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Abstract: The lack and uneven distribution of Ground Control Points (GCPs) will lead to the dete-
rioration of Digital Elevation Model (DEM) block adjustment results in the bistatic Interferometric
Synthetic Aperture Radar (InSAR) system. Given this issue, we first explain the relationship between
the stability of adjustment parameters and the GCP distribution pattern theoretically using matrix
perturbation theory. Second, we put forward the Constraint Slices (CSs) concept and first introduce
CSs into the adjustment optimization model as constraint conditions rather than actual values as
GCPs. Finally, we propose a novel DEM block adjustment method for spaceborne InSAR using CSs
based on an optimization model with nonlinear constraints. The simulated experiment shows the
instability of the conventional method and validates the proposed method under different parallel
baseline errors. Four groups of real experiments were carried out according to the size of the uncon-
trolled area using twelve Co-registered Single-look Slant–range Complex (CoSSC) datasets for Henan
Province, China. The adjustment results verified by the ICESat-2 ATL08 data demonstrate that the
performance of the proposed method is better than the conventional method in the uncontrolled area;
the corresponding improvements in adjustment accuracies compared with the conventional method
are 0.13 m, 1.02 m, 2.12 m, and 8.18 m, respectively. At the same time, the proposed method can
enhance the height consistency in overlapping areas, which is vital for seamless DEM production.

Keywords: constraint slice (CS); constraint conditions; DEM block adjustment; Interferometric
Synthetic Aperture Radar (InSAR); matrix perturbation theory

1. Introduction

The Bistatic Interferometric Synthetic Aperture Radar (InSAR) system [1] can effec-
tively suppress the phase components caused by atmospheric delay and other factors to
maintain the high coherence of interferograms, which is the leading technology to generate
high-precision global DEM. TerraSAR-X/TanDEM-X is a typical example of the bistatic
system, and has a baseline accuracy of about 1–2 mm [2,3].

The generation of interferometric DEM usually includes SAR image coregistration,
interferometric processing, interferogram filtering, removing reference phases, phase un-
wrapping, elevation inversion, and geocoding [1,4]. The evaluation indicators of generated
DEM include vertical accuracy and plane accuracy. Vertical accuracy is principally affected
by the uncertainty of the spatial baseline, while plane accuracy is limited to the uncertainty
of the parameters related to SAR imagery geolocation. Referring to the method of SAR
bundle adjustment, J.Ma et al. [5] has proposed the Range-Doppler-Phase (RDP) model to
correct key geometric parameters used in the R-D model and DEM inversion, including
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near range, imaging start time, orbit vector, and baseline. However, in recent years the
geolocation accuracy of SAR satellites has improved from the hundreds of meters [6] to
the decimeter order [7] with the development of satellite orbit determination and SAR
calibration technology. For example, the orbital accuracy of TerraSAR-X is 20 cm, and the
positioning accuracy can reach the order of decimeters [8,9]. Therefore, it is unnecessary to
adjust geolocation parameters for spaceborne SAR systems with high positioning accuracy.

Because the SAR instrument calibration and the baseline determination cannot reduce
all errors, there is a height error in the interferometric DEM caused by baseline uncertainty,
instrument drifts, and other factors called the remaining systematic error [10]. Compared
with the other factors, the parallel baseline error has a more significant impact on the
accuracy of DEM generation, as follows:

herr =
R sin θ

B⊥
B‖err (1)

where R is the slant range, θ is the incidence angle, B⊥ is the perpendicular baseline,
and B‖err is the parallel baseline error. In order to correct the remaining systematic error,
B.Wessel et al. put forward a method of DEM calibration to correct the systematic error
of DEM products [11], which was the core principle of the Mosaicking and Calibration
Processor (MCP) of TanDEM-X [12]. In this method, the systematic error of the generated
DEM is expressed as a polynomial function of the image coordinates and the function
model is solved employing the external high-precision Ground Control Points (GCPs), that
is, the Global Land Surface Altimetry Data (GLAH14) of the Ice, Cloud, and land Elevation
Satellite (ICESat) [13]. J. Hueso González et al. [14] focused on the quality assessment
of ICESat GLAH14 elevation data and put forward basic and extreme selection criteria
according to the number of echo peaks and bandwidth of measurement points. The
characteristics of the systematic error were analyzed in [15], and the simulation data were
used to illustrate the necessity and reliability of DEM calibration. Astrid Gruber et al. [10]
described the concept of the Tie-Point chip and the selection of ICESat data, as well as
validating the function model using external lidar DEM.

GCPs are usually required to be sufficiently and evenly distributed to ensure the
accuracy of DEM adjustment parameters [5,16,17]. Nevertheless, the GLAH14 data points
are distributed along the ICESat orbit, which cannot meet these two requirements, especially
the latter (the global distribution of ICESat data is shown on https://search.earthdata.nasa.
gov/search?fp=ICESat&as[platform][0]=ICESat, accessed on 21 February 2022). Therefore,
the adjustment results will deteriorate in certain cases and it is necessary to introduce
external control data to ensure the accuracy of DEM adjustment parameters. However,
this topic has seldom been discussed in previous studies on InSAR-DEM adjustment.
The global public DEM can be regarded as reliable external control data. As an essential
data source in geoscience, the global public DEM has high precision and wide coverage
characteristics. The current global DEM/DSM can be divided into two categories according
to the production technology; one is generated based on electromagnetic interference, such
as Shuttle Radar Topography Mission (SRTM) [18] and the other is based on optical stereo
pairs [19] such as ALOS World 3D (AW3D30) and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM).
In addition, the National Elevation Dataset project has provided LiDAR DEM covering
almost the whole of the United States [20]. Many scholars have evaluated the accuracy of
global public DEM/DSM. R.Talchabhadel et al. [21] used thousands of ground-based points
near the basin of the West Rapti River, Nepal, to access the vertical accuracy of AW3D30
and SRTM. The AW3D30 showed the highest accuracy of 3.41 m in the lower region of
the study area. H.Li et al. [22] used ICESat data, SRTM, and ASTER GDEM to evaluate
AW3D30 comprehensively. Their results showed that the horizontal offset of AW3D30 is
approximately 5.0 m and 10.0 m, respectively, relative to SRTM and ASTER GDEM2, while
it has a higher vertical accuracy of 4.81 m than the others. However, it should be noted that
the vertical accuracy of public DEM is generally less than that of GLAH14 laser altimetry

