Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = bistatic InSAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 38601 KiB  
Article
Interferometric Calibration Model for the LuTan-1 Mission: Enhancing Digital Elevation Model Accuracy
by Jingwen Mou, Yu Wang, Jun Hong, Yachao Wang, Aichun Wang, Shiyu Sun and Guikun Liu
Remote Sens. 2024, 16(13), 2306; https://doi.org/10.3390/rs16132306 - 24 Jun 2024
Cited by 1 | Viewed by 1444
Abstract
The LuTan-1 (LT-1) mission, China’s first civilian bistatic spaceborne Synthetic Aperture Radar (SAR) mission, comprises two L-band SAR satellites. These satellites operate in bistatic InSAR strip map mode, maintaining a formation flight with an adjustable baseline to generate global digital elevation models (DEMs) [...] Read more.
The LuTan-1 (LT-1) mission, China’s first civilian bistatic spaceborne Synthetic Aperture Radar (SAR) mission, comprises two L-band SAR satellites. These satellites operate in bistatic InSAR strip map mode, maintaining a formation flight with an adjustable baseline to generate global digital elevation models (DEMs) with high accuracy and spatial resolution. This research introduces a dedicated interferometric calibration model for LT-1, tackling the unique challenges of the bistatic system, such as interferometric parameter coupling and the π-ambiguity problem caused by synchronization phase errors. This study validates the model using SAR images from LT-1 and Xinjiang corner reflector data, achieving interferometric phase accuracy better than 0.1 rad and baseline accuracy better than 2 mm, thereby producing high-precision DEMs with a height accuracy meeting the 5 m requirement. Full article
Show Figures

Figure 1

21 pages, 23185 KiB  
Article
InSAR-DEM Block Adjustment Model for Upcoming BIOMASS Mission: Considering Atmospheric Effects
by Kefu Wu, Haiqiang Fu, Jianjun Zhu, Huacan Hu, Yi Li, Zhiwei Liu, Afang Wan and Feng Wang
Remote Sens. 2024, 16(10), 1764; https://doi.org/10.3390/rs16101764 - 16 May 2024
Cited by 3 | Viewed by 1621
Abstract
The unique P-band synthetic aperture radar (SAR) instrument, BIOMASS, is scheduled for launch in 2024. This satellite will enhance the estimation of subcanopy topography, owing to its strong penetration and fully polarimetric observation capability. In order to conduct global-scale mapping of the subcanopy [...] Read more.
The unique P-band synthetic aperture radar (SAR) instrument, BIOMASS, is scheduled for launch in 2024. This satellite will enhance the estimation of subcanopy topography, owing to its strong penetration and fully polarimetric observation capability. In order to conduct global-scale mapping of the subcanopy topography, it is crucial to calibrate systematic errors of different strips through interferometric SAR (InSAR) DEM (digital elevation model) block adjustment. Furthermore, the BIOMASS mission will operate in repeat-pass interferometric mode, facing the atmospheric delay errors introduced by changes in atmospheric conditions. However, the existing block adjustment methods aim to calibrate systematic errors in bistatic mode, which can avoid possible errors from atmospheric effects through interferometry. Therefore, there is still a lack of systematic error calibration methods under the interference of atmospheric effects. To address this issue, we propose a block adjustment model considering atmospheric effects. Our model begins by employing the sub-aperture decomposition technique to form forward-looking and backward-looking interferograms, then multi-resolution weighted correlation analysis based on sub-aperture interferograms (SA-MRWCA) is utilized to detect atmospheric delay errors. Subsequently, the block adjustment model considering atmospheric effects can be established based on the SA-MRWCA. Finally, we use robust Helmert variance component estimation (RHVCE) to build the posterior stochastic model to improve parameter estimation accuracy. Due to the lack of spaceborne P-band data, this paper utilized L-band Advanced Land Observing Satellite (ALOS)-1 PALSAR data, which is also long-wavelength, to emulate systematic error calibration of the BIOMASS mission. We chose climatically diverse inland regions of Asia and the coastal regions of South America to assess the model’s effectiveness. The results show that the proposed block adjustment model considering atmospheric effects improved accuracy by 72.2% in the inland test site, with root mean square error (RMSE) decreasing from 10.85 m to 3.02 m. Moreover, the accuracy in the coastal test site improved by 80.2%, with RMSE decreasing from 16.19 m to 3.22 m. Full article
(This article belongs to the Special Issue Remote Sensing for Geology and Mapping)
Show Figures

