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Abstract: The interferometric synthetic aperture radar (InNSAR) data set, acquired by the TanDEM-X
(TerraSAR-X add-on for Digital Elevation Measurement) mission (TDM), represents a unique data
source to derive geo-information products at a global scale. The complete Earth’s landmasses have
been surveyed at least twice during the mission bistatic operation, which started at the end of 2010.
Examples of the delivered global products are the TanDEM-X digital elevation model (DEM) (at a
final independent posting of 12 m x 12 m) or the TanDEM-X global Forest/Non-Forest (FNF) map.
The need for a reliable water product from TanDEM-X data was dictated by the limited accuracy and
difficulty of use of the TDX Water Indication Mask (WAM), delivered as by-product of the global
DEM, which jeopardizes its use for scientific applications, as well. Similarly as it has been done for
the generation of the FNF map; in this work, we utilize the global data set of TanDEM-X quicklook
images at 50 m x 50 m resolution, acquired between 2011 and 2016, to derive a new global water body
layer (WBL), covering a range from —60° to +90° latitudes. The bistatic interferometric coherence
is used as the primary input feature for performing water detection. We classify water surfaces
in single TanDEM-X images, by considering the system’s geometric configuration and exploiting
a watershed-based segmentation algorithm. Subsequently, single overlapping acquisitions are
mosaicked together in a two-step logically weighting process to derive the global TDM WBL product,
which comprises a binary averaged water/non-water layer as well as a permanent/temporary water
indication layer. The accuracy of the new TDM WBL has been assessed over Europe, through a
comparison with the Copernicus water and wetness layer, provided by the European Space Agency
(ESA), at a 20 m x 20 m resolution. The F-score ranges from 83%, when considering all geocells
(of 1° latitudes x 1° longitudes) over Europe, up to 93%, when considering only the geocells with
a water content higher than 1%. At global scale, the quality of the product has been evaluated,
by intercomparison, with other existing global water maps, resulting in an overall agreement that
often exceeds 85% (F-score) when the content in the geocell is higher than 1%. The global TDM
WBL presented in this study will be made available to the scientific community for free download
and usage.

Keywords: water mapping; land cover classification; flood monitoring; bistatic SAR; interferometric
coherence; TanDEM-X; InNSAR

1. Introduction

Covering about 71% of the Earth’s surface, water represents the most widespread
environment of our planet [1]. It is one of the most precious natural resources on Earth,
fulfilling environmental, social, and economic services [2,3]. A reliable and accurate
assessment of the world’s water resources is, therefore, of paramount importance for
a wide range of applications, spanning from resource management, decision making,
governance, and climate change initiatives [4-8].
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In this scenario, spaceborne remote sensing represents a unique instrument for pro-
viding consistent, timely, and high-resolution data on a global scale for water resources
mapping and monitoring. Historically, spaceborne optical sensors have been widely used
for this purpose [5,9-17], even though they show some limitations caused, for example, by
the impossibility to acquire data in the presence of clouds.

Thanks to their all-weather, daylight-independent acquisition capabilities, synthetic
aperture radar (SAR) systems represent an attractive alternative to optical imagery [18-21].
Indeed, the use of radar is particularly relevant when tropical regions, mountainous areas,
or high-latitudes regions are considered, since they are typically hidden by clouds for
considerable time periods, especially during wet seasons or winter time.

To discriminate the presence of water from SAR imagery, amplitude-based algorithms,
such as adaptive thresholding, region growing, or basic machine learning classifiers, are
widely used [20,22-24]. In particular, given the flatness of water bodies, radar waves are
mostly specularly reflected by the surface itself, leading to very low values of backscatter in
the acquired image, which are, in some cases, close to the system noise floor. However, the
recorded backscatter levels can be influenced by different factors, which make it difficult in
certain circumstances to distinguish between water and land. For example, misclassification
can occur when illuminating objects with a low radar backscatter, similar to calm water,
such as roads and airport runways. On the other hand, the backscatter of water bodies
affected by strong wind might significantly increase, depending on the roughness of the
illuminated surface, which is strongly influenced by the presence of short-wavelength,
shallow-water waves. Moreover, in the presence of deep water waves, characterized by
certain regular periodic structures, a coherent superposition of reflections from the faces can
occur, leading to the so-called Bragg scattering [25]. In this case, weak individual reflections
can sum up to a significant echo signal through constructive interference, leading to high-
intensity values within the detected SAR image [26]. Finally, the backscattered signal is
also directly influenced by SAR system parameters, such as the local incidence angle and
system noise floor (or noise equivalent sigma nought), which can significantly vary on a
scene basis.

SAR interferometry (InSAR) allows for overcoming the above-mentioned limitations
of backscatter-based algorithms, by introducing the use of the interferometric coherence
for water mapping purposes. The interferometric coherence is defined as the normalized
cross-correlation coefficient between the interferometric image pair and represents the key
quantity for assessing the quality of an interferogram [27]. In INSAR acquisitions, water
bodies typically show very low values of coherence and are generally characterized by a
more stable behavior, less influenced by surface roughness caused by waves and strong
winds. In repeat-pass INSAR systems, the interferometric coherence suffers from temporal
decorrelation, which can significantly decrease the coherence for unstable land cover classes,
such as forests or agricultural areas, hence making impossible to distinguish such land cover
classes from water bodies. This limitation is overcome by the interferometric coherence,
obtained from a bistatic system, such as TanDEM-X, where the interferometric pair is
acquired simultaneously; therefore, INSAR data are not affected by temporal decorrelation.

In [28], the bistatic interferometric coherence was exploited, together with backscatter,
for the derivation of the TanDEM-X water indication mask (WAM), by setting a series of
empirical thresholds. The WAM's purpose is to indicate possible water surfaces appear-
ing in the mosaicked global TanDEM-X DEM. Nevertheless, such a product is strongly
affected by the presence of misclassified pixels, mainly caused by geometric distortions
over high-relief terrain, such as shadow and layover, which characterize the side-looking
geometry of SAR and lead to a drop in the interferometric coherence and strong backscatter
modifications. Additionally, the WAM is of difficult usage, since it does not consist of a
simple binary layer (water/non-water) but counts the number of occurrences of water
detection, based on the thresholding of different input observables (such as backscatter,
coherence, or a combination of the two) in the mosaicked DEM product. It is then up to the
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user to select which case, among the mentioned ones, has to be considered for generating a
binary layer, and this choice is far from trivial.

Furthermore, the TanDEM-X DEM product, in the forms of the World DEM [29],
Copernicus DEM [30], and DLR TanDEM-X DEM [31], currently represents the most
accurate and recent reference DEM, at the global scale, for both the scientific and commercial
communities [32]. The availability of a reliable water surface product, which is consistent
with such DEM data, is, therefore, of paramount importance for a variety of applications,
spanning from enhanced earth observation (EO) data processing and hydrological risk
assessment to land cover change monitoring and shore line detection. For example, this
need was already highlighted during the development of an automatic editing procedure
for the global TanDEM-X DEM, as documented in [33].

All these considerations were the main drivers that brought us to the development
of a new water body layer from TanDEM-X data, i.e., the TDM WBL, characterized by
improved accuracy, with respect to the WAM, which provides ready-to-use information
to the end-users. As an additional purpose, the TDM WBL can also contribute to the
assessment of water bodies, at a global scale, and monitoring of their evolution in time, by
including an estimate of their changes during the past decade (2010-2020).

In this paper, we report on the work developed at the DLR Microwaves and Radar
Institute to generate a new global layer to be added to the suite of present TanDEM-X
products. We describe the implemented method to detect water bodies from the global
data set of TanDEM-X acquisitions, which relies on the use of the bistatic interferometric
coherence only. On a scene basis, areas affected by shadow and layover are masked out,
to mitigate the misclassification effects of low coherent areas. A watershed segmentation
algorithm is then applied to each scene, for the generation of images with contour-closed
water regions, which are finally combined through an ad-hoc weighted process to produce
the final TDM WBL.