https://search.earthdata.nasa.gov/search?fp=ICESat&as[platform][0]=ICESat
https://search.earthdata.nasa.gov/search?fp=ICESat&as[platform][0]=ICESat
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data, which means that the public DEM cannot be directly regarded as GCPs in adjustment
as otherwise it will affect the correction effect of GLAH14 data on the generated DEMs.
Therefore, it is necessary to develop an appropriate form to introduce the global public
DEM into DEM block adjustment in order to solve the deterioration caused by the lack or
uneven distribution of GCPs.

Based on the above analysis, this paper first analyzes the influence of ICESat distribu-
tion on adjustment results using matrix perturbation theory. Then, we propose the concept
of constraint slices (CS) and the corresponding extraction method from external public
DEM. Finally, taking the relative accuracy of CSs as constraint conditions, we propose a
DEM block adjustment method assisted by CSs. A simulated experiment was designed
according to different spatial baseline errors, and the overall adjustment accuracies of the
simulated experiment improved by 0.41 m to 7.01 m. Four groups of real data experiments
were designed according to the number of GCPs, and the overall adjustment accuracies
improved by 0.02 m to 7.86 m.

2. Methods
2.1. Conventional Method and Shortcomings

The conventional method [10,11,14] models the remaining systematic height error
of InSAR DEMs as a polynomial function and uses Tie Point (TP) chips and GCPs for
joint correction.

2.1.1. TP Chips

In the overlapping area of two DEMs, pixels corresponding to the same ground object are
called tie points [11]. This concept is similar to the connections/tie points in SAR imagery block
adjustment [23], though their extraction methods are different. Gaussian white noise usually
contaminates the generated DEM, and the pixels near the edge may even be affected by colored
noise [11]. To ensure the relative accuracy and reliability of connection points, Huber M. et al.
put forward the concept of TP chips and developed a set of extraction processes [24]. First, the
image coherence threshold is set to eliminate the pixels with low coherence. At the same time,
the areas with higher height differences compared with the public external DEM are removed
to eliminate the invalid areas, such as shadow, water, and overlap areas. Then, a series of grids
called TP chips are delimited along the longitude and latitude direction in the overlapping
area. A median height value is assigned to a TP chip after calculating the histogram of effective
pixels in each grid. The geographic coordinate of a TP chip is that of the center point in the
grid. Compared with feature matching, this method is more time-saving [10,11,24]. It is able
to realize time savings of more than 95.0% thanks to the extraction of TP chips mainly using
logical operations such as establishing grids and masking invalid areas. The extraction diagram
of TPs is shown in Figure 1.

Figure 1. Extraction of TP chips. The dashed box indicates the tie point chip, the red mark is the
center point, and the blue mark is the location of the elevation median.
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2.1.2. GCPs

ICESat data provide globally distributed accurate elevation measuring points, and
has been used as an absolute height reference for DEM adjustment [10,11]. ICESat data
are measured with lasers, which means the measurement points are affected by clouds,
vegetation, and other factors and cannot reflect the actual ground elevation. Therefore, J.H.
González et al. [14] focused on ICESat data screening in DEM adjustment and put forward
extreme and basic selection criteria. The specific process is as follows. First, the ICESat
points with significant height differences (greater than 200 m) are eliminated through
comparison with external DEM/DSM. Then, data points with one peak for the reflected
signal and a time bandwidth of fewer than 3.2 ns (extreme selection criteria) or 8.0 ns (basic
selection criteria) [14] are screened to ensure a relatively concentrated energy distribution
to the greatest possible extent. Finally, all DEM pixels in the footprint of the ICESat point
are averaged using two-dimensional Gaussian weights.

2.1.3. Function Model

According to [10,15], the systematic error of generated DEM can be expressed as a
polynomial of image coordinates, as in Equation (2)

gI(x, y) = aI + bI x + cIy (2)

where I is the index of DEM image, aI is the height offset, and bI and cI are the tilts in
ground distance and azimuth, respectively. x, y are the image coordinates, i.e., ground
distance and azimuth with respect to a reference point. The function model can adopt
higher-order polynomials, although Runge’s phenomenon, where the model fluctuates
violently at the boundary of the adjustment region, may need to be taken into account.

For TPs and GCPs, the observation equations [10,11] are

[ht
I + gI(xt

I , yt
I)]− [ht

J + gJ(xt
J , yt

J)] = lt (3)

hp
I + gI(xp

I , yp
I )− Hp = lp (4)

where t and p are the indexes of TPs and GCPs, h is the height extracted from the generated
DEM, Hp is the height of GCP, and l is the residual. Equation (3) is the error equation of a
TP chip and represents the elevation difference of different DEMs in the overlapping area.
Equation (4) is the error equation of a GCP, and represents the elevation difference between
DEM and absolute elevation reference data. Equations (3) and (4) can be further sorted
as follows:

lt = [ht
I + gI(xt

I , yt
I)]− [ht

J + gJ(xt
J , yt

J)]

= gI(xt
I , yt

I)− gJ(xt
J , yt

J)− (ht
J − ht

I)

= gI(xt
I , yt

I)− gJ(xt
J , yt

J)− ∆ht

(5)

lp = hp
I + gI(xp

I , yp
I )− Hp

= gI(xp
I , yp

I )− (Hp − hp
I )

= gI(xp
I , yp

I )− ∆hp

(6)

For multiple GCPs and TP chips, Equations (5) and (6) can be further sorted into the
matrix form as Equation (7): [

AT
AP

]
x−

[
∆HT
∆HP

]
=

[
LT
LP

]
(7)
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where

AP = diag(A1
P, · · · , AI

P, · · · , AN
P )

AI
P =


1 x1

I y1
I

1 x2
I y2

I
...

