Estimation and Analysis of Glacier Mass Balance in the Southeastern Tibetan Plateau Using TanDEM-X Bi-Static InSAR during 2000–2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. TanDEM-X Bi-Static InSAR Data
2.2.2. External Elevation Data
2.2.3. Meteorological Data
2.3. Research Methods
2.3.1. Generation of Glacier Surface Elevation Change
2.3.2. Correction of Multi-Source Systematic Errors
2.3.3. Estimation of Glacier Mass Balance
2.3.4. Assessment of Uncertainty Based on Error Propagation Theory
3. Results
3.1. Results of Glacier Surface Elevation Change
3.2. Correction of Radar Penetration Differences between X-Band and C-Band
3.3. Correction of Seasonal Systematic Error
3.4. Glacier Mass Balance and Uncertainty
3.5. Spatial Distribution Characteristics of Glacier Mass Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, T.D.; Thompson, L.; Yang, W.; Yu, W.S.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.Q.; Zhao, H.B.; Xu, B.Q.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Jiang, L.M.; Sun, Y.F.; Sirguey, P.; Dumont, M.; Liu, L.; Gao, N.; Gao, S.F. Reconstruction of annual glacier mass balance from remote sensing-derived average glacier-wide albedo. Remote Sens. 2023, 15, 31. [Google Scholar] [CrossRef]
- Song, C.Q.; Ke, L.H.; Huang, B.; Richards, K.S. Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective? Glob. Planet. Chang. 2015, 124, 1–9. [Google Scholar] [CrossRef]
- Vishwakarma, B.D.; Ramsankaran, R.; Azam, M.F.; Azam, M.F.; Bolch, T.; Mandal, A.; Srivastava, S.; Kumar, P.; Sahu, R.; Navinkumar, P.J.; et al. Challenges in understanding the variability of the cryosphere in the Himalaya and its impact on regional water resources. Front. Water 2022, 4, 909246. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1885–1886. [Google Scholar] [CrossRef]
- Yang, W.; Yao, T.D.; Guo, X.F.; Zhu, M.L.; Li, S.H.; Kattel, D.B. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res. Atmos. 2013, 118, 9579–9594. [Google Scholar] [CrossRef]
- Yao, T.D.; Li, Z.G.; Yang, W.; Guo, X.J.; Zhu, L.P.; Kang, S.C.; Wu, Y.H.; Yu, S. Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chin. Sci. Bull. 2010, 55, 2072–2078. [Google Scholar] [CrossRef]
- Yang, W.; Guo, X.F.; Yao, T.D.; Zhu, M.L.; Wang, Y.J. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim. Dyn. 2016, 47, 805–815. [Google Scholar] [CrossRef]
- Pan, B.T.; Zhang, G.L.; Wang, J.; Cao, B.; Geng, H.P.; Wang, J.; Zhang, C.; Ji, Y.P. Glacier changes from 1966–2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai-Tibetan Plateau and their climatic forcing. Cryosphere 2012, 6, 1087–1101. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, W.Q.; Nie, Y.; Liu, S.Y.; Xu, J.L. Recent glacier and glacial lake changes and their interactions in the Bugyai Kangri, southeast Tibet. Ann. Glaciol. 2016, 57, 61–69. [Google Scholar] [CrossRef]
- Wu, K.P.; Liu, S.Y.; Jiang, Z.L.; Xu, J.L.; Wei, J.F.; Guo, W.Q. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. Cryosphere 2018, 12, 103–121. [Google Scholar] [CrossRef]
