Specifically, α1 corresponds to the ratio of the true diameter of the peak brightness of the
image (bright ring) dm over the diameter of the shadow dsh. If α1 equals unity, the peak
emission of the ring coincides with the shadow boundary. Its value depends on the specific
black-hole spacetime and the emissivity model in the surrounding plasma. A large number
of time-dependent GRMHD simulations in Kerr spacetime as well as analytic plasma
models in Kerr and non-Kerr metrics lead to small positive values α1, namely α1 = 1− 1.2.
This result indicates that the radius of the brightest ring is always slightly larger than the
black-hole shadow.

The second calibration parameter α2 is the ratio between the inferred ring diameter d̂m
and its true value dm. Three different imaging algorithms were used in the measurement of
the ring diameter d̂m denoted by eht-imaging, SMILI and DIFMAP, respectively [104]. The
ring diameter was also determined by fitting analytic models, and more specifically, the
mG-ring model [102], to the visibility data. The three imaging methods led to a value of α2
close to unity, while the mG-ring model allowed values of α2 in the range (1–1.3).

Employing the above, the diameter of the boundary of the black-hole shadow may
be written as dsh = d̂m/(α1 α2). Then, Equation (20) allows us to solve for the fractional
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deviation δ between the inferred shadow radius rsh,EHT and that of a theory-specific black
hole rsh,th [104]:

δ =
rsh,EHT

rsh,th
− 1 . (22)

The above deviation parameter allows us to test the compatibility of the EHT measurements
with GR or modified theories of gravity. The posterior over δ is obtained via the formula

P(δ|d̂ ) = C
∫

dα1

∫
dα2

∫
dθg L[d̂ |α1, α2, θg, δ]

× P(α1)P(α2)P(θg)P(δ) .
, (23)

In the above, θg = GM/Dc2 is a characteristic angular size set by the black-hole mass and
physical distance. Then, L[d̂ |α1, α2, θg, δ] is the likelihood of measuring a ring diameter
d̂, and P(θg) is prior in θg. P(α1) and P(α2) are the distributions of the two calibration
parameters, and C a normalization constant.

To obtain the characteristic angular size θg of Sagittarius A∗, one needs its mass
and distance. Two different instruments, the Keck Observatory and the Very Large Tele-
scope, together with the interferometer GRAVITY (VLTI), were used to study the or-
bits of individual stars around Sagittarius A∗. The brightest star observed, S0-2, with
a period of 16 years, has helped scientists test relativistic effects, such as gravitational
redshift and the Schwarzschild precession [133–136], and to constrain alternative the-
ories of gravity [137–139]. Its observation has also provided the most accurate mea-
surements so far of the mass and distance of Sagittarius A∗. The Keck team found,
for the distance, a value of R = (7935 ± 50 ± 32)pc and for the black-hole mass, the
value M = (3.951 ± 0.047) × 106 M� [136]. Correspondingly, the VLTI team found
R = (8277 ± 9 ± 33)pc and M = (4.297 ± 0.012 ± 0.040) × 106 M�. Therefore, two
different priors for θg were derived, namely θg = 4.92 ± 0.03 ± 0.01 µas (Keck) and
θg = 5.125± 0.009± 0.020 µas (VLTI).

Employing these in Equation (23), and assuming that the theory-specific solution
considered in Equation (22) is the Schwarzschild solution, for which it holds rsh,th =

3
√

3 GM/c2 = 3
√

3 D θg, the corresponding values for the deviation parameter δ, along
with their errors, were derived in [104] and are displayed in the first column of Table 1.
We observe that the deviation δ always assumes negative values, which means that the
observed black-hole shadow is found to be smaller than the one predicted by GR for the
Schwarzschild black hole. We also note that the value of δ derived by employing the
measurements by VLTI is consistently more negative compared to the one derived by
Keck. The use of the specific algorithm for the image processing also affects the deviation
parameter, with δ taking larger negative values as the eht-imaging algorithm is gradually
replaced by the SMILI, the DIFMAP or the mG-ring algorithm. Finally, the value of δ is
slightly modified by the type of simulations used in the calibration of α1; here, we employ
the values obtained using the GRMHD simulations as an indicative case. We note, however,
that all values derived for δ by EHT [104] are consistent with each other independently
of the specific telescope, image processing algorithm or type of simulation used. For
completeness, in Table 2 we present the corresponding value for the deviation parameter
δ as derived by the black-hole image of M87∗ [126]; we observe that the central value
of δ is much closer to zero, but the errors are larger due to the larger uncertainty in the
measurement of the mass and distance of M87∗.

The definition of δ via Equation (22) in conjunction with its values in the first column
of Table 1 allows us to obtain the corresponding constraints on the dimensionless quantity
rsh/M (for notational simplicity, henceforth we drop the subscript EHT from the quantity
rsh, EHT). The 1-σ and 2-σ bounds on rsh/M are displayed in the second and third columns
of Table 1 (and for completeness, in the second and third columns of Table 2). We observe
that, as expected, the constraints derived from Sagittarius A∗ are more stringent than the
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ones derived from M87∗: the allowed range of values in the former case is always narrower,
and this leads to a consistently smaller upper limit of rsh/M.

Table 1. Sagittarius A* bounds on the deviation parameter δ. The colored bounds are the ones we use
in the plots in the main part.

Sgr A∗ Estimates

Deviation δ 1-σ Bounds 2-σ Bounds
eh

t-
im

g

VLTI −0.08+0.09
−0.09 4.31 ≤ rsh

M ≤ 5.25 3.85 ≤ rsh
M ≤ 5.72

Keck −0.04+0.09
−0.10 4.47 ≤ rsh

M ≤ 5.46 3.95 ≤ rsh
M ≤ 5.92

Avg −0.06+0.064
−0.067 4.54 ≤ rsh

M ≤ 5.22 4.19 ≤ rsh
M ≤ 5.55

SM
IL

I VLTI −0.10+0.12
−0.10 4.16 ≤ rsh

M ≤ 5.30 3.64 ≤ rsh
M ≤ 5.92

Keck −0.06+0.13
−0.10 4.36 ≤ rsh

M ≤ 5.56 3.85 ≤ rsh
M ≤ 6.24

D
IF

M
A

P VLTI −0.12+0.10
−0.08 4.16 ≤ rsh

M ≤ 5.09 3.74 ≤ rsh
M ≤ 5.61

Keck −0.08+0.09
−0.09 4.31 ≤ rsh

M ≤ 5.25 3.85 ≤ rsh
M ≤ 5.72

m
G

-r
in

g VLTI −0.17+0.11
−0.10 3.79 ≤ rsh

M ≤ 4.88 3.27 ≤ rsh
M ≤ 5.46

Keck −0.13+0.11
−0.11 3.95 ≤ rsh

M ≤ 5.09 3.38 ≤ rsh
M ≤ 5.66

Avg −0.15+0.078
−0.074 4.03 ≤ rsh

M ≤ 4.82 3.64 ≤ rsh
M ≤ 5.23

Table 2. M87* bounds on the deviation parameter δ [126].