...
...

1 xp
I yp

I


and

AT = 1 x1
1 y1

1 0 · · · −1 −x1
I −y1

I 0 · · ·
...

...
0 · · · 1 xt

J yt
J · · · 0 −1 −xt

N −yt
N


are the coefficient matrices of TP chips and GCPs, respectively, x = (a1, b1, c1, ..., ..., aN , bN , cN)

T

is the vector of unknown parameters, N is the number of generated DEMs, I ,J, and K are
indexes of generated DEMs, respectively, ∆H is the vector of height differences, and L is
the residual vector. The least square solution of Equation (7) is

x = A†∆H = (AT
t At + AT

pAp)
−1(AT

t ∆HT + AT
p∆Hp) (8)

where A† = (ATA)−1AT is the Pseudo-inverse matrix of A.

2.1.4. Shortcomings of the Function Model

The distribution and number of GCPs are the key factors affecting the adjustment
results. On the one hand, the distribution of GCPs should be even for the adjustment
results to fully reflect the variation in the elevation error with two-dimensional coordinates
for ground distance and azimuth. On the other hand, all the generated DEMs involved in
the adjustment should contain enough GCPs to prevent the errors of adjacent DEMs from
spreading to the whole area through the TPs, leading to deterioration of the adjustment
results in the uncontrolled area. In 2011, Ma Jing [5] discussed the influence of the distri-
bution of GCPs on airborne InSAR adjustments. She explained that when the distribution
of GCPs is relatively concentrated, the error can be transmitted to the uncontrolled area,
resulting in deterioration of the adjustment results.

However, GLAH14 data have difficulty meeting the above two requirements, which
is not conducive to obtaining reliable and stable adjustment results. Section 3 shows the
distribution of GLAH14 data. It can be seen that the distribution pattern of ICESat points
is a line along the satellite’s flight trajectory. Conversely, ICESat data does not meet the
distribution requirement of GCPs, such as rectangular shape or cross shape in adjustment,
as shown in Figure 2. On the other hand, the significant distance between ICESat orbits
causes certain images to be adjusted to contain few or no GCPs.

(a) (b)

Figure 2. Ideal distribution pattern of GCPs: (a) Rectangular shape and (b) cross shape; red triangles
represent GCPs.
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Appendix A theoretically analyzes the influence of linear GCP distribution patterns
on large-scale DEM block adjustment. First, we demonstrate that all eigenvalues of the
coefficient matrix A should be large enough to obtain a stable solution x. Then, we prove that
when all GCPs concentrate near a straight line, A has at least a relatively small eigenvalue,
which will lead to the instability of x. Here, we take the calculation of the ground tilt b
as an example, as shown in Figure 3, to provide a visual explanation for the analysis in
Appendix A. The estimated value is b̂ = ∆herr/∆x with standard deviation σb = σ∆herr /∆x,
where σ∆h is the uncertainty of the height error and ∆x is the distance between two different
GCPs. It can be seen that σb increases with the decrease of ∆x, which means that when the
GCPs concentrate at a certain ground distance, that is, ∆x is small, the estimated value of
b̂ will fluctuate greatly. For example, assuming that the swath width of generated DEM is
30 km and σ∆herr is 0.5 m, and assuming that the uncertainty of ground distance tilt b̂ is less
than 0.6 m within the width of 30 km, then ∆x = σ∆herr /σb = 0.5/(0.6/30,000) = 25 km,
which means that the distance between two GCPs in the direction of ground distance should
be greater than 25 km. However, ICESat data cannot always meet this strict condition, where
the yellow dots show the location of GLAH14 data). It can be seen that the ICESat data for
the adjustment area are concentrated in the middle, around the red solid frame area. The
northwest area (i.e., the red dotted frame area) is a large uncontrolled area.

Figure 3. Estimation of range tilt. The dotted line represents the actual terrain, the solid line represents
the generated DEM, and the longitudinal axis represents the height difference between the generated
DEM and the actual terrain; x1 and x2 are the ground distance coordinates of two different GCPs,
herr,1 and herr,2 are their systematic elevation errors, and ∆herr = herr,2 − herr,1 and ∆x = x2 − x1.

2.2. Constraint Slice (CS) and Constraint Conditions

As an essential data source in geoscience the global public DEM have high precision
and wide coverage characteristics, as represented by the Shuttle Radar Topography Mission
(SRTM) and ALOS World 3D (AW3D30). To solve the problem mentioned in Section 2.1, we
tried to introduce the external public global DEM into DEM block adjustment. It should be
noted that the vertical accuracy of global public DEM is often far less than that of GLAH14
data and generated DEM. For example, the nominal vertical accuracy of ALOS DEM is
5 m [25] and therefore it cannot be directly added to the adjustment process in the form
of GCP.

As discussed in Section 2.1.4, it is difficult to ensure the reliability and stability of
adjustment results in the conventional model when GCPs are linearly distributed. Therefore,
we tried to overcome this weakness by introducing external terrain data.

