Mining Deformation Monitoring Based on Lutan-1 Monostatic and Bistatic Data
Abstract
:1. Introduction
2. Methods
2.1. DSM Extraction Based on High-Precision Geometric Calibration and Interference Calibration
- (1)
- Geometric calibration
- (2)
- Interferometric calibration
2.2. SBAS-InSAR
2.3. Stacking-InSAR
3. Study Area and Datasets
3.1. Study Area
3.2. Study Data
4. Results and Analysis
4.1. DSM Extraction and Accuracy Evaluation Results
4.2. Deformation Monitoring and Analysis in the Mining Area
4.2.1. DInSAR Deformation Monitoring Analysis
4.2.2. SBAS-InSAR Deformation Monitoring Analysis
4.2.3. Stacking-InSAR Deformation Monitoring Analysis
4.3. Leveling Data Validation
5. Discussion
6. Conclusions
- (1)
- Using high-precision geometric calibration and interference calibration processing, high-precision DSM data with a resolution of 10 m × 10 m are extracted from the Lutan-1 bistatic data. The error is evaluated using the ICESat laser altimetry data to be 2.8 m, which meets the mapping accuracy standard of China’s 1:50,000 DEM and provides effective input data for subsequent surface deformation monitoring.
- (2)
- It is found that the registration accuracy of the SAR images and LT-DSM is higher than that of TanDEM in the range direction and azimuth direction via comparison with TanDEM. Combined with leveling data evaluation, it is found that the deformation measurement results based on LT-DSM are less affected by terrain, and more accurate. The deformation monitoring accuracy of LT-DSM-SBAS and LT-DSM-DInSAR are 11.5% and 16.3%, better than those of TanDEM-SBAS and TanDEM-DInSAR, respectively.
- (3)
- The deformation of 43 mining areas was monitored using LT-DSM-SBAS, and the subsidence of some mining areas was significant. The monitoring subsidence reached 1.443 m, which demonstrated the effectiveness of LT-1 SAR data for large-magnitude deformation monitoring.
- (4)
- The high-precision topographic mapping and surface deformation monitoring of Datong mining area were realized using Lutan-1 bistatic and monostatic SAR data, respectively, which provides strong support for high-precision surface deformation monitoring by cooperating with bistatic and monostatic SAR data.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.Z.; Li, T.; Tang, X.M.; Zhang, X.; Fan, H.D.; Wang, Y.W. Research on the Applicability of DInSAR, Stacking-InSAR and SBAS-InSAR for Mining Region Subsidence Detection in the Datong Coalfield. Remote Sens. 2022, 14, 3314. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Price, E.J. Phase gradient approach to stacking interferograms. J. Geophys. Res. Solid Earth 1998, 103, 30183–30204. [Google Scholar] [CrossRef]
- Sousa, J.J.; Ruiz, A.M.; Hanssen, R.F.; Bastos, L.; Gil, A.J.; Galindo-Zaldívar, J.; Sanz de Galdeano, C. PS-InSAR processing methodologies in the detection of field surface deformation—Study of the Granada basin (Central Betic Cordilleras, southern Spain). J. Geodyn. 2010, 49, 181–189. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zhang, G.; Chen, Z.W.; Xu, Z.X.; Liu, Y.T.; Zhao, R.S. Evaluating expressway stability using interferometric synthetic aperture radar and measuring its impact on the occurrence of geohazards: A case study of Shanxi Province, China. Geosci. Remote Sens. 2023, 60, 2161200. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Hejmanowski, R.; Malinowska, A.A.; Witkowski, W.T.; Guzy, A. An Analysis Applying InSAR of Subsidence Caused by Nearby Mining-Induced Earthquakes. Geosciences 2019, 9, 49. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.W.; Tao, Q.X.; Liu, G.L.; Wang, L.Y.; Wang, F.Y. Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence. Remote Sens. 2021, 13, 4365. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: New York, NY, USA, 2001. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Multibaseline InSAR DEM reconstruction: The wavelet approach. IEEE Trans. Geosci. Remote Sens. 1999, 37, 705–715. [Google Scholar] [CrossRef]
- Yang, Z.F.; Zhang, Q.J.; Ding, X.L.; Chen, W. Analysis of the Quality of Daily DEM Generation with Geosynchronous InSAR. Engineering 2020, 6, 913–918. [Google Scholar] [CrossRef]