Graphical abstract

19 pages, 7276 KiB  
Article
Automated Estimation of Sub-Canopy Topography Combined with Single-Baseline Single-Polarization TanDEM-X InSAR and ICESat-2 Data
by Huacan Hu, Jianjun Zhu, Haiqiang Fu, Zhiwei Liu, Yanzhou Xie and Kui Liu
Remote Sens. 2024, 16(7), 1155; https://doi.org/10.3390/rs16071155 - 26 Mar 2024
Cited by 1 | Viewed by 1551
Abstract
TanDEM-X bistatic interferometric system successfully generated a high-precision, high-resolution global digital elevation model (DEM). However, in forested areas, two core problems make it difficult to obtain sub-canopy topography: (1) the penetrability of short-wave signals is limited, and the DEM obtained in dense forest [...] Read more.
TanDEM-X bistatic interferometric system successfully generated a high-precision, high-resolution global digital elevation model (DEM). However, in forested areas, two core problems make it difficult to obtain sub-canopy topography: (1) the penetrability of short-wave signals is limited, and the DEM obtained in dense forest areas contains a significant forest signal, that is, the scattering phase center (SPC) height; and (2) the single-baseline and single-polarization TanDEM-X interferometric synthetic aperture radar (InSAR) data cannot provide sufficient observations to make the existing physical model reversible for estimating the real surface phase, whereas the introduction of optical data makes it difficult to ensure data synchronization and availability of cloud-free data. To overcome these problems in accurately estimating sub-canopy topography from TanDEM-X InSAR data, this study proposes a practical method of sub-canopy topography estimation based on the following innovations: (1) An orthogonal polynomial model was established using TanDEM-X interferometric coherence and slope to estimate the SPC height. Interferometric coherence records forest height and dielectric property information from an InSAR perspective and has spatiotemporal consistency with the InSAR-derived DEM. (2) Introduce Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) data to provide more observational information and automatically screen ICESat-2 control points with similar forest and slope conditions in the local area to suppress forest spatial heterogeneity. (3) A weighted least squares criterion was used to solve this model to estimate the SPC height. The results were validated at four test sites using high-precision airborne light detection and ranging (LiDAR) data as a reference. Compared to the InSAR-derived DEM, the accuracy of the sub-canopy topography was improved by nearly 60%, on average. Furthermore, we investigated the necessity of local modeling, confirming the potential of the proposed method for estimating sub-canopy topography by relying only on TanDEM-X and ICESat-2 data. Full article
Show Figures

Figure 1

19 pages, 37316 KiB  
Article
Estimation and Analysis of Glacier Mass Balance in the Southeastern Tibetan Plateau Using TanDEM-X Bi-Static InSAR during 2000–2014
by Yafei Sun, Liming Jiang, Ning Gao, Songfeng Gao and Junjie Li
Atmosphere 2024, 15(3), 364; https://doi.org/10.3390/atmos15030364 - 17 Mar 2024
Viewed by 1821
Abstract
In recent decades, glaciers in the southeastern Tibetan Plateau (SETP) have been rapidly melting and showing a large scale of glacier mass loss. Due to the lack of large-scale, high-resolution, and high-precision observations, knowledge on the spatial distribution of the glacier mass balance [...] Read more.
In recent decades, glaciers in the southeastern Tibetan Plateau (SETP) have been rapidly melting and showing a large scale of glacier mass loss. Due to the lack of large-scale, high-resolution, and high-precision observations, knowledge on the spatial distribution of the glacier mass balance and the response to climate change is limited in this region. We propose a TanDEM-X bi-static InSAR (Interferometric Synthetic Aperture Radar) algorithm with a non-local mean filter method and difference strategy, to improve the precision of glacier surface elevation change detection. Moreover, we improved the glacier mass balance estimation algorithm with a correction method for multi-source system errors and an uncertainty evaluation method based on error propagation theory to reduce the uncertainty of estimations. We used 13 pairs of TanDEM-X bi-static InSAR images to obtain the glacier mass balance data for the entire SETP. The total area of glaciers monitored was 5821 km2 and the total number of glaciers monitored was 2321; the glacier surface elevation change rate was −0.505 ± 0.005 m/yr, and the glacier mass balance estimation was −454.5 ± 13.1 mm w.eq. during 2000–2014. Additionally, we analyzed the spatial distribution of the glacier mass balance within the SETP using the sub-watershed analysis method. The results showed that the mass loss rate had a decreasing trend from the southeast to the northwest. Furthermore, the temperature change and the glacier mass loss rate showed a positive correlation from the southeast to the northwest in this region. This study greatly advances our understanding of the regularities of glacier dynamics in this region, and can provide scientific support for major national goals such as the rational utilization of surrounding water resources and construction of important transportation projects. Full article
(This article belongs to the Special Issue Analysis of Global Glacier Mass Balance Changes and Their Impacts)
Show Figures