M87∗ Estimates

Deviation δ 1-σ Bounds 2-σ Bounds

EHT −0.01+0.17
−0.17 4.26 ≤ rsh

M ≤ 6.03 3.38 ≤ rsh
M ≤ 6.91

In this work, we will focus on two indicative sets of constraints, namely the ones
obtained by using the eht-imaging method and the mG-ring analytic model, which lead
to the smallest and largest δ (in absolute value), respectively. Moreover, in order to take
a conservative stance, we will consider the Keck and VLTI values as independent and
use their average value for δ; these values, together with the corresponding constraints
on rsh/M, are displayed in the two rows of Table 1 denoted by the word “Avg”. In
Sections 4–6, these mass-scale independent constraints will be used to test the viability of
compact solutions arising in the context of modified gravitational theories with a scalar
degree of freedom. Our analysis will pertain to current but also to future observed black-
hole shadow images and will act complementary to existing works placing bounds on the
parameters of these modified gravitational theories.

We would like to finish this section with the following comment. Throughout this
work, we will focus on spherically symmetric solutions obtained in the context of modi-
fied theories. It is for this reason that the theory-specific solution chosen above was the
Schwarzschild solution and not the Kerr one. The rotation parameter and inclination angle
of Sagittarius A∗ does affect the observed shadow radius. However, to our knowledge, at
the moment, there is no clear consensus on the value of these two parameters for Sagittarius
A∗. In addition, it was found [128] that the shadow radius is affected very little by the
rotation of the compact object, independently of the inclination angle. In fact, a recent
study [140] hints toward a rather small value of a∗, namely a∗ ≤ 0.1. In any case, it is
estimated [104] that rotating black holes can have a shadow size that is smaller than that of
a non-rotating black hole by up to 7.5%. Therefore, considering the Schwarzschild solution
as the theory-specific solution in our analysis seems to be a justified choice at the moment.
In fact, due to the more compact geodesic structure of any rotating black hole compared
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to a non-rotating one, any “Schwarzschild” constraint applied in our analysis may be
considered the largest possible value for the corresponding “Kerr” one.

4. The Einstein-Scalar-GB Theory

We initiate our analysis by considering a scalar-tensor theory which includes a
quadratic gravitational term, the Gauss–Bonnet (GB) term defined as G = RµνρσRµνρσ −
4RµνRµν + R2. A general coupling function f (φ) between the scalar field φ and the GB term
retains the latter—a topological invariant in four dimensions—in the theory. The action
functional thus takes the following form

S =
1

2κ

∫
d4x
√
−g
[

R− 1
2
∇αφ∇αφ + f (φ)G

]
. (24)

The resulting Einstein field equations and scalar field equation, after the variation in
the above action with respect to the metric tensor and scalar field, are

Gµν =
1
2

∂µφ∂νφ− 1
4

gµν∂ρφ∂ρφ

− 1
2
(gρµgλν + gλµgρν) ηκλαβR̃ρσ

αβ∇σ∇κ f (φ) ,
(25)

∇2φ + ḟ (φ)G = 0 , (26)

respectively. In the second equation, the dot over the coupling function denotes its deriva-
tive with respect to the scalar field.

The EsGB theory has produced a large number of solutions describing compact objects
with interesting characteristics: black holes with scalar hair [14–20,36–58], traversable
wormholes [63,71,72,76] and particle-like solutions [49,86,87]. Here, we will focus mainly
on the first class of solutions, namely black holes, and examine their viability under the light
of the mass-scale independent constraints coming from the measurement of the shadow
radius of Sagittarius A*. For the sake of comparison, we will also briefly discuss the viability
of the dilatonic wormhole solutions postponing a more detailed analysis of this type of
compact object for future work.

4.1. Black Holes

The presence of the GB term in action (24) causes the evasion of the scalar no-hair
theorems and leads to the emergence of a large number of scalarized solutions, as mentioned
above. In the context of the present analysis, we will consider spherically symmetric
solutions that arise for three distinct coupling functions, namely for linear coupling (shift
symmetry), quadratic coupling (Z2 symmetry) and exponential coupling (dilatonic theory).
The metric ansatz and field equations in explicit form may be found in Appendix A. For
the details on constructing these solutions, the interested reader may consult, for instance,
the works [17,45,46,141,142].

In principle, our solutions require the specification of three parameters beyond GR.
We first need to specify the coupling constant α, which quantifies the strength of the
interaction between the Gauss–Bonnet curvature invariant and the scalar field; we also
need two boundary conditions for the scalar field since it obeys a second-order differential
equation. Assuming a simple Taylor expansion of the scalar field around the horizon φ(r) =
φh + φh,1(r− rh) + ..., it has been shown in several works (see, for instance, [17,45]) that one
may only obtain solutions with a regular horizon as long as the following constraint holds

φh,1 = − rh

4 ḟh

(
1∓

√
1− 96

r4
h

ḟ 2
h

)
. (27)

This reduces the parameters from three to two, namely the field value at the horizon φh and
the coupling strength α. In addition to the preceding constraint, we also need to limit the
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two-dimensional plane (φh, α) due to the requirement that the quantity under the square
root in (27) is positive definite. For this reason, we will trade parameter α with β, defined
as follows

β ≡
√

96
r2

h
ḟh . (28)

In this way, the parameter space we need to scan is (φh, β) with −1 < β < 1 defined within
clear boundaries. After the study of the complete parameter space, our results will be
eventually expressed again in terms of α for clarity.

4.1.1. f (φ) = α φ(r)

First, we consider the linear coupling scenario, which yields a shift-symmetric term,
considering the fact that the Gauss–Bonnet invariant is a total divergence in four dimensions.
Shift symmetry prevents the scalar from acquiring a mass that would lead to an exponential
suppression of GR deviations in the strong-field regime of gravity. Therefore, scalar fields
respecting shift symmetry are particularly motivated. For the case of linear coupling, the
two-dimensional parameter space (φh, β) described above is reduced to one-dimensional
parameter space since the value of the field does not enter in the field equations as a
result of the shift symmetry. In that case, the solutions are expected to form a line in the
(α/M2, rsh/M) plane that spans the −1 < β < 1 parameter range.

This is indeed the case, as seen in Figure 2, where we depict the rescaled black-hole
shadow rsh/M in terms of the dimensionless parameter α/M2 of the theory. We always
choose positive values of φ so that the sign of the coupling parameter α directly reflects the
sign of β. Here, we consider both positive and negative values for the coupling parameter
and present the complete family of solutions for the allowed range −1 < β < 1. As
|β| → 1, the minimum mass solutions—a characteristic feature of the EsGB theory—are
reached, and the solution lines terminate. We also note that the line of the solutions is
mirror symmetric around the α = 0 line. This is expected since the field equations, as well
as the initial conditions, are symmetric under the simultaneous exchange of the sign of
ḟ = α and (φ′, φ′′). This, of course, only holds for the linear coupling, for which f̈ = 0.