- Ke, C.Q.; Lee, H.; Han, Y.F. Glacier Change in the Yigong Zangbo Basin, Tibetan Plateau, China. Korean J. Remote Sens. 2019, 35, 491–502. [Google Scholar]
- Fu, X.Y.; Zhou, J.M. Long-Term Deceleration of Glaciers in the Eastern Nyainqentanglha Mountains, Southeastern Tibetan Plateau, Revealed from Landsat Images. Water 2019, 11, 2387. [Google Scholar] [CrossRef]
- Liu, J.; Yao, X.J.; Liu, S.Y.; Guo, W.Q.; Xu, J.L. Glacial changes in the Gangdisê Mountains from 1970 to 2016. J. Geogr. Sci. 2020, 30, 131–144. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Long, D.; Li, X.D.; Huang, Q.; Han, P.F. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sens. Environ. 2022, 270, 112853. [Google Scholar] [CrossRef]
- Ke, L.H.; Song, C.Q.; Yong, B.; Lei, Y.B.; Ding, X.L. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau. Remote Sens. Environ. 2020, 242, 111777. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- González, J.H.; Antony, J.M.W.; Bachmann, M.; Krieger, G.; Zink, M.; Schrank, D.; Schwerdt, M. Bistatic system and baseline calibration in TanDEM-X to ensure the global digital elevation model quality. ISPRS J. Photogramm. Remote Sens. 2012, 73, 3–11. [Google Scholar] [CrossRef]
- Rossi, C.; Gonzalez, F.R.; Fritz, T.; Yague-Martinez, N.; Eineder, M. TanDEM-X calibrated raw DEM generation. ISPRS J. Photogramm. Remote Sens. 2012, 73, 12–20. [Google Scholar] [CrossRef]
- Gruber, A.; Wessel, B.; Huber, M.; Roth, A. Operational TanDEM-X DEM calibration and first validation result. ISPRS J. Photogramm. Remote Sens. 2012, 73, 39–49. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.W.; Zhu, J.J.; Li, X.; Xu, B.; Wang, Q.J.; Huang, C.L.; Hu, J. Early 21st century glacier thickness changes in the Central Tien Shan. Remote Sens. Environ. 2017, 192, 12–29. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Zhang, G.S. Glacier elevation changes in the western Nyainqentanglha Range of the Tibetan Plateau as observed by TerraSAR-X/TanDEM-X images. Remote Sens. Lett. 2017, 8, 1142–1151. [Google Scholar] [CrossRef]
- Li, G.; Lin, H. Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry. Glob. Planet. Chang. 2017, 149, 177–190. [Google Scholar] [CrossRef]
- Lin, H.; Li, G.; Cuo, L.; Hooper, A.; Ye, Q.H. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014. Sci. Rep. 2017, 7, 6712. [Google Scholar] [CrossRef] [PubMed]
- Neckel, N.; Braun, A.; Kropácek, J.; Hochschild, V. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. Cryosphere 2013, 7, 1623. [Google Scholar] [CrossRef]
- Sun, Y.F.; Jiang, L.M.; Liu, L.; Sun, Q.S.; Wang, H.S.; Hsu, H. Mapping Glacier Elevations and Their Changes in the Western Qilian Mountains, Northern Tibetan Plateau, by Bistatic InSAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 68–78. [Google Scholar] [CrossRef]
- Liu, G.; Fan, J.H.; Zhao, F.; Mao, K.B.; Dou, C.Y. Monitoring elevation change of glaciers on Geladandong Mountain using TanDEM-X SAR interferometry. J. Mt. Sci. 2017, 14, 859–869. [Google Scholar] [CrossRef]