The paper is organized as follows: Section 2 introduces the utilized TanDEM-X inter-
ferometric global data set, together with the auxiliary and external data sources required
during the generation of the global TDM WBL. The developed method for water clas-
sification, based on the watershed segmentation algorithm and a two-step mosaicking
strategy, is then described in Section 3. The resulting global water product (TDM WBL), at
50 m x 50 m spatial resolution, is presented in Section 4, together with an accuracy assess-
ment, with respect to selected external reference maps. The findings are then discussed in
Section 5; finally, in Section 6, conclusions and outlook are drawn.

2. Data
2.1. The TanDEM-X Interferometric Global Data Set

TanDEM-X is the first operational spaceborne bistatic SAR system comprising the
two twin satellites TerraSAR-X (launched in June 2007) and TanDEM-X (launched in June
2010). The system acts as a large single-pass radar interferometer, nominally acquiring
interferometric SAR images in bistatic configuration and stripmap mode (HH polarization),
with a typical resolution (azimuth and range) of about 3 m [32,34].

Since the beginning of the mission, more than half a million high-resolution scenes
have been acquired and processed for the generation of a global digital elevation model
(DEM). A single bistatic scene typically extends over an area of about 30 km, in range
by 50 km in azimuth. From this, quicklook images, representing several SAR and InSAR
quantities (like backscatter and coherence maps), are generated as a by-product, at a ground
resolution of 50 m x 50 m, by applying a spatial averaging process to the corresponding
operational TanDEM-X interferometric data at full resolution (12 m x 12 m). Working with
such data allows for the exploitation of the TanDEM-X data set at a global scale with a
limited computational load and a significant reduction in data volume, memory usage,
and processing time [35,36].
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The bistatic interferometric coherence gives information about the amount of noise in
the interferogram. As described in [37], several error sources may contribute to coherence
loss, which, assuming statistical independence, can be factorized as [38]:

YTot = YSNR * YQuant * YAmb * YRg * YAz * YVol * Y Temp- 1)

On the right-hand side term of the above equation, ysNr is the coherence loss due to
limited SNR, yQuant represents the coherence loss due to raw data quantization, y o, is the
decorrelation due to ambiguities, g is the noise originating from baseline decorrelation
component, ya, is the contribution caused by the relative shift of Doppler spectra, Yy,
is the decorrelation due to volume scattering effects, and 7y remp represents the temporal
decorrelation. As TanDEM-X operates as a single-pass radar interferometer, it is not affected
by temporal decorrelation, i.e., YTemp = 1. Differently, 7y, is not negligible when radar
waves penetrate into volumetric targets, such as vegetated areas or snow-covered regions.
In this case, the amount of decorrelation is closely related to the height of ambiguity, /1,
which represents the topographic height difference, corresponding to a complete 27t cycle
of the interferometric phase [39]. For the bistatic case, it is defined as follows:

A-R-sin(6;
s = 2 E 0, @

with A being the radar wavelength, R the slant range, 6; the incidence angle, and B
the baseline perpendicular to the line-of-sight. In this work, we make use of quicklook
images, representing both the interferometric coherence and height of ambiguity as main
observables for the detection of water bodies in TanDEM-X InSAR acquisitions, as well as
for deriving a reliable mosaicking strategy to generate a new global WBL product.

2.2. Auxiliary Data

Different auxiliary data sets have been used to enhance the TDM WBL generation
algorithm and validate the final product. To improve the classification and subsequent
combination and mosaicking process, both internal (i.e., obtained from the TanDEM-X
products and annotation) and external information sources have been used during the
generation of the TDM WBL, which are detailed in the following.

All the used internal data sets, derived from TanDEM-X data and acquisition parame-
ters, are listed in the following:

¢  Shadow and layover mask (SLM): Geometric distortions, such as shadow and layover,
are observed in SAR images as low-coherence areas. This effect mainly occurs over
mountainous terrain and may lead to the wrong classification of water bodies, when
using approaches based on coherence thresholding [40]. For each considered scene,
we detected such areas by applying the approach proposed in [41], which takes into
account the properties of each SAR scene and its acquisition geometry (orbit height,
baseline, and incidence angle). By combining such information with an external
reference DEM (in this case, the edited version of SRTM DEM [18], detailed later on),
it is possible to detect areas with low coherence on the SAR image, which corresponds
to geometric distortions, namely the shadow and layover regions. Figure 1 shows an
example of the shadow and layover map, derived for a TanDEM-X image over the
Alps, Europe. Amplitude and coherence images are presented as a reference, together
with the obtained shadow and layover map. Additionally, a map of the local slope is
generated, as well, by computing the bi-dimensional gradient of the reference DEM.
e TanDEM-X quality check products: TanDEM-X acquisitions are interferometrically
processed by the operational Integrated TanDEM-X Processor (ITP) [42]. During all the
processing chain, the ITP provides direct feedback on the acquisition quality, to ensure
high performance of the produced single-scene DEMs [32]. Remaining errors, which
may contribute to possibly larger DEM errors, are phase unwrapping and on-board
oscillators synchronization problems [43], which are annotated in the ITP quality check
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products. Moreover, the generated TanDEM-X single scene DEMs by the ITP are then
combined in the subsequent TanDEM-X DEM mosaicking and calibration processor
(MCP) [44]. Residual errors, due to the remaining phase unwrapping problems or
presence of heavy-raining clouds, are annotated in the MCP quality check products.
Both ITP and MCP quality check products are considered in the weighted mosaicking
process for the generation of the TDM WBL, as well.

1.0
5
08 Shadow
0 = z
S 1]
5 06¢ Layover
! o
= 049
-103 5 Valid samples
IS o
-15< 0.2
Non value
-20 0.0
(a) Amplitude (b) Coherence (c) Shadow and layover map

Figure 1. Example of a TanDEM-X image over the Alps, close to Kénigsee, Germany. (a) Amplitude,

(b) interferometric coherence, and (c) derived shadow and layover map, to mitigate missclassification

of water bodies over mountainous regions.

Several auxiliary external data sets have also been utilized during the generation of

the TDM WBL to improve the water classification and mosaicking strategy.

SRTM (Shuttle Radar Topography Mission, [45]): An enhanced, edited version of
the SRTM DEM has been used as reference for the detection of shadow and layover
regions in each TanDEM-X image. The used SRTM DEM has been merged from an
edited SRTM C-Band DEM, adjusted with ICESat, and the Global Land One-km Base
Elevation (GLOBE) DEM, as described in [46].

MODIS (moderate resolution imaging spectroradiometer, [47]): The global snow and
ice map, provided monthly by MODIS, at a spatial resolution up to 500 m, is used
to detect TanDEM-X scenes affected by the presence of snow, which might lead to a
misclassification of water surfaces.

OSM (OpenStreetMap, [48]): OSM provides a global skeleton of rivers, which are used
as input for the watershed classification algorithm, to enhance the placement of the
user-defined water markers at the resolution of TanDEM-X quicklooks.

GlobCover [49]: The backscatter values over sandy desert regions are often close to
the TanDEM-X SAR system sensitivity and can lead to an incorrectly estimated low
interferometric coherence. In order to avoid the misclassification of such areas as
water bodies, the GlobCover classification map has been used to mask out desert
regions, as already done for the global TanDEM-X forest/non-forest map [36].

For the validation and performance assessment of the TDM WBL we utilized the

following independent data sets:

Copernicus water and wetness (WAW) layer [50]. The Copernicus WAW layer, avail-
able over Europe, has been used for the validation of the TDM WBL. The WAW layer
is part of the pan-European high-resolution layers (HRL), which provide information
on specific land cover characteristics at a 20 m x 20 m resolution.