We should note here that the aforementioned mass parameter M of the black hole is
the one that appears in the coefficient of the 1/r term in the far-field expansion of the metric
component g00. In a modified gravitational theory, this parameter does not necessarily coincide
with the mass obtained using the ADM [143] or field-theoretic formalism [112,144–146]. It
may also differ from the black-hole mass calculated by considering the orbital motion of a
test body around the black hole. All these notions of mass, although trivially related in the
context of General Relativity, may indeed be different in the framework of a generalized
theory of gravity. However, in all modified theories considered in this work, the presence of
additional fields does not affect the coefficient of the 1/r term in the far-field expansion of the
metric component g00. For instance, in the Einstein-scalar-GB theory that we study here, the
scalar charge appears in the 1/r3 term at the earliest in the expansion of g00, while the scalar
coupling function appears in the 1/r4 term. As a result, we do not anticipate any significant
differences between parameter M determined through the asymptotic expansion of the metric
and the ADM mass or the conserved Noether charge. The black-hole mass calculated via the
orbital motion of a test body is also not expected to be different from parameter M as long as
the radius of the orbit does not lie very close to the black-hole horizon.

Coming back to Figure 2, we observe that the shadow radius rsh/M decreases as α/M2

increases. This is easily understood if we recall (see, for example, [17,45,46,131]) that the
GB term causes a negative contribution to the total energy density of the theory and thus
exerts a repulsive force. Therefore, if a black hole is to be created, any matter distribution
needs to be compacted into a smaller area of spacetime compared to the case where the GB
term is absent. As a result, the GB scalarized black holes always have a smaller horizon
radius than, e.g., the Schwarzschild black hole with the same mass [45,46,131]. Since the
whole geodesic structure gets more compact as α increases, the shadow radius will also get
smaller. This decreasing trend of the solution line holds for both α > 0 and α < 0 since the
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GB contribution to the energy density is negative independently of the sign of α. In fact, it is
proportional to the combination φh,1 ḟh, which is always negative according to Equation (27).
This also holds independently of the exact form of the coupling function f (φ), and thus we
expect to see a similar behavior for the other two forms of f . The generically smaller size
of the shadow radius of any EsGB black-hole solution compared to the GR one brings to
the foreground these types of modified theories since the EHT constraints [104] point to
observed shadow radii, which are always smaller than the Schwarzschild one.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

4.0

4.5

5.0

5.5

Figure 2. Shadow radius for EsGB theory with linear coupling. The blue line scans the full range
of values of β defined in (28) with the left and right endpoints corresponding to β = −1 and β = 1,
respectively. The horizontal solid and dashed lines denote the EHT 1-σ and 2-σ allowed ranges,
respectively; the blue lines correspond to the mG-ring bound and the red lines to the eht-imaging bound.

Let us now focus on the constraints imposed on the shift symmetric theory by the mass-
scale independent bounds depicted in Table 1. As explained in Section 2, we will employ
two of the derived bounds: the most ‘conservative’ bound, the eht-imaging one, which
yields the smallest central value of the fractional deviation δ, and the most ‘liberal’ bound,
the mG-ring one, which allows for larger deviations from GR. The two solid, horizontal,
blue lines denote the allowed 1-σ range by the eht-imaging bound, while the two solid,
horizontal, red lines denote the corresponding range allowed by the mG-ring bound (the
blue and red horizontal, dashed lines denote the corresponding 2-σ bounds). Likewise, the
blue-shaded area is the one excluded by the eht-imaging bound within 1-σ accuracy and the
red-shaded area is the one excluded by the mG-ring bound. The white area is the one that is
allowed by both bounds.

According to Figure 2, the complete range of scalarized solutions in the shift symmetric
EsGB theory is compatible with the eht-imaging bound, while it is altogether excluded
by the mG-ring bound within 1-σ! Our findings highlight in the best possible way the
need to ‘bridge the gap’ between the different EHT bounds as they lead to conflicting
conclusions regarding the viability of certain solutions and, in a more general context, the
physical relevance of their underlying theories. We note that all solutions found, which are
allowed by the eht-imaging bound, also satisfy the recent experimental constraint on the
dimensionless parameter α/M2 < 0.54 [147] set on shift symmetric EsGB theories by the
detection of gravitational waves from black-hole binaries. If, on the other hand, one takes a
more conservative approach and demands that viable solutions should satisfy both of the
EHT bounds within 1-σ accuracy, one is forced to exclude the complete range of scalarized,
shift-symmetric solutions as none of them falls in the optimum white area of the plot. All
solutions are still allowed within 2-σ accuracy.
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4.1.2. f (φ) = α
2 φ(r)2

The quadratic coupling function poses particular interest in the context of spontaneous
scalarization, which will be analyzed in the following sections. Unlike the linear case, the
case of the quadratic coupling function necessitates searching along a two-dimensional
parameter space due to the fact that the initial value of the field φh is physical. In order
to facilitate the search, we select N = 25 points equally spaced in the ln(φh) space with
φh,min = 0.1 and φh,max = 100. For each of these N points, i.e., for each choice of φh, we
plot a line that spans the entire parameter range −1 < β < 1. The results are displayed in
Figure 3. The red dots in the figure denote a transitioning point regarding the sign of Tr′

r
near the horizon, which will be discussed shortly.

The lines in Figure 3 denote solutions where large φh are generally consolidated
close to the vertical axis. In contrast, the smaller φh is, the more the lines spread out to
larger values of |α/M2|. This is expected due to the definition of beta, which, in this case,
takes the form

β =

√
96

r2
h

α φh . (29)

It is clear that in order to reach the values of β ≈ ±1, i.e., the limits of the range of β,
we need to choose an increasingly larger α in order to compensate for the smallness of φh.
This justifies the fact that the lines extend further and further away from the origin for small
φh values.

Additionally, one may readily observe that the symmetry under the change in the
sign of α, present in the shift-symmetric case, is now broken. In fact, for negative values
of the coupling constant α, both the mass parameter M and the shadow radius rsh are
affected much more dramatically compared to the positive coupling case. This is manifest
in Figure 3, where each solution line for α < 0 extends along a larger range of values
of rsh/M compared to that of the α > 0 solutions. The fact that the former lines turn
downward and to the right comes as a consequence of the dimensionless normalization we
have applied to the axes. In addition to that, we have numerically observed that negative
values of the coupling α lead to large and negative values of the scalar charge. The largeness
of the charge and mass for values of the coupling deep into the negative regime is a generic
consequence of the evolution of the field equations at intermediate scales between the
horizon and infinity, and hence it is difficult to understand the origin of this effect by
studying the asymptotic behavior of the solutions.