Based on the above analysis, we propose a DEM block adjustment method assisted by
Constraint Slices (CSs). This method improves the conventional model via two approaches,
namely, the concept and extraction approach of Constraint Slices (CSs) and the addition
of the elevation variances of CSs to the adjustment optimization model as constraint
conditions. The specific process is described as follows.
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2.2.1. The Concept and Extraction of Constraint Slices

CSs are a form of external DEM participating in DEM adjustment. CSs are added to
the adjustment optimization model as nonlinear constraint conditions and are extracted as
slices, inspired by the TP chips described in Section 2.1.1, which represent the two crucial
differences in CSs compared with ordinary GCPs and TPs. A flowchart of the process of
extracting CSs is provided in Figure 4. The specific steps are as follows:

i. Geocode the external DEM into the SAR coordinate system (i.e., forward geocoding).
This step is usually performed after phase unwrapping because this results in an
integer multiple of 2π between the absolute phase and the unwrapped phase [4],
which needs to be corrected by external DEM.

ii. Generate the slope map of the reference DEM in the SAR coordinate system. Wang [26]
provides a method for generating a slope map using DEM through calculating the
gradients in the range and azimuth directions ∂h/∂rg, ∂h/∂az using the Sobel operator
and then converting them into a slope map according to Equation (9).

s = arctan

√(
∂h
∂rg

)2
+

(
∂h
∂az

)2
(9)

iii. Calculate the elevation differences between the generated and external DEM, and set
the pixels with large elevation differences (e.g., greater than 50 m) as invalid pixels,
including phase unwrapping error areas and low coherence areas in generated DEMs
or elevation anomaly area in external DEMs.

iv. Divide the geocoded DEM into several blocks at an interval of about 1 km. There are
two sizes of TP chips in the existing literature, 1 km [10,24] and 500 m [11]. However,
because the resolution of the external public DEM is often lower than that of CoSSC
data, we assume that a grid can contain more elevation pixels, ensuring the reliability
of the CSs. Therefore, inspired by the concept of TP chips and combined with the
characteristics of public DEMs, we set the size of the CSs to 1 km. Then, calculate
the histogram of each block in the generated and reference DEMs taking the median
values of the histograms as their elevations and assign the center coordinates to each
block. This part draws on lessons from the extraction method of TPs in Section 2.1.1
in order to avoid the influence of noise elevation outliers.

v. Calculate the average slope of each block and divide the CSs into flat and mountainous
areas, as the public DEM often shows different elevation accuracies in mountainous
areas and plain areas [21,22]. When the experimental area contains complex terrain,
considering only the flat area with the highest accuracy while ignoring the mountain-
ous area will lead to insufficient CSs.

Figure 4. Extraction of Constraint Slices using external public DEM.
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2.2.2. Transformation of Adjustment Model

Taking the relative height accuracy of CSs as nonlinear constraints, we transform the
adjustment optimization model into Equation (10):

min
x
‖Ax− ∆H‖2

2

s.t. Var(L f ) = Var(A f x− ∆H f ) < σ2
f

Var(Lm) = Var(Amx− ∆Hm) < σ2
m

(10)

where f and m denote CSs of the flat and mountainous region, respectively, σf and σm are
the upper limits of the residual standard deviation (which can be empirically obtained
from previous studies [18,21,22] or calculated using the GLAH14 data of the experimental
area according to the DEM accuracy evaluation method [21,22,27,28]), A f and Am are the
coefficient matrices of the CSs, and ∆H f and ∆Hm are the elevation differences between
the CSs and generated DEMs. In Appendix B, we use the Lagrange multiplier method [29]
to deduce the solutions of the improved model.

It should be noted that the RMSEs of CSs, i.e., ‖A f x− ∆H f ‖2
2 and ‖Amx− ∆Hm‖2

2,
are not used as constraints here. This is because RMSE represents the absolute height
difference between the generated DEM and the external DEM, and using RMSE means
taking the external DEM as absolute elevation reference data; in this way, the external DEM
is equivalent to the GCPs, as per Equation (4). However, as described in Section 1, the
vertical accuracy of the public DEM is usually worse than GLAH14 data, and using RMSEs
relative to the external DEM as constraints thus results in lost adjustment accuracy.

3. Experiment and Discussion
3.1. Experimental Data

For this experiment, we selected twelve Co-registered Single-look Slant–range Com-
plex (CoSSC) datasets from TanDEM-X covering Henan Province, China from 2012 to 2013,
with a range resolution of about 2.0 m and an azimuth resolution of 1.36 m. The external
DEM selected for the experiment was AW3D30, with a resolution of about one arcsec and a
nominal vertical accuracy of about 5.0 m. The GCPs used in the experiment consisted of
GLAH14 data from 2003 to 2009 selected according to the criterion in [14]. The location
relationship between GLAH14 and CoSSC data is shown in Figure 5, in which the serial
numbers are arranged according to their acquisition time. The figure shows that the eighth
and ninth images do not contain any GCPs, and are thus called the uncontrolled area, while
the distribution of GCPs in the other images is uneven. The experimental region contains
various geomorphic features with a maximum height difference of about 1400 m. In the
southeast is a large plains region, to the northwest are the Songshan Mountains, and to the
north lies the Yellow River.

The reference data used were ICESat-2 Land and Vegetation Height data (ATL08),
whit a vertical uncertainty of 0.2 m for flat terrain and 2 m for mountainous terrain [30].