TanDEM-X WAM Layer (TDM WAM) [51]. The TDM WAM is delivered together
with the TDM global DEM and has been generated during the mosaicking of the full-
resolution TanDEM-X DEM at 12 m x 12 m. It is an occurrence counter mask based on
the thresholding of both the amplitude and the interferometric coherence. In particular,
two fixed thresholds for all acquisitions have been defined for the amplitude: a relaxed
amplitude threshold of —15 dB and strict amplitude threshold of —18 dB, while the
threshold applied to the interferometric coherence is 0.23. For each single TDM image
used for the generation of the global DEM, image pixels showing values below these
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thresholds are flagged as water. Then, during the mosaicking process, and on a geocell
basis, the total occurrence of detected water from overlapping scenes is evaluated
and coded into an 8-bit map. In other words, for each pixel in the WAM a coded
value is saved, which reflects the number of overlapping acquisitions under the
specified thresholds up to a maximum of 3 occurrencies. The complete description
of the WAM bits coding can be found in [51]. In order to convert the multiple bit
coding of the WAM into binary layers, we split the WAM information into different
categories, leading to the generation of up to 13 different binary water maps. All
possible combinations and the relative products are summarized in Table 1. For each
generated water map, pixels coded with other bits combinations in the WAM have
been considered as invalids. Note that the column “All counters” means that, at least
in one acquisition, water has been detected for the corresponding WAM binary layer.

Table 1. Amplitude and coherence pixels combinations used for generating the 13 binary water/non-
water layers from the WAM. Each row displays a different input information: coherence and ampli-
tude (Coh + Amp), coherence only (coherence), amplitude only (using the —15 dB relaxed threshold
(Amp. < —15 dB)), and amplitude only (using the more stringent threshold of —18 dB). Each column
identifies the associated number of occurrences in water detection (“Acq. counter”). The column
“All counters” corresponds to the union of the last three columns. Cells marked with an x identify

the generated products.
WAM Binary All Counters Acq. Counter
Layer 3 2 1
Coh + Amp X - - -
Coherence X X X X
Amp. < —15dB X X X X
Amp. < —18dB X X X X

e ESA CCI water map [6]: The freely available global map of open permanent water
bodies obtained from the Land Cover (LC) project of the Climate Change Initiative
(CCI), provided by ESA, at 150 m x 150 m resolution, is used for a large-scale inter-
comparison of the produced water maps.Z.

¢  FROM-GLC water map [14]: The FROM-GLC (Finer Resolution Observation and
Monitoring of Global Land Cover) water map has been used for the large-scale inter-
comparison of the TDM WBL. This water map has been generated using a machine
learning random forests classifier, trained on Landsat data, and updated to 2017 using
additional Sentinel-2 data. It is more up-to-date than the ESA CCI one and has been
generated at a resolution of 10 m.

*  GSW occurrence map [5]: The GSW (global surface water) occurrence map from the
European Commission (EC) Joint Research Centre (JRC) is based on Landsat imagery.
It shows, at 30 m resolution, the frequency with which water was detected on the
surface, from 1984 up to 2015, at the global scale. In order to generate a binary layer to
be used for the comparison with the TDM WBL, we set an empirical threshold at the
50% water occurrence.

Finally, it is worth pointing out that, before usage, all the described data sets are
interpolated to the corresponding latitude/longitude grid and pixel size of the considered
TDM input/output product.

3. Methods

The main processing steps of the developed algorithm, for the generation of the TDM
WBL, are illustrated in Figure 2, where three major blocks can be distinguished: (I) data
preparation, applied in order to select and derive the required input features for water
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detection from TanDEM-X original quicklooks, (II) seeds placement, for the subsequent
application of the detection algorithm, and (III) classification + mosaicking of the final
product. The last block comprises of the classification of single images, setting of reliable
weights for the mosaicking process, and combination of the overlapping scenes into the
final mosaic. The different blocks are separately described in Sections 3.1-3.5. Finally,
Section 3.7 describes the parameters used for the final accuracy assessment.

g TDM QL
1. Data preparation
coherence
Masks: shadow,
layover and slope
Set non-water Select | Define super :
2. Seeds placement !
seeds reliable DTs (non-water) pixels | !
Set water i
seeds E
OSM seeds E
. Seeds mosaic i
(rivers skeleton) -
Edge detecti
3. Classification S e
and mosaicking - ]
Watershed Set reliable
algorithm weights
WBEL scenes
Shnii b e S R e et

1
TDM WBL mosaic i

Figure 2. TDM WBL method flowchart. Solid line rectangles indicate operations at scene basis.
Dashed rectangles indicate operations at mosaic level. Grey filled blocks indicates the three major
blocks of our algorithm.

3.1. Data Preparation

The TanDEM-X interferometric coherence images are used as input for the water body
classification algorithm. The data preparation comprises of the masking of shadow and lay-
over regions, filtering of high slope terrain, and extraction of auxiliary information. All the
mentioned operations are performed on each single image, separately. In particular, pixels
affected by shadow and layover are set as invalid. Moreover, because of the topography of
high-slope regions, lakes cannot be found on high slopes. By utilizing the local slope map,
pixels whose slope exceeds the empirical value of 10° are set as non-water pixels on the
single TanDEM-X coherence images.

The auxiliary information on the identification of problematic scenes is extracted
from different sources, as described in Section 2.2, and is used in the next steps of the
algorithm for setting both the seeds for the classification algorithm and weights for the
final mosaicking process.
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3.2. Seeds Placement

The second step in the TDM WBL classification algorithm is the placement of appro-
priate seeds, prior to the application of the watershed segmentation algorithm. Seeds are
defined as the catchment basin on a topographic surface. As shown in Figure 3, considering
this surface the height of each point in the map, if some water is dropped on it, the water
will stream down, reaching a minimum height and stopping there. All points of the surface
in which the drops of water reach this minimum are called seeds [52]. They represent the
starting points for the location of water bodies in our classification algorithm.

The seeds placements procedure takes into account the following aspects:

*  Reliable data takes: In the proposed method, data takes that are affected by snow and
clouds, showing an interferometric low quality, or with a height of ambiguity lower
than 25 m are considered as non-reliable acquisitions and are not used further. By
excluding data takes affected by the presence of snow, the probability to correctly set
water seeds over seasonally frozen lakes increases, thanks to a more likely usage of
summer acquisitions, if available. Regarding data takes acquired with low height of
ambiguities (or, alternatively, large normal baselines), they typically show low coher-
ence values over forested areas because of the high impact of volume decorrelation,
which can mislead the classification [39].

e  Water and non-water seeds: Once the reliable data takes have been selected, we
define seeds for both water and non-water bodies by properly thresholding the input
coherence. The reference threshold values have been empirically defined, after a
statistical analysis of more than 200 TanDEM-X images, acquired using different
geometries and acquisition parameters. By comparing these images with the ESA CCI
water map [6], it has been possible to statistically characterize the expected coherence
values for water and non-water bodies. For water bodies, a coherence reference value
of 0.22 has been obtained, similar to the one employed by [28], and relatively close
to the lower coherence bias. For non-water bodies, the coherence value depends on
the land cover type under evaluation. A coherence reference minimum value of 0.5
has been selected as representative for all land cover types. These coherence reference
values are the input parameters for the watershed algorithm.

®  Super pixels: For a given pixel location, in case all available coherence images from
overlapping multiple acquisitions show a coherence value above 0.6, this pixel is
directly set as non-water in the final mosaic, since persistently high coherence values
are a reliable indicator of the absence of water [38].

*  OSM rivers skeleton: Working with a pixel resolution of 50 m x 50 m on ground,
narrow river beds smaller than a pixel cell are challenging to detect. The backscattered
signal of the surrounding land is merged with the response of such small water
regions, and the obtained coherence is higher than the expected one for pure water
bodies. This effect leads to a difficult positioning of water seeds. In order to correctly
detect such water bodies, we complement seeds detection using the Open Street Map
(OSM), which provides a global skeleton of rivers [48]. We extracted this information
using the OSMxtract Python package [53]. The skeletons of narrow rivers are tagged
as waterways in the OSM and such coordinates on ground are set as water seeds.