Figure 1

24 pages, 13657 KiB  
Article
Unmanned Airborne Bistatic Interferometric Synthetic Aperture Radar Data Processing Method Using Bi-Directional Synchronization Chain Signals
by Jinbiao Zhu, Bei Lin, Jie Pan, Yao Cheng, Xiaolan Qiu, Wen Jiang, Yuquan Liu and Mingqian Liu
Remote Sens. 2024, 16(5), 769; https://doi.org/10.3390/rs16050769 - 22 Feb 2024
Viewed by 1692
Abstract
The bistatic Interferometric Synthetic Aperture Radar (InSAR) system can overcome the physical limitations imposed by the baseline of monostatic dual-antenna InSAR. It provides greater flexibility and can enhance elevation measurement accuracy through a well-designed baseline configuration. Unmanned aerial vehicles (UAVs) equipped with bistatic [...] Read more.
The bistatic Interferometric Synthetic Aperture Radar (InSAR) system can overcome the physical limitations imposed by the baseline of monostatic dual-antenna InSAR. It provides greater flexibility and can enhance elevation measurement accuracy through a well-designed baseline configuration. Unmanned aerial vehicles (UAVs) equipped with bistatic InSAR, having relatively low cost and high flexibility, are useful for mapping and land resource exploration. However, due to challenges including spatiotemporal synchronization and motion errors, there are limited reports on UAV-borne bistatic InSAR. This paper proposes a comprehensive method for processing data from small UAV-borne bistatic InSAR by integrating two-way synchronization chain signals. The proposed method includes compensation for time and phase synchronization errors, trajectory refinement with synchronized chain and Position and Orientation System (POS) data, high-precision bistatic InSAR imaging, and interferometric processing. Height inversion results based on the proposed method are also provided, which demonstrate the effectiveness of the proposed method in improving the accuracy of interferometric measurement at calibration points from 0.66 m to 0.42 m. Full article
(This article belongs to the Special Issue Advances in Synthetic Aperture Radar Data Processing and Application)
Show Figures

Graphical abstract

23 pages, 5199 KiB  
Article
A High-Precision Target Geolocation Algorithm for a Spaceborne Bistatic Interferometric Synthetic Aperture Radar System Based on an Improved Range–Doppler Model
by Chao Xing, Zhenfang Li, Fanyi Tang, Feng Tian and Zhiyong Suo
Remote Sens. 2024, 16(3), 532; https://doi.org/10.3390/rs16030532 - 30 Jan 2024
Cited by 1 | Viewed by 1486
Abstract
A trend in the development of spaceborne Synthetic Aperture Radar (SAR) technology is the shift from a single-satellite repeated observation mode to a multi-satellite collaborative observation mode. However, current multi-satellite collaborative geolocation algorithms face challenges, such as geometric model mismatch and poor baseline [...] Read more.
A trend in the development of spaceborne Synthetic Aperture Radar (SAR) technology is the shift from a single-satellite repeated observation mode to a multi-satellite collaborative observation mode. However, current multi-satellite collaborative geolocation algorithms face challenges, such as geometric model mismatch and poor baseline estimation accuracy, arising from highly dynamic changes among multi-satellites. This paper introduces a high-precision and efficient geolocation algorithm for a spaceborne bistatic interferometric SAR (BiInSAR) system based on an improved range–Doppler (IRD) model. The proposed algorithm encompasses three key contributions. Firstly, a comprehensive description of the spatial baseline geometric model unique to the bistatic configuration is provided, with a specific focus on deriving the perpendicular baseline expression. Secondly, IRD geolocation functions are established to meet the specific requirements of the bistatic configuration. Then, a novel BiInSAR geolocation algorithm based on the IRD’s functions is proposed, which can significantly improve the target geolocation accuracy by modifying the range–Doppler equation to suit the bistatic configuration. Meanwhile, a low-coupling parallel calculation method is proposed, which can improve the calculation speed by two to three times. Finally, the accuracy and efficiency of the algorithm are demonstrated using experimental data acquired by the TH-2 satellite, which is China’s first spaceborne BiInSAR system. The experimental results prove that the IRD algorithm exhibits geolocation accuracy with an average error of less than 1 m and a standard deviation of less than 2.5 m while maintaining computational efficiency at a calculation speed of 1,429,678 pixels per second. Full article
(This article belongs to the Special Issue Remote Sensing for Geology and Mapping)
Show Figures

