Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = birdcage RF coil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3444 KiB  
Article
Low-Field Magnetic Resonance Imaging: A Full-Wave Simulation of Radiofrequency Birdcage Coils for Musculoskeletal Limb Imaging
by Giulio Giovannetti, Francesca Frijia, Maria Filomena Santarelli and Vincenzo Positano
Diagnostics 2025, 15(6), 713; https://doi.org/10.3390/diagnostics15060713 - 12 Mar 2025
Viewed by 811
Abstract
Background: Low-field Magnetic Resonance Imaging (MRI) (fields below 0.5 T) has received increasing attention since the images produced have been shown to be diagnostically equivalent to high-field MR images for specific applications, such as musculoskeletal studies. In recent years, low-field MRI has made [...] Read more.
Background: Low-field Magnetic Resonance Imaging (MRI) (fields below 0.5 T) has received increasing attention since the images produced have been shown to be diagnostically equivalent to high-field MR images for specific applications, such as musculoskeletal studies. In recent years, low-field MRI has made great strides in clinical relevance due to advances in high-performance gradients, magnet technology, and the development of organ-specific radiofrequency (RF) coils, as well as advances in acquisition sequence design. For achieving optimized image homogeneity and signal-to-noise Ratio (SNR), the design and simulation of dedicated RF coils is a constraint both in clinical and in many research studies. Methods: This paper describes the application of a numerical full-wave method based on the finite-difference time-domain (FDTD) algorithm for the simulation and the design of birdcage coils for musculoskeletal low-field MRI. In particular, the magnetic field pattern in loaded and unloaded conditions was investigated. Moreover, the magnetic field homogeneity variations and the coil detuning after an RF shield insertion were evaluated. Finally, the coil inductance and the sample-induced resistance were estimated. Results: The accuracy of the results was verified by data acquired from two lowpass birdcage prototypes designed for musculoskeletal experiments on a 0.18 T open MR clinical scanner. Conclusions: This work describes the capability of numerical simulations to design RF coils for various scenarios, including the presence of electromagnetic shields and different load conditions. Full article
(This article belongs to the Special Issue Diagnostic and Clinical Application of Magnetic Resonance Imaging)
Show Figures

Figure 1

15 pages, 5710 KiB  
Article
Self-Isolated Dual-Mode High-Pass Birdcage RF Coil for Proton and Sodium MR Imaging at 7 T MRI
by You-Jin Jeong, Suchit Kumar, Seon-Woo Park, Youngkyu Song, Jee-Hyun Cho, Chan Hong Moon and Chang-Hyun Oh
Appl. Sci. 2023, 13(24), 13227; https://doi.org/10.3390/app132413227 - 13 Dec 2023
Cited by 1 | Viewed by 1873
Abstract
This study presents the feasibility of a dual-mode high-pass birdcage RF coil to acquire MR images at both 1H and 23Na frequencies at ultra-high-field MR scanner, 7 T. A dual-mode circuit (DMC) in the dual-mode birdcage (DMBC) RF coil operates at [...] Read more.
This study presents the feasibility of a dual-mode high-pass birdcage RF coil to acquire MR images at both 1H and 23Na frequencies at ultra-high-field MR scanner, 7 T. A dual-mode circuit (DMC) in the dual-mode birdcage (DMBC) RF coil operates at two frequencies, addressing the limitations of sensitivity reduction and isolation between two frequencies as in traditional dual-tuned RF coil. Finite-difference time-domain (FDTD) based electromagnetic (EM) simulations were performed to verify the RF coil at each frequency on the three-dimensional human head model. The DMBC RF coil resonated at proton (1H) and sodium (23Na) frequencies, and also single-tuned high-pass birdcage RF coils were constructed for both 1H and 23Na frequencies. The bench test performance of the RF coils was evaluated using network analysis parameters, including the measurement of scattering parameters (S-parameters) and quality factors (Q-factors). Q-factor of the DMBC coil at 1H port was 10.2% lower than that of 1H single-tuned birdcage (STBC) coil, with a modest SNR reduction of 6.5%. Similarly, the Q-factor for the DMBC coil at 23Na port was 12.3% less than that of 23Na STBC coil, and the SNR showed a minimal reduction of 5.4%. Utilizing the DMBC coil, promising 1H and 23Na MR images were acquired compared to those by using STBC coils. In conclusion, deploying a DMBC 1H/23Na coil has been demonstrated to overcome traditional constraints associated with dual-tuned RF coils, achieving this with only nominal signal attenuation across both nuclei operational frequencies. Full article
Show Figures