®  Seeds mosaic: Finally, for each single output coordinate on ground (latitude x longi-
tude), we consider all the N available overlapping acquisitions simultaneously. If it
holds that:

YN Water seeds(7)

YN Reliable data takes(7)

such a pixel is set as water seed in the final seeds mosaic. Note that a relaxed threshold
has been considered here, since only reliable data takes are taken into account in
this first mosaicking process. The result is a mosaic of seeds that contains water and
non-water seeds, as well as super pixels, which is then used as input for the next
algorithm steps.

> 04, 3)
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Basin A Topographic
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Basin B

Height (km)
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Figure 3. Principle of water seeds placement for the watershed algorithm. They are identified in blue
as the topographic minimum of catchment basins.

3.3. Single-Scene Water Classification

For the generation of the global TDM WBL, we developed a classification method
based on the watershed segmentation algorithm [52]. The watershed algorithm is a well-
known and commonly used approach in image segmentation, such as bubble detection in
a grey scale image. It is a non-parametric contour detection method, with the advantage
that no empirical threshold values are needed. The output are closed contour lines that
delineate the borders between regions with different characteristics. Starting from the set of
predefined seeds, the watershed algorithm treats input pixels values as a local topography
(elevation). Each basin is ideally flooded in an iterative way, and the areas where the flood-
waters from different basins meet are identified as barrier contours. Such contours represent
the different partitions in the image, which can, in this way, be properly segmented.

In the method presented in this paper, we rely on the implementation of the watershed
algorithm, provided by the scikit-image package for Python [54], using the watershed-by-
flooding approach. As markers for the watershed algorithm, the defined seeds mosaics
in Section 3.2 are used. The topographic representation of the input TanDEM-X coherence
images is obtained by applying a Scharr transform, which is a filtering method used to
identify and highlight gradient edges and features by applying a bi-dimensional kernel,
representing the first derivatives [55]. The watershed algorithm is then applied on such
images, starting from the defined seeds. The resulting contoured regions where the water
seeds were placed are identified as water bodies.

3.4. Reliability Weights

When dealing with a large set of data, such as the one provided by TanDEM-X, it is
necessary to define an appropriate way to combine together the overlapping scenes, e.g.,
by giving precedence to more reliable acquisitions, with respect to poor-quality ones. For
each pixel in the output mosaic, we derive its value (i.e., water/non-water) by applying a
weighted average to all the N input pixels from overlapping scenes. The correct definition
of the mosaicking weights «; plays a key role for the enhancement of the final classification
performance [36]. In the case of the TDM WBL, a single weight value is defined for
each input image, which is established on the basis of both annotated parameters and
derived quantities from the acquisition geometry and interferometric processing quality
check products. For a certain output pixel, given a set of N input overlapping images, a
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unit weight «;, where i = [1,-- -, N] is associated with each of them, a; results from the
multiplication of different terms, which are initially set equal to 1, as:

ac
SNow aqlouds e

winter
i i i i

ahamb . (4)

n=u ! ;

Each term on the right-hand side of the equation identifies a different source of uncertainty,

as explained in the following, and assumes a value that reflects the impact of each error

source on the final quality:

*  a3"%% quantifies the reliability loss caused by the presence of snow on ground. The
coherence over areas covered by dry snow is typically degraded because of volume
decorrelation effects, while, in the presence of wet snow and bare ice, such a phe-
nomenon is negligible at the X band [56]. The snow coverage information is obtained
from MODIS [47]. If the percentage of snow, indicated by MODIS over an image, is
higher than the empirical threshold of 20%, then this is considered as a moderate
source of uncertainty and aj"°“ = 0.5.

o aflouds characterizes acquisitions affected by heavy-rain clouds, which appear in the
coherence images as low coherent areas and could be identified as water surfaces.
The clouds information is obtained from the MCP quality check products, described
in Section 2.2. If heavy rain events are detected, they are considered as critical error
sources and a§'0uds = 0.1.

o a?cq is associated to the presence of acquisition problems, eventually annotated in the
ITP quality check products, introduced in Section 2.2. Additionally, in this case, if
anomalies are reported, a?cq =0.1.

e " quantifies the reliability of winter acquisitions. Specifically, during this season,
water bodies without constantly flowing water, such as lakes, may be frozen. This
condition changes their backscattering properties, and they appear as more coherent
areas. In this case, ucf"i”t” = 0.5. One should note that we define as winter the time
period between October and April for data takes acquired over regions at latitudes
higher than 30°N and between April and October for data takes acquired over regions
at latitudes lower than 30°S.

o a?’”b accounts for the interferometric coherence variability, with respect to the height
of ambiguity h,,,; [38]. For low values of h,,,;, the coherence over forested areas
can be degraded to values close to the lower bias [39]. On the contrary, this effect is
significantly mitigated with increasing h,,,,;,, which corresponds to smaller perpendic-
ular baselines. Therefore, we set a different uc?’"h value, depending on specific h,,;,

intervals and seasonal time, as summarized in Table 2.

Table 2. Reliability weights txf”“b applied in the TDM WBL as a function of the height of ambiguity
hgmp for summer and winter data takes (DT).

Height of Ambiguity Summer DT Winter DT
<40 m 0.5 0.5
>60 m 2.0 0.5
>80 m 4.0 1.0

3.5. Final Mosaicking

The final TDM WBL mosaic is provided on a basis of 1° x 1° geocells, similarly to the
global TanDEM-X DEM product [32] and TanDEM-X forest/non-forest map [36]. In order
to generate the final mosaic, a three-dimensional (3D) data cube for each output geocell is
first created by stacking the input scene-based binary water images on a common latitude
(¢) and longitude (A) grid. For each (¢, A) coordinate, all available overlapping images,
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together with the associated reliability weights, are considered, and the probability to be
water Ws0ic (¢, A) is then computed as:

_ X aig, M) wi(g, A)

Winosaic ((P/)\) ZN txi((P/)‘)

/ ©)

where w;(¢, A) indicates the binary water map value from a single image, resulting from
the application of the watershed classification algorithm. The final binary classification of
water/non-water is obtained after setting a threshold at 35% on W,os,ic (¢, A). Pixel values
above this threshold are selected as water in the final TDM WBL mosaic. Such a threshold
value has been empirically set after an experimental analysis on the final accuracy.
Together with the TDM WBL, an auxiliary map is generated, which gives indications
on the presence of permanent and temporary water bodies. This mosaic is obtained by
simply counting the number of water occurrences within the three-dimensional data cube
of overlapping images. For each water body, the area identified as water in all overlapping
images is classified as permanent water. Other areas, identified as water only in some of
the available images, are classified as temporary water. This map represents an additional
valuable information for the end-users, since it is a good indicator for tracing temporal
changes. Specifically, it shows changes in the extension of water bodies as measured
by TanDEM-X during the period 2011-2016, capturing, for example, the seasonality of
frozen lakes during winter or water accumulations during the melting of snow packs in
mountainous regions. Moreover, it records the variations of water riverbeds and lakes,
which account for eventual flooding events or seasonal changes in water reservoirs.

3.5.1. Frozen Water

The detection of frozen water surfaces represents a challenging aspect in the frame-
work of water mapping and deserves to be specifically addressed. Regions close to the
Arctic circle are characterized by the presence of frozen water during most of the year,
which results in higher coherence values within INSAR acquisitions. In order to achieve
global coverage with TanDEM-X data over such regions, we had to face the problem of
having areas where only winter acquisitions are available. This aspect leads to a high
probability of misdetection of water bodies. As an example, Figure 4 shows two mosaics
obtained by superimposing all the available TanDEM-X coherence images over the Yana
Bay, north-western Russia, from 2011 to 2016. This is a coastal region facing the Arctic ocean.
Figure 4a,b depict the coherence mosaics, obtained by considering TanDEM-X summer
and winter acquisitions separately.