Figure 1

21 pages, 33199 KiB  
Article
Mining Deformation Monitoring Based on Lutan-1 Monostatic and Bistatic Data
by Yanan Ji, Xiang Zhang, Tao Li, Hongdong Fan, Yaozong Xu, Peizhen Li and Zeming Tian
Remote Sens. 2023, 15(24), 5668; https://doi.org/10.3390/rs15245668 - 8 Dec 2023
Cited by 17 | Viewed by 2089
Abstract
Coal mining leads to surface subsidence, landslides, soil erosion and other problems that seriously threaten the life and property safety of residents in mining areas, and it is urgent to obtain mining subsidence information using high-frequency, high-precision and large-scale monitoring methods. Therefore, this [...] Read more.
Coal mining leads to surface subsidence, landslides, soil erosion and other problems that seriously threaten the life and property safety of residents in mining areas, and it is urgent to obtain mining subsidence information using high-frequency, high-precision and large-scale monitoring methods. Therefore, this paper mainly studies the deformation monitoring of the Datong mining area using Lutan-1 monostatic and bistatic SAR data. Firstly, the latest Lutan-1 bistatic data are used to reconstruct the DSM, and the interferometric calibration method is used to improve the accuracy of the DSM. Then, the surface deformation monitoring of the mining area is implemented by using DInSAR, SBAS-InSAR and Stacking-InSAR with the reconstructed DSM data and Lutan-1 monostatic SAR data. Finally, the deformation monitoring results are compared with the surface deformation results based on the TanDEM data, and both the results are evaluated using the filed leveling data. Taking 20 images covering the Datong mining area as the data sources, the surface deformation results obtained using different InSAR methods in the mining area were quantitatively evaluated and analyzed. The results indicated that: (1) the DSM obtained using the Lutan-1 bistatic SAR data was assessed and demonstrated with the ICESat laser altimetry data an error of 2.8 m, which meets the Chinese 1:50,000 scale DEM cartographic accuracy standard, and the difference analysis with the TanDEM data shows that the terrain changes are mainly distributed in mountainous areas; (2) Due to the improvement in resolution, the registration accuracy of the SAR images and LT-DSM is higher than that of the TanDEM data in the range direction and azimuth direction; (3) Via evaluation with the filed leveling data, it is found that the surface deformation measurement results based on LT-DSM are less affected by terrain, and the accuracy of LT-DSM-SBAS and LT-DSM-DInSAR is improved by 11.5% and 16.3%, respectively, compared with TanDEM-SBAS and TanDEM-DInSAR, which demonstrates the effectiveness of the Lutan-1 bistatic and monostatic data for mine deformation monitoring. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