- Malz, P.; Meier, W.; Casassa, G.; Jana, R.; Skvarca, P.; Braun, M.H. Elevation and mass changes of the southern patagonia icefield derived from TanDEM-X and SRTM data. Remote Sens. 2018, 10, 188. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.M.; Jiang, H.J.; Wang, H.S.; Ma, N.; Xu, H.Z. Accelerated glacier mass loss (2011–2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements. Remote Sens. Environ. 2019, 231, 111–241. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.M.; Zhang, Z.M.; Wang, H.S.; Ding, X.L. Recent Accelerating Glacier Mass Loss of the Geladandong Mountain, Inner Tibetan Plateau, Estimated from ZiYuan-3 and TanDEM-X Measurements. Remote Sens. 2020, 12, 472. [Google Scholar] [CrossRef]
- Wu, K.P.; Liu, S.Y.; Jiang, Z.L.; Xu, J.L.; Wei, J.F. Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data. J. Glaciol. 2019, 65, 422–439. [Google Scholar] [CrossRef]
- Wu, K.P.; Liu, S.Y.; Zhu, Y.; Liu, Q.; Jiang, Z.L. Dynamics of glacier surface velocity and ice thickness for maritime glaciers in the southeastern Tibetan Plateau. J. Hydrol. 2020, 590, 125527. [Google Scholar] [CrossRef]
- Zhou, Y.S.; Li, X.; Zheng, D.H.; Zhang, X.L.; Wang, Y.Z.; Ren, S.S.; Guo, Y.L. Decadal Changes in Glacier Area, Surface Elevation and Mass Balance for 2000–2020 in the Eastern Tanggula Mountains Using Optical Images and TanDEM-X Radar Data. Remote Sens. 2022, 14, 506. [Google Scholar] [CrossRef]
- González, J.H.; Bachmann, M.; Scheiber, R.; Krieger, G. Definition of ICESat selection criteria for their use as height references for TanDEM-X. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2750–2757. [Google Scholar] [CrossRef]
- Yang, K.; He, J. China Meteorological Forcing Dataset (1979–2015); A Big Earth Data Platform for Three Poles: Beijing, China, 2016. [Google Scholar]
- Deledalle, C.A.; Denis, L.; Tupin, F. NL-InSAR: Nonlocal interferogram estimation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1441–1452. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271. [Google Scholar] [CrossRef]
- Bolch, T.; Pieczonka, T.; Benn, D. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef]
- Xiang, L.W.; Wang, H.S.; Steffen, H.; Wu, P.; Jia, L.L.; Jiang, L.M.; Shen, Q. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 2016, 449, 228–239. [Google Scholar] [CrossRef]
- Neckel, N.; Loibl, D.; Rankl, M. Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet. Earth Planet. Sci. Lett. 2017, 464, 95–102. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Lin, H.; Ye, Q.H.; Jiang, L.M. Two periods of geodetic glacier mass balance at Eastern Nyainqentanglha derived from multi-platform bistatic SAR interferometry. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102541. [Google Scholar] [CrossRef]
Acquisition Date | Covered Area | Incidence Angle (°) | Orbit Direction | Orbital Number |
---|---|---|---|---|
15 January 2014 | Jiali_1 | 37.11 | Descending | 135 |
17 February 2014 | Jiali_2 | 39.30 | Descending | 135 |
6 February 2014 | Jiali_3 | 41.38 | Descending | 135 |
20 December 2011 | Bianba_1 | 33.78 | Ascending | 158 |
4 February 2011 | Bianba_2 | 46.76 | Ascending | 67 |
20 December 2011 | Bianba_3 | 33.78 | Ascending | 158 |
20 August 2011 | Luolong | 40.32 | Descending | 135 |