Moreover, it is interesting to note that, for some of the parameter space analyzed,
one crosses the boundary beyond which one can obtain a solution with limr→rh Tr′

r (r) > 0.
We remind the reader that the condition limr→rh Tr′

r (r) < 0, satisfied by the scalarized
solutions found in [17,45,46], was employed to demonstrate the violation of the novel
no-hair theorem [35]. Using the results of [142], we can compute the boundary beyond
which solutions with limr→rh Tr′

r (r) > 0 appear as follows

lim
r→rh

Tr′
r (r) = 0 ⇒ α = −1

4
+

β2

16
− 2

√
1− β2

9
. (30)

Simultaneously, due to the definition of β, we can write

α =
r2

h

4
√

6φh
β . (31)



Universe 2023, 9, 147 13 of 30

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

4.0

4.5

5.0

5.5

Figure 3. Shadow radius for EsGB theory with a quadratic coupling. Each colorful line scans the full
range of parameter β for a different fixed value of φh. The endpoint of the lines in the negative and
positive regime of the horizontal axis correspond to β = −1 and β = 1, respectively. The red dots
denote the point in the parameter space at which condition (30) is satisfied. The horizontal solid and
dashed lines denote the EHT bounds as before.

The above result implies that depending on the choice of φh and β, α can be above
or below the boundary defined by (30). The points below the boundary, i.e., scalarized
black-hole solutions with limr→rh Tr′

r (r) > 0, are denoted by dashed lines in Figure 3, and
the transitioning points are marked by large red dots. We note that such solutions arise
only in the case of negative coupling constant α, and thus any analyses considering only
positive α are bound to overlook them.

Figure 3 leads to similar conclusions regarding the validity of the quadratic, scalarized
GB solutions with positive α to the ones found for the linear-coupling case: the eht-imaging
bound allows the complete range of solutions while the mG-ring bound excludes all of
them within 1-σ! No scalarized solutions with positive α fall in the white area. However,
the situation is radically different for solutions with negative α. There, as noted above, the
lines of solutions with small or intermediate values of φh extend into the white area and
thus survive all EHT bounds. These favored solutions are characterized by either a positive
or negative value of limr→rh Tr′

r (r) > 0.

4.1.3. f (φ) = α eγ φ(r)

We will finally consider the exponential coupling function, which, as has been pointed
out in various previous works (e.g., see [17,18]), is motivated by the low-energy limit of
heterotic superstring theory [148]. For the dilatonic coupling, we need to scan a three-
dimensional parameter space since there is an additional parameter γ that characterizes
the coupling function. We follow the same procedure as before and display the results for
two distinct values of γ = 1, 2 in Figures 4 and 5, respectively.
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Figure 4. Shadow radius for EsGB theory with a dilatonic coupling with γ = 1. The colored lines
have the same meaning as in Figure 3, while the horizontal solid and dashed lines denote the EHT
bounds as before.
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Figure 5. Shadow radius for EsGB theory with a dilatonic coupling with γ = 2. The colored lines
have the same meaning as in Figure 3, while the horizontal solid and dashed lines denote the EHT
bounds as before.

The subclass of solutions derived for positive values of the coupling parameter α
exhibit the same profile, for both values of γ, as in the previous two cases: the whole range
of solutions extends over a very restricted range of values of rsh/M. As a result, they
are all allowed by the eht-imaging bound, but they are all also excluded by the mG-ring
bound within 1-σ. No positive-α solution manages to satisfy both bounds. In fact, all
GB scalarized black holes derived for positive α demonstrate the same profile when it
comes to their viability under the Sagittarius A* constraints independently of the particular
form of the coupling function f (φ). We note, however, that all these solutions satisfy the
theoretical bound α/M2 < 0.69 for the existence of scalarized dilatonic black holes [17,37],
and the experimental bound α/M2 < 0.54 [147] (which although was derived for the shift
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symmetric case may also apply in the exponential case in the limit of small α as is the
case here).

The situation, however, is different when we consider the solutions derived for nega-
tive values of the coupling constant α. Considering the behavior observed in the previous
two cases as well as the one depicted in Figures 4 and 5, we conclude that this subclass
of solutions is affected both by the form of the coupling function f (φ) and the particular
values assumed for the parameters of the theory. In Figure 4, we see that, for γ = 1,
none of the negative-α solutions manages to satisfy both EHT bounds despite the fact that
they extend over a larger range of values of rsh/M compared to the positive α solutions.
However, for γ = 2, the solution lines manage to extend across the white optimum area and
thus, a subgroup of solutions for a specific range of α are favored by the EHT constraints
and may be rendered viable.

We note that the only way to cross into the regime with limr→rh Tr′
r (r) > 0 for the

dilatonic coupling is to increase the value of γ even further. However, this yields a less
observationally motivated theory. Another important observation is that for the dilatonic
coupling, the ratio rsh/M depends on γ but not on α and φh simultaneously—this is
reflected in the fact that all solution lines corresponding to different values of φh terminate
at the same horizontal line in Figures 4 and 5. This is due to the presence of a symmetry in
the Lagrangian that allows us to absorb any change in the value of the scalar field on the
horizon φh into a redefinition of the coupling constant α [17], namely

φh → φh + φ∗ , α→ α e−γφ∗ . (32)

As a result, the parameter space reduces from a three-dimensional to a two-dimensional one.

4.2. Wormholes

In the context of theory (24), traversable wormhole solutions have been discovered for
a variety of scalar-GB couplings featuring single- or double-throat geometries [71,72,131].
Exploring these solutions in depth is beyond the scope of this work and is left for future
analysis. Here, however, we will present the results for one characteristic example in
order to demonstrate the potential of our analysis as a tool to observationally distinguish
wormhole from black-hole solutions.

The case we consider here is the first one historically studied [71,72] and involves an
exponential coupling function of form f (φ) = αe−γφ with γ = 1. Single-throat solutions
are then discovered if one assumes the line element given in (10). In accordance with the
black-hole scenario, a regularity for the scalar field’s derivative on the throat is derived

φ′20 =
f0( f0 − 1)

2αe−φ0

[
f0 − 2( f0 − 1) α

l2
0

e−φ0

] , (33)

where f0 and φ0 are the values of f and φ evaluated at the throat. For simplicity, we chose
φ0 so that, asymptotically, the field vanishes. Additionally, the value of the other metric
function v0 at the throat is chosen so that an asymptotically flat spacetime is recovered. We
are left, therefore, with one free parameter, i.e., f0, in addition to the coupling one.