24 pages, 4992 KiB  
Article
A Three-Dimensional Block Adjustment Method for Spaceborne InSAR Based on the Range-Doppler-Phase Model
by Rui Wang, Xiaolei Lv, Huiming Chai and Li Zhang
Remote Sens. 2023, 15(4), 1046; https://doi.org/10.3390/rs15041046 - 14 Feb 2023
Cited by 6 | Viewed by 2234
Abstract
The block adjustment method can correct systematic errors in the bistatic Synthetic Aperture Radar Interferometry (InSAR) satellite system and effectively improve the accuracy of the InSAR-generated Digital Elevation Model (DEM). Presently, non-parametric methods, which use the polynomial to model the systematic errors of [...] Read more.
The block adjustment method can correct systematic errors in the bistatic Synthetic Aperture Radar Interferometry (InSAR) satellite system and effectively improve the accuracy of the InSAR-generated Digital Elevation Model (DEM). Presently, non-parametric methods, which use the polynomial to model the systematic errors of InSAR-generated DEMs, are most frequently used in spaceborne InSAR-DEM adjustment. However, non-parametric methods are not directly related to the physical parameters in the InSAR imaging process. Given the issue, this paper conducts adjustments in the parameter domain and proposes a three-dimensional block adjustment method for spaceborne bistatic InSAR systems based on the Range-Doppler-Phase (RDP) model. First, we theoretically analyze the sensitivities of spatial baseline, azimuth time, and slant range to the RDP geolocation model and confirm the analysis method with a simulated geolocation result. Second, we use total differential and differential geometry theories to derive adjustment equations of available control data based on sensitivity analysis. Third, we put forward an iterative solution strategy to solve the corrections of parallel baseline, azimuth time, and slant range to improve the plane and elevation accuracies of InSAR-generated DEMs. We used 29 scenes of TanDEM-X Co-registered Single look Slant range Complex (CoSSC) data to conduct simulated and real data experiments. The simulated results show that the proposed method can improve the accuracies of baseline, range, and timing to 0.05 mm, 0.1 m, and 0.006 ms, respectively. In the real data experiment, the proposed method improves the plane and elevation accuracies to 4.14 m and 1.34 m, respectively, and effectively suppresses the fracture phenomenon in the DEM mosaic area. Full article
(This article belongs to the Special Issue SAR, Interferometry and Polarimetry Applications in Geoscience)
Show Figures

Graphical abstract

22 pages, 15539 KiB  
Article
Deep Learning for Mapping Tropical Forests with TanDEM-X Bistatic InSAR Data
by Jose-Luis Bueso-Bello, Daniel Carcereri, Michele Martone, Carolina González, Philipp Posovszky and Paola Rizzoli
Remote Sens. 2022, 14(16), 3981; https://doi.org/10.3390/rs14163981 - 16 Aug 2022
Cited by 12 | Viewed by 2397
Abstract
The TanDEM-X synthetic aperture radar (SAR) system allows for the recording of bistatic interferometric SAR (InSAR) acquisitions, which provide additional information to the common amplitude images acquired by monostatic SAR systems. More concretely, the volume decorrelation factor, which can be derived from the [...] Read more.
The TanDEM-X synthetic aperture radar (SAR) system allows for the recording of bistatic interferometric SAR (InSAR) acquisitions, which provide additional information to the common amplitude images acquired by monostatic SAR systems. More concretely, the volume decorrelation factor, which can be derived from the bistatic interferometric coherence, is a reliable indicator of the presence of vegetation and it was used as main input feature for the generation of the global TanDEM-X forest/non-forest map, by means of a clustering algorithm. In this work, we investigate the capabilities of deep Convolutional Neural Networks (CNNs) for mapping tropical forests at large-scale using TanDEM-X InSAR data. For this purpose, we rely on a U-Net architecture, which takes as input a set of feature maps selected on the basis of previous preparatory works. Moreover, we design an ad hoc training strategy, aimed at developing a robust model for global mapping purposes, which has to properly manage the large variety of different acquisition geometries characterizing the TanDEM-X global data set. In addition to detecting forest/non-forest areas, the CNN has also been trained to detect water surfaces, which are typically characterized by low values of coherence. By applying the proposed method on single TanDEM-X images, we achieved a significant performance improvement with respect to the baseline clustering approach, with an average F-score increase of 0.13. We then applied such a model for mapping the entire Amazon rainforest, as well as the other tropical forests in Central Africa and South-East Asia, in order to test its robustness and generalization capabilities, and we observed that forests are typically well detected as contour closed regions and that water classification is reliable, too. Finally, the generated maps show a great potential for mapping temporal changes occurring over forested areas and can be used for generating large-scale maps of deforestation. Full article
(This article belongs to the Special Issue SAR for Forest Mapping II)
Show Figures