The area faces the Arctic Ocean to the north and is characterized by the presence
of small lakes in the inland region and the Yana river mouth to the east. The images
composing the summer mosaic (Figure 4a) show a high variability in ground conditions.
The ocean appears with the expected low coherence in just one image (the second one
from the left-hand side). All other images present higher values than expected over water,
indicating the presence of sea ice even during summer time. The small lakes in the inland
region mainly appear as low coherent areas, even though some images, as for the ocean,
still show frozen lakes, characterized by very high coherence. On the other hand, in the
mosaic of winter acquisitions (Figure 4b), high coherence values are obtained for all water
bodies, as well as over land, indicating the presence of frozen water surfaces and snow on
the ground, respectively.

The previous observations have also been verified by statistically analyzing single
TanDEM-X coherence images over the Yana Bay test region, separately. Water bodies and
land areas have been differentiated on the basis of the ESA CCI water map [6]. Exemplary
results for two images, acquired in winter and summer time, respectively, are provided
in Figure 5. For each acquisition, a masked coherence image for water bodies and land
areas, as well as the corresponding histograms of the respective coherence values, are
depicted. Figure 5a shows an image acquired in winter 2011, close to the Arctic ocean.
Here, similar coherence values are obtained for non-water and water bodies, since the latter
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are frozen. The high level of coherence over the ocean is caused by the presence of sea ice.
The latter is typically characterized by a significant surface roughness, which leads to much
higher backscattering returns toward the radar antenna, with respect to open water, where
specular reflections occur. Differently, Figure 5b depicts an image acquired during summer
2012. The Arctic ocean is now free from sea ice and, as expected, shows very low coherence
values. It can also be noted that some small lakes remain frozen and present coherence
values, similar to the non-water ones. Therefore, this analysis confirms how coastal areas
at northern latitudes are mainly distinguishable in summer acquisitions only, when no sea
ice is present. Nevertheless, even at such conditions, the detection of remaining frozen
surfaces is still challenging.
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Figure 4. Mosaics of TanDEM-X coherence images, considering summer (a) and winter (b) acquisi-
tions, separately, over a test area close to the Yana Bay (Russia), facing the Arctic Sea to the north.
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Figure 5. TanDEM-X coherence images and histograms for water bodies and land areas over the
Yana Bay (Russia) test area. Both winter (a) and summer (b) acquisition cross the coastline of the
Arctic Ocean. (a) TanDEM-X acquisition from January 2011. (b) TanDEM-X acquisition from July
2012.

For all these reasons, and in order to mitigate the effects of these extremely varying
conditions, an ad-hoc approach has been applied when mosaicking regions at latitudes
higher than 60°N. We added an additional layer to our final TDM WBL mosaic: frozen
water, detected as high coherent areas with 7ot > 0.95 in data takes acquired during winter.
Note that this behaviour is only observable for inland water bodies in a reliable manner.
For coastal regions, as it is the case, e.g., of geocells over Greenland, it has been necessary
to adapt the reference coherence values for the seeds placement (Section 3.2). In this case,
a reference value of it < 0.55 has been set for water seeds, while for land areas, mainly
covered by snow and ice, a reference value of ot > 0.7 has been applied. The modified
threshold values have been empirically selected after the statistical analysis of different
test images such as the ones presented in Figure 5. Moreover, super pixels have not been
considered for the generation of the TDM WBL over these regions, and that at coastal areas,
when only winter data takes were available; the shoreline, corresponding to the open ocean,
has been extracted from the ESA CCI water map [6].

3.6. Additional Output Information Layers

Together with both described water maps, i.e., the TDM WBL and the temporary and
permanent WBL, two additional information layers are generated after the mosaicking
process:

e Coverage map (CM): A map indicating the number of mosaicked acquisitions for each
latitude /longitude pixel coordinate of the TDM WBL.

®  Acquisition information files (AIF): The acquisition information files list all the acquisi-
tions used in the generation of the TDM WBL map on a geocell level. The list contains
the data take acquisition identifier, its scene number, and the date of the acquisition.
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3.7. Accuracy Assessment

The quality of the produced TDM WBL has been assessed by computing the confusion
matrices, with respect to external reference maps, and evaluating several quality parameters.
In the case of the TDM WBL, two classes are considered, water and non-water, as indicated
in Table 3.

Table 3. Confusion matrix for TDM WBL accuracy assestment.

Reference Map
Water Non-Water
TDM Water TP FP
WBL Non-water FN TN

The four terms in the confusion matrix are defined as: true positives (TP): pixels
classified as water in both maps; false positives (FP): pixels classified as water in the
TDM WBL and non-water in the reference map; false negatives (FN): pixels classified
as non-water in the TDM WBL and as water in the reference map; and true negatives
(TN): pixels classified as non-water in both maps. The structure of the confusion matrix is
depicted in Table 3. Starting from such a matrix, several widespread metrics, commonly
used for the accuracy assessment of land classification algorithms, can be derived. For
the quality assessment of the TDM WBL, overall accuracy (OA), F-score, and Matthews
correlation coefficient (MCC) are considered [57]. In the following, we briefly recall their
definitions and comment on their choices. In particular:

e The overall accuracy (OA) represents the overall correctly classified pixels, with
respect to the total number of classified pixels, and is defined as:

TP+ TN

A=
© TP+TN+FP+FN

(6)

The OA is provided for completeness, since it is well known that it shows optimistic
results, especially on imbalanced data sets. Indeed, in the case of water mapping at a
global scale, the proportion of water is often marginal, with respect to the non-water
class, as shown in [6].
*  F-score, also called the Fl-score, is an accuracy metric that ranges between 0 and 1
and can be expressed as:
2.-TP

F=score = S b T PP EN @

F-score is mainly used to evaluate binary classifications, and it is specially useful
when dealing with imbalanced data sets. The overall accuracy in Equation (6) has
the advantage to be easily interpretable, but the disadvantage is that it is not very
robust when the data is unevenly distributed. The F-score metric represents a useful
alternative when dealing with such kind of data sets.
®  The Matthews correlation coefficient (MCC) measures the statistical relationship
between classified and reference classes and is defined as:
(TP-TN) — (FP- FN)

MCC = (8)
V(TP +FP) - (TP + FN) - (TN + FP) - (TN + FN)

The MCC is often used to assess the quality of binary classification, since it is gen-
erally regarded as a balanced measure of accuracy, even in the presence of classes
with very different population sizes [57,58]. The MCC index varies between —1 and
1. MCC = 1 represents a perfect agreement between the classification and reference
maps. MCC = 0 means that the classification approach is no better than a ran-
dom prediction approach. MCC = —1 indicates an absolute disagreement between
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classification and reference maps. The MCC assumes a high score, only if a good
classification is obtained in all four terms of the confusion matrix.

4. Results
4.1. The Global TanDEM-X Water Body Layer

The final TDM WBL map, with a spatial resolution of 50 m x 50 m, is shown in
Figure 6a. More than 500,000 TanDEM-X bistatic scenes, acquired between 2011 and 2016,
have been processed and mosaicked for its generation. The map is divided into geocells
of 1° x 1° in latitude and longitude, as done for the production of the TanDEM-X global
DEM. Water bodies are depicted in blue and non-water pixels or land pixels are depicted
in white. Moreover, even if not visible at this zoom-in level, invalid pixels, where no-data
is available, are shown in black; shadow and layover pixels are shown in red. During
the TanDEM-X mission, the complete Earth’s landmasses, i.e., all land areas, such as a
continent that is in one piece and not broken up by oceans, have been covered at least twice.
Therefore, areas where no TanDEM-X scenes are available have been considered as open
water, corresponding to oceans, and are depicted in blue in Figure 6a, as well.