In the limit f0 → 1, the redshift function v0 tends to larger negative values, and a
horizon emerges, thus yielding the relevant black-hole solutions in this theory. This allows
us to directly compare the shadow radii between black holes and wormholes arising for
γ = 1. The results are presented in Figure 6, where we see that f0 has non-trivial conse-
quences both on the shadow radius and on the mass range of the solutions. Specifically, it
appears that as we increase f0 the mass range can also increase significantly. In terms of the
shadow radius, we see that all solutions—including the black hole—presented lay within
the averaged 1-σ eht-imaging bounds presented in Table 1. On the other hand, all solutions
are excluded within 1-σ if one chooses to consider the averaged mG-ring estimates. Once
again, no solution exists that satisfies both bounds.
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Figure 6. Wormhole solutions in EsGB theory with coupling function f (φ) = αe−φ, for f0 =

{1, 1.25, 1.5, 2, 3}.

5. Curvature-Induced Spontaneous Scalarization

A particular class of scalar-tensor theories, in the more general framework of Horn-
deski theory, has attracted a lot of attention and has been extensively scrutinized over recent
years. This class pertains to a phenomenon known as spontaneous scalarization of compact
objects (black holes and neutron stars). It describes solutions spontaneously endowed with
scalar hair as a consequence of a “phase transition” associated with the emergence of a
tachyonic instability. Beyond a certain compactness threshold, black holes tend to transition
from unstable, unscalarized GR solutions to stable scalarized configurations. The main
reason why this particular class of theories entails exceptional interest relates to the fact that
GR is retrieved in the weak gravitational-field regime, while deviations are only detected
in heavily curved spacetimes.

The initially theorized model [47,48] considered GR supplemented by a kinetic term
for the scalar field plus a non-minimal interaction of the scalar field with the GB invariant.
For spontaneous scalarization to be realized, it is crucial that this coupling satisfies a certain
number of conditions, which will be discussed in the following paragraphs. However, this
initial model has been shown to be unstable under radial perturbations [149,150].

Following arguments discussed in detail in [151], we can write a general action allow-
ing for spontaneously scalarized solutions to emerge in the following form:

S =
1

2κ

∫
d4x

√
−g

[
R− 1

2
∇αφ∇αφ + h(φ)R + f (φ)G + V(φ)

]
, (34)

where G is again the Gauss–Bonnet invariant. The scalar field self-interactions have been
shown to non-trivially affect the properties of the scalarized solutions. This includes the
threshold of scalarization that is altered by the bare mass term and the radial stability
that is improved if one includes quartic interactions [54]. Here, we consider V(φ) = 0
for simplicity. Another way to stabilize black-hole solutions in this theory is to include
higher-order operators in the GB coupling function f ∼ αφ2 + ζφ4. Provided that ζ is a
large enough negative multiple of α, solutions can indeed be stabilized [152].

The field equations for the metric that one derives by varying action (34) are:

Gµν = Tφ
µν, (35)
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where the scalar-field energy-momentum tensor is given by:

Tφ
µν =

1
2
∇µφ∇νφ− 1

4
gµν(∇φ)2 −

(
gµν∇2 −∇µ∇ν

)
h(φ)

− h(φ)Gµν −
1
g

gµ(ρgσ)νεκραβεσγλτ Rλταβ∇γ∇κ f (φ).
(36)

Since, in this work, we assume spherical symmetry, we must recover the Schwarzschild
geometry asymptotically. Perturbing the scalar equation around the GR solution (φ =
φ0 + δφ), we find:

�φ = −
[

ḟ (φ)G + ḣ(φ)R
]
⇒ �δφ = − f̈ (φ0)G δφ. (37)

The term − f̈ (φ0) GB acts as an effective mass for the scalar field; therefore, when it
becomes significantly negative, it triggers a tachyonic instability. The first spontaneous
scalarization condition, therefore, requires f̈ (φ0)G > 0 ⇒ f̈ (φ0) > 0 since G > 0 in the
exterior of spherically symmetric black holes. If we also integrate the scalar equation by
parts, it is straightforward to show that for spontaneously scalarized black holes to emerge;
it is also required that φ ḟ (φ) > 0. This second condition that the coupling function should
satisfy relates to GR being included in this framework, i.e., f (φ0) = 0 for some φ0.

The scalarization occurs beyond a threshold mass, which is found by examining the
linear stability of scalar perturbations around the Schwarzschild background. To that extent,
the scalar perturbation is decomposed as follows

δφ =
σ(r)

r
Ym
` (θ, φ) e−iωt, (38)

where Ym
` (θ, φ) are the spherical harmonics. For spherical symmetry, the above yields an

equation of the following type:

d2σ

dr2 + ω2σ = Veff(`, α) σ . (39)

The effective potential depends on the theory, and α corresponds to the coupling parameter
appearing within f (φ). Requiring the existence of bound solutions to the above equation
that satisfy the proper asymptotic properties (equivalence with square integrability in quan-
tum mechanics) allows us to determine the discrete spectrum of scalarization thresholds
depending on the mode n and the angular number l. For a massless scalar field with
` = 0, the thresholds for the fundamental mode and the first overtone are found to be
M̂(0)

th ≈ 1.179 and M̂(1)
th ≈ 0.453, respectively. Here, and in what follows, we have defined

the dimensionless mass parameter

M̂ = MADM/α1/2, (40)

where MADM is the ADM mass of the solution, which is read off the asymptotic expression
of grr. This is performed so that our results are directly comparable with the existing
bibliography.

In the next two subsections, we address two particular models, the minimal model
characterized by coupling functions of quadratic form and the quartic sGB model, where
the coupling function to the GB term has been supplemented by a quartic function of the
scalar field.
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5.1. Minimal Model

Here, we consider the minimal model associated with spontaneous scalarization identi-
fied in [151] and explored in [150,153–156], where the coupling functions are defined as

h(φ) = − β

2
φ2 , f (φ) =

α

2
φ2 , (41)

where β and α are coupling constants. This subclass of scalarization models has a particular
interest as it addresses a number of issues traditionally associated with scalarization.
Specifically: (i) it suppresses neutron-star scalarization leading to avoidance of binary
pulsar constraints [155], (ii) it allows for a late-time cosmological attractor to GR [154], (iii) it
yields stable scalarized black-hole solutions [150,156] and (iv) it improves the hyperbolicity
of the formulation [150]. Considering the various benefits of this sRGB synergy, here we try
to test its implications to black-hole shadows.

To this end, in Figure 7, we present the shadow radius for spontaneously scalarized
black-hole solutions derived for different values of the scalar-Ricci coupling constant β. In
terms of cosmological consistency, it has been pointed out that negative β values require
substantial fine-tuning if one wants to retrieve a late-time attractor. This fine-tuning, how-
ever, is not required when β > 0, when a GR attractor is naturally recovered at late times.
Therefore, we will be considering only positive values for β in what follows. Positive values
of β have also been shown to improve the hyperbolic formulation of the scalar perturbations
equation [150]. Further, changing the value of β has been shown to change the gradient of
the curves in the scalar charge-mass plots, a relation directly associated with the stability of
the solutions [152,156]. A positive/negative gradient describes unstable/stable solutions.
In general, we can distinguish between three regions: (I) β / 1 solutions are unstable,
(II) 1 / β / 1.2 the solution curves have both a stable and an unstable part (effectively
yielding one stable and one unstable solution for any M̂) and (III) β > βcrit ≈ 1.2 when
all solutions are stable. Finally, values of β close to one achieve scalarization suppression
for neutron stars [155] and avoid significantly influencing the formation of large-scale
structures.