Graphical abstract

18 pages, 9562 KiB  
Article
Existence of Glacier Anomaly in the Interior and Northern Tibetan Plateau between 2000 and 2012
by Lin Liu, Liming Jiang, Hansheng Wang and Yafei Sun
Remote Sens. 2022, 14(13), 2962; https://doi.org/10.3390/rs14132962 - 21 Jun 2022
Cited by 3 | Viewed by 2076
Abstract
There was sufficient evidence to indicate a nearly balanced glacier mass change (termed glacier anomaly) for Karakoram Mts. since the 1970s, in contrast to worldwide glacier mass losses caused by climate warming. Recently, this anomalous phenomenon was detected over the neighboring western Kunlun [...] Read more.
There was sufficient evidence to indicate a nearly balanced glacier mass change (termed glacier anomaly) for Karakoram Mts. since the 1970s, in contrast to worldwide glacier mass losses caused by climate warming. Recently, this anomalous phenomenon was detected over the neighboring western Kunlun and Pamir Mts. However, the southeastern limit of this glacier anomaly remains uncertain, owing to the paucity of glacier mass balance observations across the interior and northern Tibetan Plateau (INTP). In this study, we presented a decadal glacier mass balance estimation in the INTP by differencing the SRTM DEM with the topographic data produced from TanDEM-X bistatic InSAR images. From 2000 to 2012, decade-average glacier mass balances of between −0.339 ± 0.040 and 0.237 ± 0.078 m w.e. yr−1 were detected over 22 glacierized areas. Significantly, we found a gradient and switch of glacier mass loss over the southeastern portion to glacier mass gain over the northwestern portion. This varying spatial pattern illustrates that glacier anomaly has existed over the northwestern or even central zone of the INTP since the early 21st century. This study provides important evidence for the model simulation of both glacier evolution and atmospheric circulations in investigating the prevailing mechanism of the regional anomalous phenomenon. Full article
(This article belongs to the Special Issue The Cryosphere Observations Based on Using Remote Sensing Techniques)
Show Figures

Graphical abstract

21 pages, 17764 KiB  
Article
A Novel DEM Block Adjustment Method for Spaceborne InSAR Using Constraint Slices
by Rui Wang, Huiming Chai, Bin Guo, Li Zhang and Xiaolei Lv
Sensors 2022, 22(8), 3075; https://doi.org/10.3390/s22083075 - 16 Apr 2022
Cited by 6 | Viewed by 2703
Abstract
The lack and uneven distribution of Ground Control Points (GCPs) will lead to the deterioration of Digital Elevation Model (DEM) block adjustment results in the bistatic Interferometric Synthetic Aperture Radar (InSAR) system. Given this issue, we first explain the relationship between the stability [...] Read more.
The lack and uneven distribution of Ground Control Points (GCPs) will lead to the deterioration of Digital Elevation Model (DEM) block adjustment results in the bistatic Interferometric Synthetic Aperture Radar (InSAR) system. Given this issue, we first explain the relationship between the stability of adjustment parameters and the GCP distribution pattern theoretically using matrix perturbation theory. Second, we put forward the Constraint Slices (CSs) concept and first introduce CSs into the adjustment optimization model as constraint conditions rather than actual values as GCPs. Finally, we propose a novel DEM block adjustment method for spaceborne InSAR using CSs based on an optimization model with nonlinear constraints. The simulated experiment shows the instability of the conventional method and validates the proposed method under different parallel baseline errors. Four groups of real experiments were carried out according to the size of the uncontrolled area using twelve Co-registered Single-look Slant–range Complex (CoSSC) datasets for Henan Province, China. The adjustment results verified by the ICESat-2 ATL08 data demonstrate that the performance of the proposed method is better than the conventional method in the uncontrolled area; the corresponding improvements in adjustment accuracies compared with the conventional method are 0.13 m, 1.02 m, 2.12 m, and 8.18 m, respectively. At the same time, the proposed method can enhance the height consistency in overlapping areas, which is vital for seamless DEM production. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 14486 KiB  
Article
Parameterized Modeling and Calibration for Orbital Error in TanDEM-X Bistatic SAR Interferometry over Complex Terrain Areas
by Huiqiang Wang, Yushan Zhou, Haiqiang Fu, Jianjun Zhu, Yanan Yu, Ruiping Li, Shengwei Zhang, Zhongyi Qu and Shouzhong Hu
Remote Sens. 2021, 13(24), 5124; https://doi.org/10.3390/rs13245124 - 17 Dec 2021
Cited by 9 | Viewed by 2900
Abstract
The TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) bistatic system provides high-resolution and high-quality interferometric data for global topographic measurement. Since the twin TanDEM-X satellites fly in a close helix formation, they can acquire approximately simultaneous synthetic aperture radar (SAR) images, so that [...] Read more.
The TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) bistatic system provides high-resolution and high-quality interferometric data for global topographic measurement. Since the twin TanDEM-X satellites fly in a close helix formation, they can acquire approximately simultaneous synthetic aperture radar (SAR) images, so that temporal decorrelation and atmospheric delay can be ignored. Consequently, the orbital error becomes the most significant error limiting high-resolution SAR interferometry (InSAR) applications, such as the high-precision digital elevation model (DEM) reconstruction, subway and highway deformation monitoring, landslide monitoring and sub-canopy topography inversion. For rugged mountainous areas, in particular, it is difficult to estimate and correct the orbital phase error in TanDEM-X bistatic InSAR. Based on the rigorous InSAR geometric relationship, the orbital phase error can be attributed to the baseline errors (BEs) after fixing the positions of the master SAR sensor and the targets on the ground surface. For the constraint of the targets at a study scene, the freely released TanDEM-X DEM can be used, due to its consistency with the TanDEM-X bistatic InSAR-measured height. As a result, a parameterized model for the orbital phase error estimation is proposed in this paper. In high-resolution and high-precision TanDEM-X bistatic InSAR processing, due to the limited precision of the navigation systems and the uneven baseline changes caused by the helix formation, the BEs are time-varying in most cases. The parameterized model is thus built and estimated along each range line. To validate the proposed method, two mountainous test sites located in China (i.e., Fuping in Shanxi province and Hetang in Hunan province) were selected. The obtained results show that the orbital phase errors of the bistatic interferograms over the two test sites are well estimated. Compared with the widely applied polynomial model, the residual phase corrected by the proposed method contains little undesirable topography-dependent phase error, and avoids unexpected height errors ranging about from −6 m to 3 m for the Fuping test site and from −10 m to 8 m for the Hetang test site. Furthermore, some fine details, such as ridges and valleys, can be clearly identified after the correction. In addition, the two components of the orbital phase error, i.e., the residual flat-earth phase error and the topographic phase error caused by orbital error, are separated and quantified based on the parameterized expression. These demonstrate that the proposed method can be used to accurately estimate and mitigate the orbital phase error in TanDEM-X bistatic InSAR data, which increases the feasibility of reconstructing high-resolution and high-precision DEM. The rigorous geometric constraint, the refinement of the initial baseline parameters, and the assessment for height errors based on the estimated BEs are investigated in the discussion section of this paper. Full article
(This article belongs to the Special Issue InSAR for Earthquake Deformation Observation)
Show Figures