3.2. Simulated Data

The purpose of this experiment was to illustrate that (1) the traditional methods can
lead to inaccurate estimation of adjustment parameters in the case of uneven distribution
and insufficient quantity of ICESat data, and (2) the improved method can effectively
stabilize the estimated parameters. The central idea of the experiment was to simulate
multiple groups of InSAR DEM and compare the performance of the conventional model
and proposed model under different baseline errors. The overall flow chart of the simulated
experiment is shown as Figure 6, and the specific process is described as follows:

i Simulate the terrain of the experimental area using fractal theory [1], as in Figure 7.
ii Extract ICESat elevation data and generate external DEM. We used the actual geo-

graphical coordinates of the ICESat points to extract elevation data from the simulated
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terrain in step i and added 0.5 m Gaussian noise. Similarly, we added 5.0 m Gaussian
noise to the actual terrain as the external DEM.

iii Geocode the simulated terrain. The simulated terrain is geocoded into the slant–range
coordinate system using the real satellite orbit information. The geocoded DEM data are
used to generate absolute interferometric phase and as the test set of adjustment results.

iv Generate the absolute terrain phase using actual orbit information and the geocoded
data from Step iii.

v Carry out InSAR processing, including removing the reference plane phase and
generating DEMs. To the master and slave satellite orbit data used in this step were
added baseline errors ranging from 0.5 mm to 5.0 mm. In addition, 1.0 m Gaussian
noise was added to the generated DEMs. The simulated baseline and random height
errors were set based on the actual situation. At present, the baseline accuracy of
the bistatic InSAR system is usually on the order of millimeters [2,3]. The published
global TanDEM-X DEM has a vertical accuracy of about 1.0 m [31]. Therefore, we
chose 0.5 to 5 mm as the baseline error range and 1.0 m as the random noise of the
simulated generated DEM.

vi Carry out DEM block adjustment using the conventional and improved method. In
the improved method, the CSs are extracted from the external DEM in Step ii. In
addition, there is no distinction between mountains and flat land when adding noise
in Step ii; thus, the CSs are not distinguished.

vii Accuracy check; checkpoints are evenly selected from the geocoded data from Step iii.

To verify the effectiveness of the proposed method under different degrees of baseline
error, we gradually increased the parallel baseline error at intervals of 0.5 mm to generate
ten groups of simulation data. We used the root-mean-square error (RMSE) to measure the
adjustment accuracy, as follows:

RMSE =

√
∑Nck

i=1(hDEM,i − hcheck,i)2

Nck
(11)

where hDEM and hcheck are the elevations of the generated DEMs and check points, respectively.

Figure 5. The location of GLAH14 and CoSSC data in the experimental area. The yellow points are
GLAH14 data from ICESat. The rectangular windows are the shapes of CoSSC data, and the numbers
on them are arranged in the order of their acquisition time.
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Figure 6. The workflow of the simulated experiment, including all processing steps from simulat-
ing external terrain to DEM block adjustment.The green dotted line box represents the traditional
adjustment method, and the blue solid line box represents the proposed method.

Figure 7. The simulated terrain of the experimental area; the maximum and minimum elevations are
550.0 m and 250.0 m, respectively.

The RMSEs of ten sets of data are shown in Figure 8, where Figure 8a–c are the RMSEs
of all twelve DEMs, controlled DEMs, and uncontrolled DEMs, respectively. The red,
blue, and green lines represent the height RMSEs of the generated DEMs, the adjustment
results using the conventional method (7), and the adjustment results using the proposed
method (10), respectively. Before adjustment, the elevation errors of the generated DEM are
approximately proportional to the baseline errors, which is consistent with Equation (1).
Overall, as shown in Figure 8a, the vertical accuracy of traditional methods is unstable and
sometimes worse than the original DEM. The RMSEs of the improved method are stable at
about 1.0 m, which is very close to the energy of the manually added Gaussian noise in step
iii, demonstrating that the improved method nearly eliminates all the systematic errors. In
the controlled area, as shown in Figure 8b, both methods show good performance; however,
the proposed model is slightly better than the function model. In the uncontrolled area, as in
Figure 8c, the adjustment results of traditional methods cannot reflect the actual systematic
height error. In addition, the changing trend of RMSEs in Figure 8c is consistent with that in
Figure 8a, which confirms that the deterioration of vertical accuracy in uncontrolled areas
seriously affects the overall adjustment accuracy. After being constrained by the external
DEM, the RMSEs are stable at about 1.0 m.



Sensors 2022, 22, 3075 11 of 21

All in all, the experimental results show that after adding constraint slices the over-
all adjustment accuracy is significantly improved, which is due to the stability of the
adjustment results in the uncontrolled area on the one hand and the improvement of the ad-
justment accuracy in the controlled area on the other. To further explain these two reasons,
we show the range tilt b and azimuth tilt c of two different orbits in Figure 9. Figure 9a,b
show the mean coefficients of the track containing the eighth to ninth CoSSC data (the
uncontrolled area), and Figure 9c,d show the mean coefficients of the track containing the
first to third CoSSC data (the controlled area). The red, blue, and green lines are the actual
values of b or c, the estimated values of the conventional method, and the estimated values
of the proposed method, respectively. As there are no GCPs, the coefficients of the eighth
and ninth images fluctuate considerably without constraint slices, as shown in the green
lines in Figure 9a,b. The RMSEs of the estimated values are 3.08× 10−4 and 5.07× 10−5,
respectively. However, after introducing constraint slices the adjustment results are stable
(shown as blue lines in Figure 9a,b) and the RMSEs of the estimated values are 2.33× 10−5

and 6.73× 10−6, respectively, which is an order of magnitude lower than the conventional
method. The first, second, and third images contain enough GCPs; however, they are
distributed unevenly, especially in the ground distance, as shown in Figure 5, which di-
rectly results in the offsets of the range and azimuth tilts in Figure 9c,d. The RMSEs of
the estimated values using the conventional method (7) are 3.44× 10−5 and 8.80× 10−6,
respectively. After introducing constraint slices, the RMSEs decrease to 1.03× 10−5 and
6.89× 10−6.

(a)

(b) (c)

Figure 8. The RMSEs of the simulated experiment results. RMSEs of (a) the whole experimental area,
(b) the controlled area, and (c) the uncontrolled area.



Sensors 2022, 22, 3075 12 of 21

(a) (b)

(c) (d)

Figure 9. The coefficients of adjustment model: (a,b) are the range and azimuth tilts of the track
containing the seventh to ninth images, respectively, while (c,d) are the coefficients of the track
containing the first to third images.