However, here we aim to conduct a comprehensive study and thus, in Figure 7, we
present the results for the radius of the black-hole shadow in the minimal model for a
variety of values of β, namely β = {0, 5, 10, 50, 100}. The left panel depicts the solutions for
the fundamental mode (n = 0). Here, case β = 0, shown with a solid red line, corresponds
to the radially unstable sGB scalarization model. The solutions, in this case, lie to the right
of the scalarization threshold at M̂(0)

th ≈ 1.179. The rest of the curves shown correspond to
values of β that are larger than the critical value and, therefore, to stable configurations.
The right panel shows the solutions for the first overtone (n = 1). Here, only the solutions
with β ' 10, which lie to the left of the threshold scalarization value of M̂(0)

th ≈ 0.453, are
stable. In both plots, the horizontal axis depicts the value of the dimensionless parameter
M̂ defined in Equation (40). The vertical axis showing the shadow radius rsh of the black
hole is also properly rescaled in terms of the mass M so that the results are independent of
the black-hole mass under consideration.

We readily observe that significant deviations from GR appear in the value of the
shadow radius, especially toward the lower mass limit of each curve. This is to be expected
since it is for the lightest black holes that the curvature is stronger, and the effect of both
the GB and additional Ricci term becomes increasingly more important. As in the EsGB
theory, the quadratic GB term leads to black holes with a more compact geodesic structure,
compared to the Schwarzschild solution with the same mass, with the radius of the black-
hole shadow following along and taking smaller values, too. The more conservative eht-
imaging bound allows all of the solutions to 1-σ accuracy, whereas the mG-ring bound, which
favors larger deviations from GR, excludes almost all of the solutions to 1-σ accuracy. The
only solutions allowed are the ones toward the bottom tip of the curves for the fundamental
modes. Considering the mG-ring 2-σ bounds, however, all solutions are allowed.
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Figure 7. (a) Shadow radius of the fundamental mode (n = 0) for spontaneously scalarized black
holes in the EsRGB theory with quadratic couplings between the scalar field and curvature. The
values of φ-R coupling for the lines plotted are β = 0, 5, 10, 50, 100. At the same time, the φ-G coupling
spans all the allowed values for which spontaneously scalarized solutions are retrieved. (b) Same
as left panel but for the first overtone n = 1. The β = 100 case is not presented here for illustrative
purposes as it extends to values of M̂ that are much smaller than the rest.

Therefore, if future observations of horizon-scale images of much lighter black holes
are made with the same error bounds, scalarized black-hole solutions would be either
favored or even admitted as the only possible choice compared to the GR solution. Focusing
on the character of Sagittarius A∗, though, spontaneous scalarization may not be a viable
option: all stable solutions arise in the regime M̂ < 1.2, which translates to 0.7 < α/M2.
If, in addition, we focus on the subclass of solutions, which survive both the eht-imaging
and the mG-ring bounds, these emerge for β ' 7 in the regime M̂ < 0.5 or for 4 < α/M2.
At the moment, there are no bounds on the dimensionless parameter ζ ≡ α/M2 derived
in the context of the EsRGB theory. However, if we take the theoretical bound ζ < 0.69
for the existence of dilatonic black holes [17,37] or the experimental bound ζ < 0.54 [147]
for shift symmetric solutions as indicative values, we see that the aforementioned range
significantly surpasses the latter ones. A more detailed study dedicated to the EsRGB
theory needs to be performed before concluding whether Sagittarius A* is a spontaneously
scalarized black-hole solution.

5.2. Quartic sGB Coupling

Here we examine a variation in the EsGB model (without the Ricci coupling) that has
been shown to yield stable black-hole solutions under certain assumptions [152]:

h(φ) = 0 , f (φ) =
α

2
φ2 +

ζ

4
φ4. (42)

As mentioned earlier, for sufficiently negative values of the ratio ζ/α / −0.7, black
holes do become stabilized. Considering positive ratios, on the other hand, produces
solutions that are unstable. As in the minimal model, there is a particular range of negative
values for the ratio ζ/α for which both stable and unstable solutions emerge.

One of the reasons why this model is particularly interesting relates to the fact that
even for small values of the quartic coupling, the minimum mass can, in principle, be
pushed to very small values, contrary to the minimal model presented in the last subsection.
This feature has evaded attention in other works and is of significant importance as it
allows us to probe a much larger range of masses. A consequence of this large mass range
is an equally large range in the shadow radii, as can be seen in Figure 8. It is important
to mention that the minimal mass for any ζ/α / −0.7 seems to have the potential to be
arbitrarily pushed to small values.
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Figure 8. Shadow radius of the fundamental modes (n = 0) for spontaneously scalarized black holes
in EsGB theory with a quartic φ-GB coupling, for different ratios α/ζ = {0,−1,−2,−10}.

Employing the mass-scale independent bounds of Table 1, we may draw a number of
useful conclusions. To start with, solutions with fairly large, negative values of ζ/α, i.e.,
ζ/α ' −10, seem to be excluded by the mG-ring bound, at least in the intermediate and
larger mass regime. For less negative values of ζ/α the region allowed by the bounds from
Table 1 is pushed to intermediate masses. In general, for some fixed ζ/α, solutions with
large masses tend to be disfavored by the mG-ring bound, while small-mass solutions are
excluded by the eht-imaging bound, and this holds independently of the value of that ratio.

We note that, in this case, the solutions that are allowed by the existing bounds of
Table 1 emerge for M̂ < 0.85 or for 1.4 < α/M2. This is an improvement since the lower
bound on α/M2 is now much closer to the indicative theoretical and experimental bounds
mentioned earlier. Again, in the absence of a bound on α/M2, specifically for the quartic
EsGB model, we cannot conclusively state whether Sagittarius A* can be a spontaneously
scalarized solution arising in the framework of this model.

6. The Einstein–Maxwell-Scalar Theory

In the black-hole scenario, there exists a wider class of theories that also includes
Einstein–Maxwell-Scalar (EMS) models as spontaneous-scalarization frameworks [157].
The EMS model describes a scalar field non-minimally coupled to Maxwell’s tensor while
being minimally coupled to gravity. It has been shown that under certain assumptions,
black-hole solutions appear to spontaneously scalarize [157–159]. For small values of
charge to mass ratio q, these solutions have been demonstrated to be the endpoints of
dynamical evolution of unstable Reissner–Nordström (RN) solutions with the same q
within numerical error, while for larger values, dynamical scalarization decreases its value.
The action functional describing the EMS theory is given by:

S =
1

2κ

∫
d4x

√
−g

[
R− 1

2
∇αφ∇αφ + f (φ)FµνFµν

]
. (43)

The theory we consider here admits the RN solution, which is scalar-free. To accom-
modate this, we require that asymptotically our theory must approach the RN solution,
which translates to φ→ 0 and f (φ)→ −1, as r → ∞.