- Werner, M. Shuttle radar topography mission (SRTM) mission overview. Frequenz 2001, 55, 75–79. [Google Scholar] [CrossRef]
- Bartusch, M.; Miller, D.; Zink, M. TanDEM-X: Mission Overview and Status. In Proceedings of the 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 7–10 June 2010; pp. 1–4. [Google Scholar]
- Moreira, A.; Krieger, G.; Hajnsek, I.; Hounam, D.; Werner, M.; Riegger, S.; Settelmeyer, E. TanDEM-X: A TerraSAR-X add-on satellite for single-pass SAR interferometry, IGARSS 2004. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 2, pp. 1000–1003. [Google Scholar]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Li, T.; Tang, X.; Zhou, X.; Zhang, X. LuTan-1 SAR main applications and products, EUSAR 2022. In Proceedings of the 14th European Conference on Synthetic Aperture Radar, VDE, Leipzig, Germany, 25–27 July 2022; pp. 1–4. [Google Scholar]
- Sun, Z.; Liang, D.; Dong, Z. Study on DEM Reconstruction for Spaceborne Parasitic InSAR. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July 2006–4 August 2006; IEEE: New York, NY, USA, 2006; pp. 3063–3065. [Google Scholar]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Huong, K.I.M.T.T.; Ha, T.H.; Luyen, B.U.I.K.; Tomasz, L. Mining-induced Land Subsidence Detected by Sentinel-1 SAR Images: An Example from the Historical Tadeusz Kościuszko Salt Mine at Wapno, Greater Poland Voivodeship, Poland. Inz. Miner. 2021, 48, 41–52. [Google Scholar]
- Bui, L.K.; Featherstone, W.E.; Filmer, M.S. Disruptive influences of residual noise, network configuration and data gaps on InSAR-derived land motion rates using the SBAS technique. Remote Sens. Environ. 2020, 247, 111941. [Google Scholar] [CrossRef]
- Jiang, X.; Min, X.; Ye, T.; Li, X.; Hu, X. Monitoring the subsidence at different periods in high underground water level coal mine areas using differential interferometric synthetic aperture radar (D-InSAR). Geocarto Int. 2023, 38, 2215730. [Google Scholar] [CrossRef]
- Lin, H.; Deng, Y.; Zhang, H.; Liu, D.; Liang, D.; Fang, T.; Wang, R. On the Processing of Dual-Channel Receiving Signals of the LuTan-1 SAR System. Remote Sens. 2022, 14, 515. [Google Scholar] [CrossRef]
Images | Acquisition Satellite | Image | Acquisition Satellite |
---|---|---|---|
20230201 | LT-A | 20230406 | LT-A |
20230209 | LT-A | 20230410 | LT-B |
20230217 | LT-A | 20230414 | LT-A |
20230225 | LT-A | 20230418 | LT-B |
20230305 | LT-A | 20230422 | LT-A |
20230313 | LT-A | 20230426 | LT-B |
20230321 | LT-A | 20230430 | LT-A |
20230329 | LT-A | 20230504 | LT-B |
20230402 | LT-B | 20230508 | LT-A |
Geometric Positioning Accuracy before Calibration/m | Geometric Positioning Accuracy after Calibration/m | |||||
---|---|---|---|---|---|---|
LT-DSM | Range | Azimuth | Total Accuracy | Range | Azimuth | Total Accuracy |
38.105 | 13.907 | 40.563 | 0.328 | 0.567 | 0.655 |
Evaluation Indicators | Before Calibration/m | After Calibration/m | |
---|---|---|---|
LT-DSM | Error Mean | −6.169 | −1.284 |
RMSE | 7.325 | 2.836 |
Interference Pair | Perpendicular Baseline (m) | Time Baseline (d) |
---|---|---|
20230426–20230508 | −73.97 | 8 |
20230321–20230410 | −325.56 | 20 |
20230305–20230321 | 686.73 | 16 |
20230225–20230321 | 1164.26 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Zhang, X.; Li, T.; Fan, H.; Xu, Y.; Li, P.; Tian, Z. Mining Deformation Monitoring Based on Lutan-1 Monostatic and Bistatic Data. Remote Sens. 2023, 15, 5668. https://doi.org/10.3390/rs15245668
Ji Y, Zhang X, Li T, Fan H, Xu Y, Li P, Tian Z. Mining Deformation Monitoring Based on Lutan-1 Monostatic and Bistatic Data. Remote Sensing. 2023; 15(24):5668. https://doi.org/10.3390/rs15245668
Chicago/Turabian StyleJi, Yanan, Xiang Zhang, Tao Li, Hongdong Fan, Yaozong Xu, Peizhen Li, and Zeming Tian. 2023. "Mining Deformation Monitoring Based on Lutan-1 Monostatic and Bistatic Data" Remote Sensing 15, no. 24: 5668. https://doi.org/10.3390/rs15245668
APA StyleJi, Y., Zhang, X., Li, T., Fan, H., Xu, Y., Li, P., & Tian, Z. (2023). Mining Deformation Monitoring Based on Lutan-1 Monostatic and Bistatic Data. Remote Sensing, 15(24), 5668. https://doi.org/10.3390/rs15245668