3.3. Real Data

To verify the effectiveness of the proposed method in the actual situation, we changed
the size of the uncontrolled area and designed four groups of data experiments. Table 1
shows the data contained in the uncontrolled area in each group of experiments. We
generated InSAR DEMs in order to mosaic the geocoded DEMs. Figure 10 displays the
geocoded height map of the original DEMs before adjustment. The Yellow River passes
through the north of the experimental area, and the phase unwrapping in this area is
therefore wrong, resulting in abnormal elevation values. The CSs were extracted from
AW3D30 DEM according to the extraction process described in Section 2.2. Figure 11 shows
the distribution and slope of the constraint slices in terms of slant–range coordinates. The
color represents the slope of CSs. We set the slope threshold to 10◦ in order to distinguish
mountain CSs and flat CSs. The ICESat-2 ATL08 data were used as check points to verify
the accuracy of adjustment results. Unfortunately, the tenth image does not contain any
proper check points. Figure 12 shows RMSEs of all images. Table ?? shows RMSEs of
the conventional and proposed methods in the controlled, uncontrolled, and general
experimental areas.

Table 1. The data contained in the uncontrolled area.

Ex. No. Uncontrolled Area Data Number of GCPs

Ex. 1 8, 9 324
Ex. 2 7–12 216
Ex. 3 4–12 139
Ex. 4 2–12 34



Sensors 2022, 22, 3075 13 of 21

Figure 10. The rendered geocoded map of the generated DEMs; the elevation jumps in the figure are
caused by baseline errors.

Figure 11. The distribution and slope of the CSs in slant–range coordinates; the color represents the
slopes of the CSs. The numbers in the lower left corner are the image number.
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(a) Ex.1.

(b) Ex.2.

(c) Ex.3.

(d) Ex.4.

Figure 12. Adjustment results of real data experiment. (a–d) show the adjustment results under the
different sizes of uncontrolled areas. Red, green, and blue bars represent the RMSEs of the generated
DEMs, the traditional method, and the proposed method, respectively.

Table 2. RMSEs of real data experiment. The Improvement term represents the improvement in
adjustment accuracy when using the proposed method compared to the conventional method.

Ex. No.
Ex. 1 Ex. 2 Ex. 3 Ex. 4

RMSE of All / Controlled / Uncontrolled Area (m)

Before Adjustment 2.32 2.25 3.08 2.32 2.15 2.80 2.32 1.94 2.93 2.32 1.96 2.37
Conventional Method 1.91 1.90 2.12 2.42 1.94 3.54 2.99 1.77 4.51 9.78 1.53 10.41

Proposed Method 1.89 1.88 1.99 2.17 2.04 2.52 1.98 1.74 2.39 1.92 1.53 1.96
Improvement 0.02 0.02 0.13 0.25 - 1.02 1.01 0.03 2.12 7.86 - 8.45

3.3.1. Performance of Conventional Method in Uncontrolled Areas

The conventional method can maintain a stable adjustment effect when the uncon-
trolled area is small. Taking Ex.1 as an example, the elevation accuracy of the uncontrolled
area before adjustment is 3.08 m and is improved to 2.12 m after adjustment by the conven-
tional method. With the gradual increase of uncontrolled areas, the adjustment results of
the conventional method become worse. Taking Ex.4 as an example, prior to adjustment
the elevation accuracy of the uncontrolled area is 2.37 m, while after adjustment RMSE
deteriorates to 10.41 m.
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3.3.2. Performance of Conventional Method in Controlled Areas

The conventional method shows excellent adjustment performance in the controlled
area. Taking the first scene data as an example, as shown in Figure 12, the RMSE is 1.96 m
before adjustment. After adjustment with the conventional method, the vertical accuracy
of the four groups of experiments is stable at about 1.53 m, about 0.4 m better than the
original RMSE.

3.3.3. Performance of the Improved Method in Uncontrolled Areas

From Figure 12, the overall adjustment results of the improved method are stable.
In Ex.1, the RMSE of the generated DEMs in the uncontrolled area is 3.08 m. The proposed
method using CSs brings the RMSE to 1.99 m, and the overall accuracy is improved by
about 1.0 m. In Ex.4, before adjustment the vertical accuracy of the uncontrolled area is
2.37 m. After adjustment by the proposed method, the RMSE decreases to 1.96 m, about
8.4 m better than the conventional method. This shows that the improved method can
effectively stabilize the adjustment results in the uncontrolled area and improve the vertical
accuracy of DEM products.

3.3.4. Performance of the Improved Method in Controlled Areas

In the four experiments, the conventional method improves the vertical accuracies of
controlled areas by 0.35 m, 0.20 m, 0.17 m, and 0.43 m, respectively, while the proposed
method improves the vertical accuracy by 0.37 m, 0.11 m, 0.20 m, and 0.43 m respectively.
Therefore, the performance of the proposed method is similar to the conventional method
in the controlled area.

In Table ??, the vertical error of the generated DEM is 2.32 m. The adjustment result
of the conventional method is greatly affected by the uncontrolled area. With the increase
of the uncontrolled area, the RMSE of the traditional method deteriorates from 1.91 m to
9.78 m. The adjustment results of the proposed method are stable at around 2.0 m, about
0.3 m higher than the original height error. All in all, the data experiment shows that the
improved method significantly improves the adjustment results in uncontrolled areas and
maintains the adjustment results in controlled areas at the level of the conventional method;
thus, the adjustment results tend to be stable and reliable.

Figure 13 shows the geocoded DEM after adjustment where Figure 13a–d are the
results of the traditional method and Figure 13e–h are adjusted by the proposed method. It
can be seen that the deterioration in the adjustment results in uncontrolled areas leads to
significant elevation differences in overlapping areas, resulting in the blocky effect in the
geocoded DEM shown in Figure 13b–d. The proposed method can sufficiently suppress
the elevation difference, mainly because the public DEM used in the proposed method
is seamless. Figure 14 shows the height difference map of Figure 13a,e compared with
AW3D30. The suppression effect of the proposed method on elevation difference is reflected
significantly in the marked area.