Universe 2023, 9, 147 21 of 30

The Einstein, Maxwell and scalar field equations are produced by variation with
respect to the metric tensor, the electromagnetic tensor and the scalar field, respectively,
and they read

Gµν = Tµν , (44)

�φ + ḟ (φ)FµνFµν = 0 , (45)

∂µ

(√
−g f (φ) Fµν

)
= 0 , (46)

where the energy-momentum tensor contains contributions from the scalar and electromag-
netic field:

Tµν =− 1
4

gµν(∇φ)2 +
1
2
∇µφ∇νφ

+ f (φ)
[

1
2

gµνFµνFµν − 2gρσFµρFνσ

]
.

(47)

The explicit form of field Equations (44)–(46) for a spherically symmetric line-element
can be found in Appendix B.

As in the curvature-induced scenario, for the model to be continuously connected to
GR, the property ḟ (φ0) = 0 should be satisfied for some φ0. Here, we will consider three
different forms of the coupling function, which satisfy the aforementioned properties, as
indicative cases. They are given by

fe(φ) =− e−αφ2
, (48)

fq(φ) =− 1 + αφ2, (49)

fh(φ) =− cosh
(√
−2αφ

)
, (50)

where the coupling constant α is negative. In this case, by taking perturbations of the scalar
equation around a RN background, we find that the requirement for the emergence of a
tachyonic instability is equivalent to the condition f̈ (φ0)F2 > 0. Here, we consider a purely
electric field, namely:

Aµdxµ = V(r) dt⇒ FµνFµν < 0, (51)

which, in turn, requires f̈ (φ0) < 0. If we also integrate by parts, a second condition is
derived, namely φ ḟ (φ0) < 0.

In order to demonstrate the dependence of the shadow radius on the parameters
of the theory, we fix α to different negative values and allow for our code to scan the
parameter space for the values of q ≡ Qe/M, where Qe is the electric charge, for which
scalarized solutions exist. The existence line for scalarization is presented in the top left
panel of Figure 9. To create this plot, we examine the linear stability of scalar perturbations
around the RN background. We decompose the field perturbation as was described in
Equation (38), and we follow the same procedure. Following this method, we determine
the scalarization thresholds for the first three modes, i.e., for n = 0, n = 1 and n = 2. This
yields the minimum value of |α| for a fixed value of q for which we expect spontaneous
scalarization to occur. This value appears to be increasing as one increases n. It is worth
pointing out that since the threshold of scalarization corresponds to small values of φ, it is
independent of our choices of the coupling function, accounting for the fact that all of them
become identical for small φ.

In the remaining three panels of Figure 9, we present the rescaled black-hole shadow
rsh/M in terms of q for the three coupling functions given in Equations (48)–(50). The
scalarized solutions depicted refer to the fundamental mode of the scalar field with n = 0 and
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` = 0. The black solid line in each of the three plots corresponds to the shadow radius for RN
black holes with different parameters q. The value of it can be found analytically to be:

rsh
M

=

√
9− 8q2 + 3√

2 +
(√

9− 8q2 − 3
)

/(2q2)

. (52)
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Figure 9. (a) Onset of scalarization for different overtone numbers. The threshold does not depend
on the coupling function. (b) Shadow radius for the fundamental mode for spontaneously scalarized
EMS black holes with an exponential coupling function f (φ) = −e−αφ2

, for an s-EM coupling with
values α = {−5,−10,−20}. The solid line corresponds to the GR limit (RN). (c) Same as top right but
for a quadratic coupling function f (φ) = αφ2 − 1. (d) Same as top right but for a hyperbolic coupling
function of the form f (φ) = − cosh(

√
−2αφ).

The colored lines correspond to solutions with a different value for the EMS coupling,
namely α = {−5,−10,−20}. The “×” symbol appearing in each colored line corresponds
to the scalarization threshold for each α. For all three choices of the coupling function, we
observe similar results: First, the extremality limit can be exceeded for scalarized solutions,
i.e., solutions with q > 1 emerge. Second, the charge range appears to increase the more we
increase the absolute value of the coupling parameter. This confirms the results appearing
in [157–159].

The latter result effectively means that a larger domain in the parameter space of q
allows for solutions with a shadow radius lying within the desired bounds. Indeed, as
we observe from the three plots in Figure 9 for the three different forms of the coupling
function, an increase in |α| decreases the slope of each solution line and thus increases the
range of solutions that fall in the white area. These solutions again satisfy all bounds of
Table 1 coming from the Sagittarius A* constraints. The more ‘conservative’ bound, the
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eht-imaging one, clearly favors solutions with small and up to intermediate values of q.
On the other hand, the more ‘liberal’ bound, the mG-ring one, tends to favor solutions
with intermediate and large values of the charge parameter, including the ones beyond
RN extremality. According to these results, charged scalarized solutions can be viable
candidates for future-observed black holes. However, on average, they are expected to
possess a significant q parameter. This does not seem to be the case with Sagittarius A*, for
which a very strict upper bound of q ≤ 8.6× 10−11 has been derived [160,161].

7. Conclusions

The recent publication of black-hole images by the EHT collaboration gave rise to a
novel way to probe the near horizon regime of black holes that is a valuable and complimen-
tary way to test deviations from GR. The data available by the EHT display a bright ring
of emission, which surrounds a dark depression that is roughly the size of the black-hole
shadow. In order to connect the size of the bright ring to the underlying shadow, one has
to use the mass-to-distance ratio, which for the supermassive black hole in the center of
our galaxy, SgrA∗, is much more accurately known compared to the previously available
M87∗ due to the proximity of SgrA∗ to the Earth. For this reason, the bounds presented
in the recent EHT publication [104] are the strongest to date regarding black-hole metric
deviations from GR in the near horizon regime from black-hole imaging.

In this work, we have considered a number of selected theories of modified gravity
whose overarching theme is that they predict the existence of black holes bestowed with
non-trivial scalar field profiles. In the context of each theory, we have computed the
theoretically predicted shadow radii in terms of the fundamental parameters of the theory.
These theoretical results may be compared with any existing or future observational bounds
in order to probe the validity of the corresponding theories or constrain the parameter
space. To this end, here, we have employed, as an indicative example, the observational
bound from Sagittarius A* [104] as the most accurate to date.