Graphical abstract

28 pages, 17922 KiB  
Article
The Global Water Body Layer from TanDEM-X Interferometric SAR Data
by Jose-Luis Bueso-Bello, Michele Martone, Carolina González, Francescopaolo Sica, Paolo Valdo, Philipp Posovszky, Andrea Pulella and Paola Rizzoli
Remote Sens. 2021, 13(24), 5069; https://doi.org/10.3390/rs13245069 - 14 Dec 2021
Cited by 18 | Viewed by 3465
Abstract
The interferometric synthetic aperture radar (InSAR) data set, acquired by the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) mission (TDM), represents a unique data source to derive geo-information products at a global scale. The complete Earth’s landmasses have been surveyed at least twice [...] Read more.
The interferometric synthetic aperture radar (InSAR) data set, acquired by the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) mission (TDM), represents a unique data source to derive geo-information products at a global scale. The complete Earth’s landmasses have been surveyed at least twice during the mission bistatic operation, which started at the end of 2010. Examples of the delivered global products are the TanDEM-X digital elevation model (DEM) (at a final independent posting of 12 m × 12 m) or the TanDEM-X global Forest/Non-Forest (FNF) map. The need for a reliable water product from TanDEM-X data was dictated by the limited accuracy and difficulty of use of the TDX Water Indication Mask (WAM), delivered as by-product of the global DEM, which jeopardizes its use for scientific applications, as well. Similarly as it has been done for the generation of the FNF map; in this work, we utilize the global data set of TanDEM-X quicklook images at 50 m × 50 m resolution, acquired between 2011 and 2016, to derive a new global water body layer (WBL), covering a range from −60 to +90 latitudes. The bistatic interferometric coherence is used as the primary input feature for performing water detection. We classify water surfaces in single TanDEM-X images, by considering the system’s geometric configuration and exploiting a watershed-based segmentation algorithm. Subsequently, single overlapping acquisitions are mosaicked together in a two-step logically weighting process to derive the global TDM WBL product, which comprises a binary averaged water/non-water layer as well as a permanent/temporary water indication layer. The accuracy of the new TDM WBL has been assessed over Europe, through a comparison with the Copernicus water and wetness layer, provided by the European Space Agency (ESA), at a 20 m × 20 m resolution. The F-score ranges from 83%, when considering all geocells (of 1 latitudes × 1 longitudes) over Europe, up to 93%, when considering only the geocells with a water content higher than 1%. At global scale, the quality of the product has been evaluated, by intercomparison, with other existing global water maps, resulting in an overall agreement that often exceeds 85% (F-score) when the content in the geocell is higher than 1%. The global TDM WBL presented in this study will be made available to the scientific community for free download and usage. Full article
Show Figures