However, our method does has disadvantages. The core idea of our method is to carry
out DEM adjustment by introducing global public DEM as auxiliary data. Nevertheless,
the measurement time of the external DEM is not consistent with that of the InSAR data.
Therefore, elevation changes will inevitably occur when there is a significant time interval
between the acquisition of the public DEMs and the CoSSC data, and the resulting CSs
then include the systematic elevation error and changes, affecting the final adjustment
accuracy. In addition, certain DEMs may have systematic errors, which can affect the
accuracy of the CSs. For example, research [25] has pointed out that AW3D30 suffers from
the mismatch between adjacent scenes and horizontal and oblique stripping for certain
areas. Consequently, to resolve this problem we can introduce multi-source public elevation
data, such as SRTM, GDEM, or LiDAR DEM, to develop a robust CS extraction scheme
considering data acquisition time and external DEM accuracy. For example, we can assign
weights to various external public DEMs according to their acquisition time and obtain the
weighted elevation to ensure the reliability of CSs.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. The geocoded map of generated DEMs after adjustment: (a–d) are adjusted using the
conventional method, while (e–h) are adjusted using the proposed method.

(a) HEM of the conventional method. (b) HEM of the proposed method.

Figure 14. Height error maps of the DEMs adjusted by (a) the conventional method and (b) the
proposed method. The red circles show that the DEMs adjusted by the traditional method have
obvious elevation differences in the overlapping area.

4. Conclusions

This paper proposed a DEM block adjustment method for spaceborne InSAR using
Constraint Slices to solve the deterioration of DEM adjustment results caused by the lack
or uneven distribution of GCPs. We selected Constraint Slices from the external public
DEM and introduced them into the conventional DEM calibration method in the form
of nonlinear constraints. A simulation experiment explained the influence of the lack
and uneven distribution of GCPs on the adjustment results and proved that the proposed
method could obtain more stable and accurate adjustment results under different degrees of
baseline errors. The real data experiment with twelve CoSSC datasets demonstrated that the
performance of the proposed method is better than the conventional method in uncontrolled
areas and can enhance the elevation consistency of InSAR DEMs in overlapping areas. In
the simulated experiment, the overall adjustment accuracy was increased by 0.41 m to
7.01 m. Compared with the conventional method, the adjustment accuracies of the four
real data experiments in the uncontrolled area were improved by 0.13 m, 1.02 m, 2.12 m,
and 8.45 m, respectively, and the overall adjustment accuracies were improved by 0.02 m,
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0.25 m, 1.01 m and 7.86 m, respectively. However, our method still has disadvantages. In
the future, it might be possible to introduce multi-source public elevation data in DEM
block adjustment to develop a robust CS extraction scheme that considers data acquisition
time and external DEM accuracy.
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Appendix A. Influence of GCPs Distribution on Eigenvalues of Coefficient Matrix in
the Conventional Model

First, we use the Singular Value Decomposition (SVD) method to reveal the relation-
ship between the solution (8) and the eigenvalues of coefficient matrix A. Assuming that
the coefficient matrix A is accurate, the uncertainty of observation vector ∆H is δH and
the SVD of A ∈ Rm×n is A = UΣ̃VT, where Σ̃ = [Σ1, O]T and Σ1 = diag{σ1, σ2, · · · , σn} =
diag{λ2

1, λ2
2, · · · , λ2

n}, σ are the singular values of A and λ represents the eigenvalues of
ATA. U and V are the Unitary matrices. Then, the error of x caused by δH is

δx = A†δH = VΣUTδH (A1)

where Σ = [Σ−1
1 , O]T and Σ−1

1 = diag{1/λ2
1, 1/λ2

2, 1/λ2
3}; (A1) shows that the stability of

solution (8) completely depends on the singular values of A. If A has a relatively small
eigenvalue, or even an eigenvalue approximately equal to zero, there will be a large error
in solution (8).

Assuming that the Jth generated DEM contains n GCPs located on the same satellite
trajectory and that the geographical coordinates of each GCP are (xi, yi), then the coefficient
matrix is

AJ =


1 x1 y1
1 x2 y2
...

...
...

1 xn yn

 (A2)

and

AT
J AJ =

 n ∑i xi ∑i yi
∑i xi ∑i x2

i ∑i xiyi
∑i yi ∑i xiyi ∑i y2

i

 (A3)

According to the distribution characteristics of ICESat points, it can be assumed that
the geographical coordinates xi and yi of GCPs are approximately distributed on the same
straight line in each generated DEM, i.e.,

yi = kxi + b + εi = ỹi + εi (A4)

where k and b are the slope and intercept of the fitted line, respectively, ỹi is the fitting
value corresponding to xi, and εi is the offset between real coordinates and the fitted line.
In fact, as shown by the yellow points in Figure 5, εi is tiny relative to xi and yi because of
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the stable satellite orbit. Replace yi with Equation (A4), and Equation (A3) can be expanded
as Equation (A5), where δBJ is called perturbation of BJ in perturbation theory [32]. It can
be proved that BJ is rank-deficient, that is, BJ has at least one zero eigenvalue.