As there is no clear consensus yet on the spin parameter of Sagittarius A*, we limited
our analysis to the spherically symmetric case. For this particular case, the deviation of the
black-hole metric from the Schwarzschild scenario is quantified by the fractional deviation
δ whose bounds were announced in [104] and recreated in the present work in Table 1.
Among the various choices displayed in the table, we settled on displaying the results of the
image-domain feature extraction procedure eht-imaging and the fitting to the analytic model
mG-ring. Our choices were motivated by the fact that these two constraints represent two
very distinct methodologies. In addition, they lie at the two extremes of the spectrum of
possible results, with the eht-imaging constraints being the most conservative ones allowing
only for small deviations from GR and the mG-ring constraints being the most liberal ones
favoring much larger deviations from GR.

Regarding the theories under consideration, we first focused on the EsGB theory,
which is a well-motivated modification of GR that involves higher curvature terms. Our
focus in Section 4 was to study generic black holes with non-trivial scalar hair that are
regular from the horizon to infinity and for several different choices for the scalar coupling
function. We found that, for the linear coupling, the parameter space of the theory cannot
be constrained by the EHT observations since the entire range of solutions is either allowed
by the eht-imaging constraint or excluded by the mG-ring constraints within 1-σ accuracy.
However, for the quadratic and exponential couplings, we found a distinctly different
behavior of the solutions with positive and negative coupling parameters. The solutions
derived for a positive coupling exhibit the same behavior as in the linear coupling case
with the whole set of solutions being allowed by the former EHT constraint and excluded
by the latter. On the other hand, solutions with a negative coupling extend over a larger
part of the parameter space and may thus be more effectively constrained by the EHT
bounds. In these cases, subclasses of solutions that satisfy all EHT constraints within 1-σ
accuracy could be determined. We also find that special solutions for which the energy
momentum tensor component Tr

r (r) can have a local maximum from the horizon to infinity
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can only occur for the quadratic coupling in a way that is consistent with the EHT results.
In the context of this theory, we also highlighted differences in the shadows between black
holes and wormholes. However, a detailed analysis featuring wormhole solutions is left
for future work.

Subsequently, in Sections 5 and 6, we turned our attention to spontaneous scalarization.
We considered two different scenarios; in the first one, scalarization is associated with the
compactness of the object. In this case, we examined, in detail, the effects on the shadow
radius from the couplings of a scalar field with curvature invariants (Ricci and GB). We saw
that, in principle, the EHT can place significant constraints on the theory depending on
the choices of the coupling parameters under examination. For the minimal EsRGB model,
we saw that there exists a small region in the parameter space of solutions that satisfies
even the tightest combinations of the EHT bounds presented in Table 1. If we also allow for
higher-order operator corrections in the EsGB coupling, then the allowed parameter space
widens due to the fact that the minimal black-hole mass, in this case, is pushed toward zero.

Finally, in Section 6, we studied scalarization as a result of a non-minimal coupling
of a scalar field with the Maxwell tensor. Compared to the RN scenario, we were able to
demonstrate that scalarized EMS black holes allow for agreement with the EHT bounds for
a broader range of electric charges. Additionally, solutions are retrieved beyond the GR
extremality limit with shadow radii within the desired bounds.

Looking to the future, the Next-Generation EHT (ngEHT) project will provide us with
significantly sharper images of the shadow of supermassive black holes, such as M87∗

and SgrA∗, and also possibly real-time video of the evolution of the accretion disk around
the black-hole horizon. This will usher a whole new era in fundamental physics in the
strong-gravity regime while giving birth to a whole new field: imaging and time resolution
of black holes on horizon scales [162,163]. It remains to be seen if the preference for a
smaller black-hole shadow than the one predicted in the Schwarzschild case will persist
in the next generation of experiments and what implications on the viability of modified
theories this will entail.
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Appendix A. Equations in EsRGB Theory

Here we present the equations of motion in the general coupling case of the Einstein-
scalar-Ricci–Gauss–Bonnet scenario, as this includes all of the cases considered in Sections 4
(by setting h(φ) = 0) and 5. The spherically symmetric ansatz we chose here has the
following form:

ds2 = −A(r)dt2 + B(r)−1dr2 + r2dΩ2 . (A1)

For this ansatz, the two independent gravitational equations we use plus the scalar
equation of motion read:

(t, t) : 16B2( ḟ φ′′ + f̈ φ′2
)
+ B′

[
24B ḟ φ′ − 4(h + 1)r

− 2φ′
(
4 ḟ + ḣr2)]− B

[
r2φ′2 + 16 ḟ φ′′ + 16 f̈ φ′2

+ 4r2ḧφ′2 + 4ḣr
(
rφ′′ + 2φ′

)
+ 4(h + 1)

]
+ 4(h + 1) = 0 ,

(A2)
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(r, r) : 24B2 ḟ A′φ′ + B
[
− 8 ḟ A′φ′ − 2ḣr2 A′φ′

− 4(h + 1)rA′ + Arφ′
(
rφ′ − 8ḣ

)
− 4A(h + 1)

]
+ 4A(h + 1) = 0 ,

(A3)

(φ) : 2A2Br2φ′′ + 8AB2 ḟ A′′ − 4A2ḣ
(
rB′ + B− 1

)
+ φ′

(
A2r2B′ + 4A2Br + ABr2 A′

)
− 4ABḣrA′

− 2ABA′′
(
4 ḟ + ḣr2)− AA′B′

(
4 ḟ + ḣr2)

+ 12AB ḟ A′B′ + BA′2
(
ḣr2 − 4(B− 1) ḟ

)
= 0 .

(A4)

Appendix B. Equations in EMS Theory

For the EMS scalarization model discussed in Section 6, we use the following metric
ansatz (in order to be consistent with [157,158]):

ds2 = −N(r)e−2δ(r)dt2 + N(r)−1dr2 + r2dΩ2 (A5)

where N(r) = 1 − 2m(r)/r, with m(r) being the Misner–Sharp mass [164]. Then, the
Einstein (tt and rr), scalar and electromagnetic Equations (44)–(46) yield:

(t, t) : m′ − 1
8

r2
(

1− 2m
r

)
φ′2 +

1
2

e2δr2 f V′2 = 0 , (A6)

(r, r) : 4δ′ + rφ′2 = 0 , (A7)

(φ) : 4r (r− 2m)φ′′ + r2(2m− r)φ′3 − 8e2δr2V′2 ḟ

+ 4
[
e2δr3 f V′2 + rδ′(2m− r)− 2m + 2r

]
φ′ = 0 ,

(A8)

(em) : r2 f V′ − e−δQe = 0 . (A9)

It is then straightforward to solve with respect to m′′ and φ′′, which leaves with a
system of ordinary differential equations that can be integrated. The appropriate boundary
conditions are found by taking the near-horizon expansions of the functions m, φ, δ, V.

Note
1 Let us note that although we will make use of the bounds on the observed black-hole shadow from Sagittarius A∗ [104], our

analysis will cover also the corresponding bound from the M87∗ observation [91–98,120,126] as the latter is less stringent and
thus easier to satisfy.
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