In addition to the binary TDM WBL map, the TDM permanent and temporary WBL is
produced, as well, and is presented in Figure 6b. This map has the same spatial resolution
and geocell division as the binary TDM WBL. The temporary WBL depicts water bodies
variations, such as flooded regions (due to the swelling of rivers), lakes shrinking (due
to periods of drought), or frozen water surfaces during winter. Such effects are clearly
visible, e.g., in the northern regions of the boreal hemisphere, corresponding to permafrost
regions, where water completely freezes during winter, or in wetlands areas close to the
major tropical rivers.
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Figure 6. (a) The Global TanDEM-X water body layer (blue: water surfaces, white: landmasses). (b) The
global permanent and temporary WBL (Blue: permanent water bodies, cyan: temporary water).
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A detail of the TDM WBL and the permanent and temporary WBL is shown in Figure 7,
depicting the gulf of Martaban in the southern part of Myanmar. This region depicts the
Ayeyarwady river, crossing the country from north to south, and its tributaries. The
Ayeyarwady river is a wide river, and it shows no significant variation in the width of its
riverbed. On the other hand, the tributaries are narrow rivers, which are more difficult to be
correctly detected, due to the resolution of the TanDEM-X quicklook images (50 m x 50 m).
Nevertheless, thanks to the developed mosaicking strategy, they are well detected, as
well (Figure 7a). Moreover, it is worth noting that, depending on the water flow, some
regions were temporary flooded during the considered time span for the generation of the
TDM WBL. Such effects are clearly caught by the temporary and permanent water layer
(Figure 7Db).

18.00 18.00 [~
fn
; I
_ 17.75 _ 17.75 f—' 3
< < 5
Q o 7 g
=l =l <
2 17.50 2 17.50 =
g 5 v
17.25 17.25 ? =}
. g
0 d'f(
17.00 17.00 . 7
5 95.0 95.5
Longitude (°) Longitude (°)
(a) (b)
Acg. D | Sceme nr. | Acq. date
18.00 10
01010204 4-6 2011-01-12
9 2
Q
01013142 89 2011-03-24 17.75 g 2
01084839 1-8 2012-06-28 e 6 %
Q
s &
01148912 3-6 2013-08-15 2 17.50 S
= 4 =
— 3 ,_8
01150055 2-7 2013-09-06
B 17.25 > &
01150745 1-3 2013-09-17 1 2
1 5 17.00 0
1171384 2-4 2014-01~
0117138 014-01-05 3 955
Longitude (°)
(c) (d)

Figure 7. Details of the TDM WBL product over the Ayeyarwady River and the Gulf of Martaban
in the South of Myanmar. (a) The binary mosaicked WBL (water is depicted in blue), (b) the
corresponding permanent and temporary WBL layer. (c) associated acquisition information file (AIF).
The AIF content shows the acquisition unique identifier (Acq. ID), the scene number (Scene nr.),
and the acquisition date (Acq. date) of the mosaicked scenes at a geocell level. (d) Corresponding
coverage map (CM).

The corresponding additional output layers are then presented in Figure 7c,d. Figure 7c
shows the structure of the acquisition information file (AIF), which lists the data take
acquisition identifier, the scene number, and the acquisition date of all used TanDEM-X
data takes for the generation of the TDM WBL map on a geocell level. Such an information
can be very useful for identifying the exact time span in which variations in the water
surface extent are observed in the temporary and permanent WBL. Figure 7d depicts the
Coverage Map (CM) associated to the TDM WBL image presented, in Figure 7a. As one
can notice, more than 5 overlapping acquisitions were acquired over this area, in both
ascending and descending orbit directions.
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The examples in Figure 8 allow for additional considerations on the effects of geo-
metric distortions and frozen water in the final product. In particular, Figure 8a shows
the TDM WBL over the Tibetan plateau. The corresponding optical image from Google
Earth is visible in Figure 8b. Over mountainous regions, the identification of water bodies
is quite challenging, due to the strong presence of geometric distortions in SAR images. As
it can be seen, these effects have been significantly mitigated by the accurate detection and
filtering of shadow and layover in each input TanDEM-X scene. This is particularly visible
at the bottom of the image, in correspondence of the Himalayan mountain ridge.

Figure 8c shows an example of frozen water detection for an area in northern Siberia
(the corresponding optical image from Google Earth is depicted in Figure 8d). Here, water
bodies detected using the TDM WBL watershed classification approach over summer
acquisitions are colored in blue. For example, the blue stripe in the middle of the scene
corresponds to a TanDEM-X acquisition performed in July 2013. The other ones, detected as
frozen water over winter acquisitions, are identified as temporary water and are depicted
in cyan.
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Figure 8. (a,b) Water bodies detected over the Tibetan Plateau, located between the Himalaya
mountains on the south and the Taklamakan desert on the north ((a) TDM WBL and (b) corresponding
optical image from Google Earth. In (a), water bodies are depicted in blue, other land cover types
in white, and remaining pixels with no-data information, due to the shadow and layover mask, are
identified in red. (c,d) Water bodies detection over a test area in Siberia. (c) Water surfaces, detected
using the watershed classification method, are depicted in blue, while frozen water (water detected
in winter acquisitions only) is in cyan. (d) Corresponding optical image from Google Earth.

4.2. Accuracy Assessment

In this section, the global TDM WBL is validated with external references and com-
pared with other available large-scale classification maps. In order to perform a reliable
validation, it is necessary to dispose of a highly accurate reference map, with a comparable
or better resolution, produced in a similar time span as the TDM WBL map. Usually,
such maps are only available at local scale. To perform such a task, we have utilized the
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Copernicus HRL WAW digital map (described in Section 2.2). Additionally, an accuracy
comparison with the TDM WAM is included. The main scope of this additional analysis
is twofold: on the one hand, we aim to provide the reader with a solid background and
motivation that brought us to the development of the TDM WBL; on the other hand, we
demonstrate the added value of such a new product, with respect to the state-of-the-art
global water mapping product from TanDEM-X. Finally, a global-scale intercomparison
with other global water maps is here performed, as well, by utilizing available products
with a similar or coarser resolution, and generated with older input data. For this purpose,
we compared the TDM WBL with the ESA CCI, FROM-GLC, and JRC GSW water maps.
Such global products are generally less accurate than local-scale maps; nevertheless, they
can give a good indication on the global performance.

4.2.1. TDM WBL Validation

The result of the validation using the Copernicus HRL WAW comprises overall 902
TDM WBL geocells over Europe. An overall accuracy of 99.1% has been obtained. However,
the overall accuracy shows optimistic results, especially on imbalanced data sets, as most of
the pixels under analysis are classified as non-water classes. More suitable parameters for
the estimation of the accuracy on imbalanced data sets are the F-score and MCC parameters.
In this case, a F-score of 83.2% and MCC of 81.4% have been obtained. Figure 9 shows the
distribution of the mean F-score per geocell over the entire continent. Coastal areas as well
as regions with high water content are well detected and mostly depicted in green, showing
a F-score higher than 80% Inland regions with low water content often show a F-score
lower than 50% and are indicated in red, orange, and yellow. The lower performance
is mainly caused by an approximate detection of narrow rivers, as well as small lakes,
due to the medium resolution (50 m) of TanDEM-X quicklook data. Moreover, some
geocells with low F-score are still present in Scandinavia. This aspect mainly involves
geocells, where only winter acquisitions were available and frozen water bodies were not
completely detected. Note that 69.1% of the geocells have a water content higher than
1%. By discarding those geocells with less than 1% water content, an F-score of 93.0% and
MCC of 90.1% are obtained, respectively, indicating the high quality of the produced map
when non-negligible water bodies are actually present in the geocell. Figure 10 shows the
confusion matrix for the validation of a single TDM WBL geocell, located in northern Italy.
As it can be seen, most inconsistencies are found in correspondence of narrow rivers, while
major water bodies appear well detected.

4.2.2. Comparison with TDM WAM

To assess the accuracy of the TDM WAM and compare it with the TDM WBL, we
followed the same approach as in the previous Section 4.2.1, using as reference data the
Copernicus HRL WAW binary map over Europe. Such a performance assessment approach
requires, therefore, the comparison of binary water/non-water layers.