22 September 2011 | Bomi | 42.52 | Descending | 135 |
16 September 2014 | Basu_1 | 44.56 | Ascending | 158 |
5 September 2014 | Basu_2 | 42.60 | Ascending | 158 |
14 August 2014 | Chayu_1 | 47.70 | Ascending | 158 |
25 August 2014 | Chayu_2 | 46.20 | Ascending | 158 |
17 February 2014 | Chayu_3 | 46.70 | Descending | 150 |
Acquisition Date | Covered Area | Glacier Surface Elevation Change (m) | Radar Penetration Correction Value (m) | Corrected Glacier Surface Elevation Change (m) |
---|---|---|---|---|
15 January 2014 | Jiali_1 | −7.695 | −2.295 | −9.990 |
17 February 2014 | Jiali_2 | −3.449 | −2.295 | −5.744 |
6 February 2014 | Jiali_3 | −5.037 | −2.295 | −7.332 |
20 December 2011 | Bianba_1 | −3.545 | −2.295 | −5.840 |
4 February 2011 | Bianba_2 | −4.630 | −2.295 | −6.925 |
20 December 2011 | Bianba_3 | −5.196 | −2.295 | −7.491 |
20 August 2011 | Luolong | −5.953 | −2.295 | −8.248 |
22 September 2011 | Bomi | −6.462 | −2.295 | −8.757 |
16 September 2014 | Basu_1 | −7.830 | −2.295 | −10.125 |
5 September 2014 | Basu_2 | −9.537 | −2.295 | −11.832 |
14 August 2014 | Chayu_1 | −7.177 | −2.295 | −9.472 |
25 August 2014 | Chayu_2 | −12.113 | −2.295 | −14.408 |
Acquisition Date | Covered Area | Glacier Surface Elevation Change (m) | Seasonal Correction Value (m) | Corrected Glacier Surface Elevation Change (m) | Years | Corrected Glacier Surface Elevation Change Rate (m/yr) |
---|---|---|---|---|---|---|
15 January 2014 | Jiali_1 | −9.990 | 0 | −9.990 | 14 | −0.714 |
17 February 2014 | Jiali_2 | −5.744 | 0 | −5.744 | 14 | −0.410 |
6 February 2014 | Jiali_3 | −7.332 | 0 | −7.332 | 14 | −0.524 |
20 December 2011 | Bianba_1 | −5.840 | 0 | −5.840 | 12 | −0.487 |
4 February 2011 | Bianba_2 | −6.925 | 0 | −6.925 | 13 | −0.533 |
20 December 2011 | Bianba_3 | −7.491 | 0 | −7.491 | 12 | −0.624 |
20 August 2011 | Luolong | −8.248 | 1.908 | −6.340 | 13 | −0.488 |
22 September 2011 | Bomi | −8.757 | 1.908 | −6.849 | 13 | −0.527 |
16 September 2014 | Basu_1 | −10.125 | 1.908 | −8.217 | 14 | −0.587 |
5 September 2014 | Basu_2 | −11.832 | 1.908 | −9.924 | 14 | −0.709 |
14 August 2014 | Chayu_1 | −9.472 | 1.908 | −7.564 | 14 | −0.540 |
25 August 2014 | Chayu_2 | −14.408 | 1.908 | −12.500 | 14 | −0.893 |
Covered Area | Uncertainty in the Glacier Surface Elevation Change (m/yr) | Uncertainty in Radar Penetration Difference Correction (m/yr) | Uncertainty in the Seasonal Correction (m/yr) | Total Uncertainty (m/yr) |
---|---|---|---|---|
Jiali | ±0.0014 | ±0.0080 | 0 | ±0.0081 |
Bianba | ±0.0014 | ±0.0075 | 0 | ±0.0076 |
Luolong | ±0.0039 | ±0.0129 | ±0.0142 | ±0.0196 |
Bomi | ±0.0046 | ±0.0129 | ±0.0142 | ±0.0198 |
Basu | ±0.0024 | ±0.0091 | ±0.0101 | ±0.0138 |
Chayu | ±0.0021 | ±0.0094 | ±0.0103 | ±0.0141 |
Covered Area | Glacier Surface Elevation Change Rate (m/yr) | Area Weight | Glacier Surface Elevation Change Rate in the Entire SETP (m/yr) | Glacier Mass Balance in the Entire SETP (mm w.eq.) |
---|---|---|---|---|
Jiali | −0.503 | 0.253 | −0.505 ± 0.005 | −454.5 ± 13.1 |
Bianba | −0.540 | 0.287 | ||
Luolong | −0.488 | 0.053 | ||
Bomi | −0.527 | 0.049 | ||
Basu | −0.645 | 0.165 | ||