Graphical abstract

18 pages, 8067 KiB  
Article
Evaluating Landfast Sea Ice Ridging near UtqiaġVik Alaska Using TanDEM-X Interferometry
by Marjan Marbouti, Leif E. B. Eriksson, Dyre Oliver Dammann, Denis Demchev, Joshua Jones, Anders Berg and Oleg Antropov
Remote Sens. 2020, 12(8), 1247; https://doi.org/10.3390/rs12081247 - 15 Apr 2020
Cited by 7 | Viewed by 4507
Abstract
Seasonal landfast sea ice stretches along most Arctic coastlines and serves as a platform for community travel and subsistence, industry operations, and as a habitat for marine mammals. Landfast ice can feature smooth ice and areas of m-scale roughness in the form of [...] Read more.
Seasonal landfast sea ice stretches along most Arctic coastlines and serves as a platform for community travel and subsistence, industry operations, and as a habitat for marine mammals. Landfast ice can feature smooth ice and areas of m-scale roughness in the form of pressure ridges. Such ridges can significantly hamper trafficability, but if grounded can also serve to stabilize the shoreward ice. We investigate the use of synthetic aperture radar interferometry (InSAR) to assess the formation and movement of ridges in the landfast sea ice near Utqiaġvik, Alaska. The evaluation is based on the InSAR-derived surface elevation change between two TanDEM-X bistatic image pairs acquired during January 2012. We compare the results with backscatter intensity, coastal radar data, and SAR-derived ice drift and evaluate the utility of this approach and its relevance for evaluation of ridge properties, as well as landfast sea ice evolution, dynamics, and stability. Full article
(This article belongs to the Special Issue Polar Sea Ice: Detection, Monitoring and Modeling)
Show Figures

Figure 1

24 pages, 7040 KiB  
Article
Synergistic Use of Single-Pass Interferometry and Radar Altimetry to Measure Mass Loss of NEGIS Outlet Glaciers between 2011 and 2014
by Lukas Krieger, Undine Strößenreuther, Veit Helm, Dana Floricioiu and Martin Horwath
Remote Sens. 2020, 12(6), 996; https://doi.org/10.3390/rs12060996 - 19 Mar 2020
Cited by 9 | Viewed by 3609
Abstract
Mass balances of individual glaciers on ice sheets have been previously reported by forming a mass budget of discharged ice and modelled ice sheet surface mass balance or a complementary method which measures volume changes over the glaciated area that are subsequently converted [...] Read more.
Mass balances of individual glaciers on ice sheets have been previously reported by forming a mass budget of discharged ice and modelled ice sheet surface mass balance or a complementary method which measures volume changes over the glaciated area that are subsequently converted to glacier mass change. On ice sheets, volume changes have been measured predominantly with radar and laser altimeters but InSAR DEM differencing has also been applied on smaller ice bodies. Here, we report for the first time on the synergistic use of volumetric measurements from the CryoSat-2 radar altimetry mission together with TanDEM-X DEM differencing and calculate the mass balance of the two major outlet glaciers of the Northeast Greenland Ice Stream: Zachariæ Isstrøm and Nioghalvfjerdsfjorden (79North). The glaciers lost 3.59 ± 1.15 G t a 1 and 1.01 ± 0.95 G t a 1 , respectively, between January 2011 and January 2014. Additionally, there has been substantial sub-aqueous mass loss on Zachariæ Isstrøm of more than 11 G t a 1 . We attribute the mass changes on both glaciers to dynamic downwasting. The presented methodology now permits using TanDEM-X bistatic InSAR data in the context of geodetic mass balance investigations for large ice sheet outlet glaciers. In the future, this will allow monitoring the mass changes of dynamic outlet glaciers with high spatial resolution while the superior vertical accuracy of CryoSat-2 can be used for the vast accumulation zones in the ice sheet interior. Full article
(This article belongs to the Special Issue Remote Sensing of Ice Sheets)
Show Figures

Graphical abstract

Back to TopTop