AT
J AJ =

 n ∑i xi ∑i ỹi + ∑i εi
∑i xi ∑i x2

i ∑i xi ỹi + ∑i xiεi

∑i ỹi + ∑i εi ∑i xi ỹi + ∑i xiεi ∑i ỹi
2 + 2 ∑i εi ỹi + ∑i ε2

i


=

 n ∑i xi ∑i ỹi
∑i xi ∑i x2

i ∑i xi ỹi

∑i ỹi ∑i xi ỹi ∑i ỹi
2

+

 0 0 ∑i εi
0 0 ∑i xiεi

∑i εi ∑i xiεi 2 ∑i εi ỹi + ∑i ε2
i


= BJ + δBJ

(A5)

Suppose the eigenvalues of AT
J AJ are {σ∗J,1, σ∗J,2, σ∗J,3}, σ∗J,1 ≥ σ∗J,2 ≥ σ∗J,3 ≥ 0 and the

eigenvalues of BJ are {σJ,1, σJ,2, σJ,3}, σJ,1 ≥ σJ,2 ≥ σJ,3 = 0; then,

σ∗J,1 + σ∗J,2 + σ∗J,3 = tr(AT
J AJ) = n + ∑

i
x2

i + ∑
i

ỹi
2 + 2 ∑

i
εi ỹi + ∑

i
ε2

i (A6)

where tr(AT
J AJ) is the trace of AT

J AJ . Then, according to the Weyl monotonicity theorem [33,34],

σ∗J,3 ≤ ‖δBJ‖spec = λmax(δBJ) (A7)

where ‖δBJ‖spec is the spectrum norm of BJ , that is, the maximum eigenvalue of BJ , as
Equation (A8):

λmax(δBJ) =
2 ∑i εi ỹi + ∑i ε2

i
2

+

√
4(∑i εi)2 + 4(∑i xiεi)2 + (2 ∑i εi ỹi + ∑i ε2

i )
2

2
< |∑

i
εi|+ |∑

i
xiεi|+ |2 ∑

i
εi ỹi + ∑

i
ε2

i |
(A8)

In order to make the analysis more clear, we assume that ε is a random variable with
zero expectation and independent of the geographical coordinates of ICESat points (which,
in fact, it is). Then, Equations (A6) and (A8) are arranged into statistical form as

σ∗J,1 + σ∗J,2 + σ∗J,3

= n + ∑
i

x2
i + ∑

i
ỹi

2 + 2 ∑
i

εi ỹi + ∑
i

ε2
i

= n + ∑
i

x2
i + ∑

i
ỹi

2 + 2nE(εỹ) + nE(ε2)

= n + ∑
i

x2
i + ∑

i
ỹi

2 + nE(ε2)

(A9)

σ∗J,3 ≤ λmax(δBJ)

< |∑
i

εi|+ |∑
i

xiεi|+ |2 ∑
i

εi ỹi + ∑
i

ε2
i |

= n|E(ε)|+ n|E(xε)|+ n|2E(εỹ) + E(ε2)|
= nE(ε2)

(A10)

where E(·) is an expectation operator. Then, combining Equations (A9) and (A10), we can
obtain

σ∗J,3

σ∗J,1 + σ∗J,2
≤ nE(ε2)

n + ∑i x2
i + ∑i ỹi

2 =
E(ε2)

1 + ∑i x2
i

n + ∑i ỹi
2

n

� 1 (A11)
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Equation (A11) shows that the third eigenvalue σ∗J,3 is particularly small compared
with the sum of the other two eigenvalues of AT

J AJ .

Appendix B. Solution of the Constraint Model

The Lagrange function corresponding to the constraint model Equation (10) is

L(x, λ, µ) = ‖Ax− ∆H‖2
2 + λ

[
Var(A f x− ∆H f )− σ2

f

]
+ µ

[
Var(Amx− ∆Hm)− σ2

m

]
, λ, µ ≥ 0

(A12)

where A f ∈ Rn1×3 and Am ∈ Rn2×3 n1 and n2 represent the numbers of flat and mountain
CSs, respectively. Var(·) is the variance operator and can be expanded as

Var(A f x− ∆H f )

= (A f x− ∆H f −m f In1×1)
T(A f x− ∆H f −m f In1×1)

= (A f x− ∆H f )
T(A f x− ∆H f )

− 1
n1

(A f x− ∆H f )
T1n1×n1(A f x− ∆H f )

(A13)

where In×1 is an all-1 vector, 1n×n is an all-1 matrix, and m f = (A f x− ∆H f )
TIn1×1 is the

mean value of vector A f x− ∆H f . Var(Amx− ∆Hm) can be expanded as Equation (A13).
Then, the gradient function of Equation (A12) with respect to x is

∇xL(x, λ, µ) = AT(Ax− ∆H)

+ λ

[
AT

f (A f x− ∆H f )−
1
n1

AT
f 1n1×n1(A f x− ∆H f )

]
+ µ

[
AT

m(Amx− ∆Hm)−
1
n2

AT
m1n2×n2(Amx− ∆Hm)

]
= AT(Ax− ∆H) + λÃ

T
f (A f x− ∆H f )

+ µÃ
T
m(Amx− ∆Hm)

(A14)

For simplicity, we replace (En1 − 1
n1

In1×n1)A f and (En2 − 1
n2

In2×n2)Am in Equation (A14)

with Ã f and Ãm, respectively; E is an unit matrix.
Finally, we list the Karush–Kuhn–Tucker conditions (KKT conditions) [29], as follows:

∇xL = 0

∇λL = Var(A f x− ∆H f )− σ2
f ≤ 0

∇µL = Var(Amx− ∆Hm)− σ2
m ≤ 0

λ, µ ≥ 0

λ∇λL, µ∇µL = 0

(A15)

which can be solved iteratively by classical constrained optimization algorithms such
as the Interior Point algorithm [35]. The iteration result of the kth step is

x =(ATA + λkÃ
T
f A f + µkÃ

T
mAm)

−1(AT∆H + λkÃ
T
f ∆H f + µkÃ

T
m∆Hm)

=(AT
t At + AT

pAp + λkÃ
T
f A f + µkÃ

T
mAm)

−1(AT
t ∆Ht + AT

p∆Hp + λkÃ
T
f ∆H f + µkÃ

T
m∆Hm)

(A16)
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