Chayu | −0.757 | 0.193 |
Watershed ID | Glacier Surface Elevation Change (m) | Watershed Area (km2) | Glacier Surface Elevation Change Rate (m/yr) |
---|---|---|---|
5N223F | −11.892 | 69.284 | −0.849 ± 0.005 |
5N224B | −10.352 | 63.735 | −0.739 ± 0.005 |
5N224E | −12.960 | 14.628 | −0.926 ± 0.005 |
5N225E | −9.840 | 250.750 | −0.703 ± 0.005 |
5O272B | −7.738 | 853.094 | −0.553 ± 0.005 |
5O280B | −5.245 | 19.057 | −0.375 ± 0.005 |
5O280C | −6.686 | 150.581 | −0.478 ± 0.005 |
5O281A | −5.982 | 1043.811 | −0.427 ± 0.005 |
5O281B | −7.784 | 2219.314 | −0.556 ± 0.005 |
5O282A | −8.078 | 1456.392 | −0.577 ± 0.005 |
5O282B | −11.767 | 886.034 | −0.841 ± 0.005 |
5O283A | −7.138 | 28.450 | −0.510 ± 0.005 |
5O283B | −4.539 | 185.395 | −0.324 ± 0.005 |
5O290B | −5.249 | 97.952 | −0.375 ± 0.005 |
5O291A | −1.130 | 109.706 | −0.081 ± 0.005 |
5O291B | −9.792 | 999.400 | −0.699 ± 0.005 |
Unknown | −9.332 | 14.765 | −0.667 ± 0.005 |
Glacier Surface Elevation Change (m/yr) | Data Source | Time Period | Coverage Area | Study |
---|---|---|---|---|
−0.505 ± 0.005 | Bi-static InSAR data (3 m) | 2000–2014 | Entire SETP | This study |
−0.30 ± 0.13 | ICESat | 2003–2009 | Entire SETP | Gardner et al. [15] |
−0.81 ± 0.32 | ICESat | 2003–2009 | Entire SETP | Neckel et al. [16] |
−1.34 ± 0.29 | ICESat | 2003–2009 | Entire SETP | Kääb et al. [17] |
−0.39 ± 0.16 | SPOT-5 optical stereo pairs | 2000–2011 | About 1/3 of the SETP | Gardelle et al. [5] |
−0.73 ± 0.23 | ASTER optical data | 2000–2016 | Entire SETP | Brun et al. [18] |
−0.66 ± 0.02 | ASTER stereo image pairs | 2000–2020 | Entire SETP | Zhao et al. [19] |
−0.50 ± 0.57~−1.40 ± 0.57 | Bi-static InSAR data (3 m) | 2000–2014 | Five glaciers in the SETP | Neckel et al. [44] |
−0.54 ± 0.05 | Bi-static InSAR data (3 m) | 2000–2013 | Part of the SETP | Wu et al. [35,36] |
−0.69 ± 0.14 | TanDEM-X DEM product (90 m) | 2000–2013 | Entire SETP | Ke et al. [12] |
−0.649 ± 0.059~−0.849 ± 0.056 | Bi-static InSAR data (3 m) | 2000–2012 2012–2017 | Part of the SETP | Li et al. [27,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Jiang, L.; Gao, N.; Gao, S.; Li, J. Estimation and Analysis of Glacier Mass Balance in the Southeastern Tibetan Plateau Using TanDEM-X Bi-Static InSAR during 2000–2014. Atmosphere 2024, 15, 364. https://doi.org/10.3390/atmos15030364
Sun Y, Jiang L, Gao N, Gao S, Li J. Estimation and Analysis of Glacier Mass Balance in the Southeastern Tibetan Plateau Using TanDEM-X Bi-Static InSAR during 2000–2014. Atmosphere. 2024; 15(3):364. https://doi.org/10.3390/atmos15030364
Chicago/Turabian StyleSun, Yafei, Liming Jiang, Ning Gao, Songfeng Gao, and Junjie Li. 2024. "Estimation and Analysis of Glacier Mass Balance in the Southeastern Tibetan Plateau Using TanDEM-X Bi-Static InSAR during 2000–2014" Atmosphere 15, no. 3: 364. https://doi.org/10.3390/atmos15030364
APA StyleSun, Y., Jiang, L., Gao, N., Gao, S., & Li, J. (2024). Estimation and Analysis of Glacier Mass Balance in the Southeastern Tibetan Plateau Using TanDEM-X Bi-Static InSAR during 2000–2014. Atmosphere, 15(3), 364. https://doi.org/10.3390/atmos15030364