Figure 11 shows the difference in accuracy Ap between the TDM WBL and the TDM
WAM over Europe. For each geocell, it has been computed as:

An = Fore = Fucore' ©)
where FVBL and FV4M represent the mean F-score of the TDM WBL and the WAM,
respectively, evaluated with respect to the Copernicus WAW map over Europe. In this
case, the considered WAM binary layer includes the amplitude, as well as the coherence
information (Coh + Amp in Table 1).
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Figure 9. F-score on a geocell basis obtained for the 902 geocells used for the validation of the TDM
WBL over Europe. The Copernicus HRL WAW has been used as reference map.
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Figure 10. Details of the validation map (confusion matrix) for a geocell in Northern Italy. The TDM
WBL has been compared with the Copernicus HRL WAW layer. Blue indicates water detected in
both maps (TP), red indicates water detected only in the reference map (FN), green indicates water
detected only in the TDM WBL map (FP), and white indicates no water detected in both maps (TN).
The areas (A,B) highlighted in orange are depicted on the right-hand side.
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Figure 11. Accuracy comparison of the (F-score) on a geocell basis between the TDM WBL and
TDM WAM over Europe. The Copernicus WAW layer is used as reference. Red: WAM better than
WBL (Ap < —0.05); yellow: comparable performance (A5 | < 0.05); green: WBL bettern than WAM
(0.05 < Ap < 0.5); blue: WBL significantly better than WAM (Ap > 0.5).

Among the 902 geocells considered over Europe, for 39 tiles, the TDM WAM shows
better performance than the TDM WBL, which are shown in red, and mainly correspond to
regions where only winter acquisitions are available. In this case, the use of the amplitude,
in addition to the coherence, helps improving the classification. Moreover, the difference in
resolution of the input data, when generating the WBL and WAM maps seems to affect
the performance of the TDM WBL over some disperse single inland geocells, where the
water content is lower than 1%, as well. A total of 436 geocells are colored in yellow,
covering mostly the European coastal areas, where both maps show a similar performance
in the detection of open water. Overall, 427 geocells are depicted either in green or in blue,
confirming the significant improvement of the WBL, with respect to the WAM.

In Table 4, the mean F-score value obtained over Europe for the different WAM water
maps is indicated and compared with the one obtained for the TDM WBL and temporary
and permanent WBL. By considering the 902 geocells, both WBL maps achieve an F-score
of 83%, while the WAM considering both, coherence and amplitude, reaches only a 67%.
From the different WAM combinations, different F-score values are obtained, spanning
from 55% up to 81%, which make the a priori selection of the right combination difficult.

We then further analyzed the accuracy of the WAM, by considering two exemplary
test regions: the Alps (latitude in [44°N, 48°N], longitude in [6°E, 18°E]), and Scandinavia
(latitude in [58°N, 70°N], longitude in [4°E, 28°E]). The first is mainly characterized by
the presence of small lakes and rivers in between the mountains, while the second is
characterized by high-relief terrain on the west coast and the presence of frozen inland
water bodies during winter.

In the case of the Alps region, the WBL (weighted mosaic) achieves a F-score of 77%,
while the best WAM combination achieves 74%. Most of the misclassified pixels in the
WAM correspond to areas of shadow and layover. These results confirm that the TDM WBL
outperforms the WAM over high-relief terrain, demonstrating the importance of using a
reliable shadow and layover mask, as the one exploited by the TDM WBL, for the detection
of water bodies over mountainous regions.
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Table 4. Comparison of the accuracy assessment (F-score index) on a geocell basis between the TDM
WBL and the WAM over Europe (top) and, more specifically, the Alps (middle) and Scandinavia
(bottom). For each test site, the first two rows identify the TDM WBL layers. Weighted refers to the
TDM WBL (weighted mosaic), while Temp + Perm refers to the temporary and permanent water
layer. Please refer to Table 1 for the explanation of the WAM combinations.

Acq. Counter

Water Map Type All Counters ) 1
Weighted 83.16 - - -
z WBL
g Temp + Perm 83.03 - - -
& Coh + Amp 67.16 - - -
g WAM Coherence 78.31 81.58  71.27  55.62
iz Amp. <—15dB 69.57 6546 7238  61.29
Amp. <—18dB 81.04 69.68 77.20 68.44
Weighted 77.54 - - -
WBL
2 Temp + Perm 74.32 - - -
: Coh + Amp 40.68 - - -
g WAM Coherence 50.27 69.22 3341  16.59
< Amp. <—15dB 45.45 66.05 50.80  31.63
Amp. <—18 dB 62.56 7462 6026 3881
~ Weighted 84.63 - - -
g WBL
) Temp + Perm 90.91 - - -
= Coh + Amp 77.02 - - -
é WAM Coherence 86.97 66.56 7797  78.36
3 Amp. <—15dB 78.66 57.15 74.68 70.67
Amp. <—18 dB 84.90 5778  79.87  79.35

In the case of Scandinavia, the best performance of the WAM water maps are obtained
for the coherence only and the strict threshold on the amplitude, by considering in both
cases water detected in 1, 2, and up to 3 or more acquisitions (column “All counters” in
Table 4). Here, an F-score of 86.97% and 84.90% is achieved, respectively. The effect of
frozen water bodies is clearly visible in the WBL, which achieves a lower performance
than the one obtained by considering the temporary and permanent WBL, which reaches a
F-score higher than 90%.

The variable performance achieved by the different WAM combinations, as well as the
improvement obtained by the TDM WBL, are clearly visible by looking at the confusion
matrices of Scandinavia for different WBL and WAM layers, evaluated with respect to the
Copernicus WAW reference map and depicted in Figure 12.

4.2 3. Intercomparison with Global Water Maps

The TDM WBL has been compared on a geocell basis, with other avaliable global
water products: the ESA CCI water map, FROM-GLC water layer, and JRC GSW map.
Even though such global products do not represent highly reliable reference data, such
as the Copernicus HRL over Europe, they allow for a first assessment of the TDM WBL
performance on a global scale. Table 5 summarizes the results obtained when considering
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only geocells with a water content higher than 1%. In most of the regions, a F-score value, as
well as a MCC value higher than 85%, are achieved, while the OA is well above 90%. Only
when considering permafrost regions in the Northern Hemisphere a lower performance is
obtained. This is clearly visible in Figure 13, which depicts the mean F-score obtained from
the comparison of the global TDM WBL with the ESA CCI water map on a geocell basis.
Geocells with less than 1% water content are excluded from the analysis and indicated in
white. The TDM WBL exhibits a very good agreement with the reference map along coastal
areas and in regions with high water content, such as the Amazon River basin, Patagonia
in South America, and the islands in the Caribbean sea, as well as in the Indian ocean,
Japan, Mediterranean sea, and northern Europe. A lower performance is mainly visible
in the regions surrounding the Arctic ocean. This is due to the presence of frozen water
surfaces in the mosaicked winter acquisitions. These effects are significantly mitigated
when using the associated temporary and permanent water layer, as already demonstrated
in Section 4.2.2. Overall, the obtained results confirm the good agreement of the TDM WBL
with other global water products, making it a reliable reference on a global scale.

BT Tk errT

,S : \,:\‘_\ ‘ \, . :

Lk

(b) WBL temp/perm
e R T

ats

B ,
(c) TDM WAM (d) WAM Coherence

(e) WAM Amp. < —15dB (f) WAM Amp. < —18 dB
TP N FP FN
Confusion Matrix

Figure 12. Confusion matrices between the TDM WBL and TDM WAM binary layers over Scandi-
navia. The Copernicus WAW layer has been used as reference. (a) Weighted WBL mosaic (TDM
WBL), (b) temporary and permanent WBL layer (WBL temp/perm). The different versions of the
TDM WAM correspond to (c) WAM coherence and amplitude, (d) WAM coherence only, (e,f) WAM
amplitude with different thresholds. All TDM WAM versions have been generated considering all
acquisitions counters, as indicated in Tables 1 and 4.
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Table 5. TDM WBL comparison results with global water maps: the ESA CCI water map (CCI),
FROM-GLC map (FGLC), and JRC GSW map (GSW). Only geocells with a water content higher than
1% are considered.

Nr. Geocells OA F-Score MCC
CCI FGLC GSW CCI FGLC GSW CCI FGLC GSW CCI FGLC GSW
Canada 1386 1366 1370 94.62 94.15 95.13 74.31 74.71 73.65 72.53 71.12 71.46
USA and Mexico 927 893 878 98.55 98.78 98.67 86.90 89.04 90.22 84.09 86.67 87.25
Central and South America 999 823 892 98.66 98.65 98.01 87.70 86.60 90.52 82.49 84.65 85.08
Europe 1080 1042 1014 98.42 98.64 98.52 86.81 88.78 90.14 85.17 87.23 88.50
Africa 791 717 689 99.17 99.15 99.05 90.85 91.43 9527 88.24 90.08 9291
Asia 2288 2162 2033 95.76 95.62 95.37 68.97 70.03 73.24 67.18 68.44 70.85
Oceania 997 840 903 99.08 99.21 98.32 94.24 95.72 97.25 88.66 90.90 90.62
Greenland 252 222 161 9521 82.58 77.05 80.01 58.38 78.19 74.54 42.53 37.24

Region of Interest

- [ )
B 5 e S S

0%  20% 40% 60% 80% 100%
F-score

Figure 13. Mean F-score per geocell, obtained from the intercomparison of the TDM WBL, with
the ESA CCI water map. Land regions with less than 1% water content are depicted in white and
excluded from the analysis.

5. Discussion

The results obtained through the validation and the intercomparison activities demon-
strate the high potential of the TanDEM-X interferometric data set to generate global
products and the suitability of the proposed algorithms for extracting the location and
extension of water surfaces from such a data set. The comparison of the generated TDM
WBL map with other reference maps shows a strong agreement, when considering geocells
with a water content higher than 1%, for which the performance evaluation is meaningful.
The classification performance could be further improved by exploiting the TanDEM-X
full-resolution data, set at 12 m x 12 m, which would allow for a better detection of narrow
river beds and small lakes. In this way, it would also be possible to avoid the use of OSM
data to properly set the water seeds over such regions.

From the validation and intercomparison activities, one can also assess that the imple-
mented approach is robust and delivers a consistent and homogeneous data set at global
scale. It is worth noting that water is a highly changing environment, which may respond
differently to the interferometric radar system, depending on its status. For example,
irrigated areas or wetlands appear as low coherent areas only when water is present on
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the surface. Such a changing behavior makes the correct detection of water bodies from
remote sensing systems at global scale an extremely challenging task.

The proposed two-step mosaicking strategy with the definition of the reliability
weights shows the importance of correctly handling the input data. In the case of the
TanDEM-X mission, the acquisitions planning has been focused on the generation of a
high-performance DEM. For this objective, height of ambiguities in the order of 50 m
during the first year of acquisitions (2011-2012) and around 35 m during the second
year (2013-2014), were selected. Small height of ambiguities reduce the height error and
improve the quality of the DEM [32]. However, for classification purposes, based on
the interferometric coherence, such small values of the height of ambiguity may cause
misclassification specially over forested areas [36]. In such images, acquired with very
low values of height of ambiguities, both forests and water show very low coherence, and
it is necessary to carefully consider this aspect. In areas where only such data takes are
available, misclassification may occur, reducing the performance of the generated TDM
WBL.

Beside the height of ambiguity, other aspects to be taken into account when planning
the data takes are the acquisition geometry and the acquisition date. TanDEM-X offers a
high acquisitions versatility by combining right- and left-looking modes with ascending and
descending orbit directions. The operational satellites viewing direction is right-looking
with respect to the flight direction. By combining acquisitions in ascending and descending
orbits, it is possible to illuminate the same point on the Earth from opposite viewing angles.
Such an approach has been exploited especially over mountainous regions to reduce
missing data due to shadow and layover effects. In the case of water classification, when
water bodies are surrounded by steep terrains, such as lakes surrounded by mountains
or cliffs, the availability of images acquired from different points of view can significantly
improve the final classification [40].

Seasonality also represents a key-factor for correctly detecting water from InSAR
acquisitions. Water bodies in winter might be misclassified as non-water if the surface
is frozen and therefore characterized by higher coherence. In order to understand the
challenge of generating a global water body layer from the TanDEM-X data set, one
can consider Figure 14, which shows the percentage of TanDEM-X nominal acquisitions
acquired in winter in the Northern Hemisphere for latitudes above 50° (North America in
Figure 14a, Europe Figure 14b, and Asia Figure 14c). Green indicates that all scenes have
been acquired in summer, and red that all scenes have been acquired in winter time. As it
can be seen, over many areas winter acquisition only are available, where most of water
surfaces are frozen. This aspect is confirmed by the correlation between Figures 14 and 13.
Indeed, for latitudes above 70°, regions acquired only in winter achieve significantly lower
F-score values. This strongly impairs the final product accuracy and for this reason we
developed a dedicated detection of inland frozen water (Section 3.5.1). On the contrary,
at coastal areas, it has been possible to accurately detect the shoreline in the presence of
summer data takes only.

In addition to all the previously mentioned aspects, the comparison of water maps
acquired at different times and with different resolutions has to be carefully addressed as well.
Indeed, higher resolution images can capture more details, while temporal changes in the
extension of water surfaces inevitably leads to a lower agreement among the compared maps.
Such changes can be caused by natural erosion, extreme hazards, as well as human activities.

Nevertheless, if, on the one hand, the time difference between water maps to be com-
pared significantly affects the resulting performance, on the other hand, it also represents a
key asset for detecting temporal changes occurring on the Earth’s surface, as done, e.g., for
the monitoring of wetlands [59,60].

An example of temporal changes between the TDM WBL and the ESA CCI water map
is presented in Figure 15. Here, modifications in the river bed of the Amazon river can be
identified through the analysis of the confusion matrix. Indeed, false positives (FP, green)
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and false negatives (FN, red) can be associated to temporal changes in the water extent,
corresponding to newly flooded areas and to dried ones, respectively.

m f%x\\

Sawes ¥

(c) Acquisitions over Asia

0% 20% 40% 60% 80% 100%
Percentage of DTs acquired in winter

Figure 14. Percentage of acquisitions acquired in winter on the Northern Hemisphere, for latitudes
between 50°N and 75°N. Winter is defined from October to March.

Latitude (°)

-57.0 -56.5 -56.0 -55.5 -55.0 -54.5 -54.0 -53.5 -53.0
Longitude (°)
TP N FP FN

Confusion Matrix

Figure 15. Temporal changes detected between the TDM WBL and the ESA CCI water map in a time
span of more than three years for the Amazon river, Brazil. Blue: stable water surfaces (TP), white:
stable non-water areas (TN), green: newly flooded areas (FP), red: dried water surfaces (FN).
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6. Conclusions

In this work, we presented the new global water body layer, generated from the
TanDEM-X InSAR data set: the TDM WBL. The paper provides the end-users with a
complete description of the algorithms and product peculiarities and performance. More
than half a million bistatic scenes, covering all the Earth’s landmasses, have been acquired
and processed, since the beginning of the TanDEM-X mission. As in the case of the
TanDEM-X forest/non-forest map, we have used an averaged and downsampled version
of the original full-resolution data at a ground independent pixel spacing of 50 m x 50 m,
which represents a good compromise between final product resolution and resulting
computational burden.

The low interferometric coherence, which characterizes water bodies in InNSAR data,
has been exploited as input observable to a watershed-based classification algorithm. The
proposed classification approach and two-step mosaicking strategy, which aims at an
optimum combination of the multi-temporal and multi-baseline TanDEM-X data set, have
been presented, as well.

The mosaicked product has been validated and compared with existing water classi-
fication maps, achieving excellent performance, with F-score index typically above 90%
for geocells with a water content higher than 1%. Moreover, it represents a significant
improvement, with respect to the current WAM as by-product of the TanDEM-X global
DEM, since it provides a more homogeneous, ready-to-use binary product with a higher
quality. This is particularly visible over difficult terrain areas, such as mountainous and
vegetated regions.

The global TanDEM-X WBL, including the temporary and permanent water layer pre-
sented in this paper, will be open to the scientific community for free download and usage.
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