Figure 1

16 pages, 5511 KiB  
Article
Double-Tuned Birdcage Radio Frequency Coil for 7 T MRI: Optimization, Construction and Workbench Validation
by Alessandra Retico, Francesca Maggiorelli, Giulio Giovannetti, Eddy Boskamp, Fraser Robb, Marco Fantasia, Angelo Galante, Marcello Alecci, Gianluigi Tiberi and Michela Tosetti
Electronics 2023, 12(4), 901; https://doi.org/10.3390/electronics12040901 - 10 Feb 2023
Viewed by 2956
Abstract
The aim of the present study is the optimization, construction, and workbench validation of a double-tuned 1H- 23Na volume radio frequency (RF) coil suitable for human head imaging at 7 T, based on the birdcage geometry. The birdcage-like design which is [...] Read more.
The aim of the present study is the optimization, construction, and workbench validation of a double-tuned 1H- 23Na volume radio frequency (RF) coil suitable for human head imaging at 7 T, based on the birdcage geometry. The birdcage-like design which is considered is the four-ring model, in which two standard birdcage-like structures with the same diameters are nested along the longitudinal axis. Simulations based on Maxwell’s equations are performed to evaluate the RF magnetic field homogeneity and the RF coil efficiency varying the coil geometrical parameters. The RF magnetic field homogeneity is evaluated both on the transverse (z = 0) and longitudinal (y = 0) planes without performing the impedance matching procedure, so that the RF coil symmetry is not perturbed by the matching network. The RF coil efficiency is instead dependent on the effective coil input RF power, and it is evaluated after matching the coil, so that the reflected power is minimized, assuming that the stimulation power is totally delivered to the RF coil. Considering the simulation results and the target application, the useful RF coil geometrical parameters are fixed. The four-ring model, which showed the best performances, has been built and tested on a workbench, using a cylindrical phantom filled with a 0.05 M saline solution as load. This provides the first example of a four-ring realization intended 1H- 23Na for human head imaging at 7 T. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

30 pages, 2874 KiB  
Article
A New Combination of Radio-Frequency Coil Configurations Using High-Permittivity Materials and Inductively Coupled Structures for Ultrahigh-Field Magnetic Resonance Imaging
by Jeung-Hoon Seo, Young-Seung Jo, Chang-Hyun Oh and Jun-Young Chung
Sensors 2022, 22(22), 8968; https://doi.org/10.3390/s22228968 - 19 Nov 2022
Cited by 1 | Viewed by 2403
Abstract
In ultrahigh-field (UHF) magnetic resonance imaging (MRI) system, the RF power required to excite the nuclei of the target object increases. As the strength of the main magnetic field (B0 field) increases, the improvement of the RF transmit field ( [...] Read more.
In ultrahigh-field (UHF) magnetic resonance imaging (MRI) system, the RF power required to excite the nuclei of the target object increases. As the strength of the main magnetic field (B0 field) increases, the improvement of the RF transmit field (B1+ field) efficiency and receive field (B1 field) sensitivity of radio-frequency (RF) coils is essential to reduce their specific absorption rate and power deposition in UHF MRI. To address these problems, we previously proposed a method to simultaneously improve the B1+ field efficiency and B1 field sensitivity of 16-leg bandpass birdcage RF coils (BP-BC RF coils) by combining a multichannel wireless RF element (MCWE) and segmented cylindrical high-permittivity material (scHPM) comprising 16 elements in 7.0 T MRI. In this work, we further improved the performance of transmit/receive RF coils. A new combination of RF coil with wireless element and HPM was proposed by comparing the BP-BC RF coil with the MCWE and the scHPM proposed in the previous study and the multichannel RF coils with a birdcage RF coil-type wireless element (BCWE) and the scHPM proposed in this study. The proposed 16-ch RF coils with the BCWE and scHPM provided excellent B1+ field efficiency and B1 field sensitivity improvement. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 5616 KiB  
Article
A Comparative Study of Birdcage RF Coil Configurations for Ultra-High Field Magnetic Resonance Imaging
by Jeung-Hoon Seo, Yeji Han and Jun-Young Chung
Sensors 2022, 22(5), 1741; https://doi.org/10.3390/s22051741 - 23 Feb 2022
Cited by 7 | Viewed by 3501
Abstract
Improvements in transmission and reception sensitivities of radiofrequency (RF) coils used in ultra-high field (UHF) magnetic resonance imaging (MRI) are needed to reduce specific absorption rates (SAR) and RF power deposition, albeit without applying high-power RF. Here, we propose a method to simultaneously [...] Read more.
Improvements in transmission and reception sensitivities of radiofrequency (RF) coils used in ultra-high field (UHF) magnetic resonance imaging (MRI) are needed to reduce specific absorption rates (SAR) and RF power deposition, albeit without applying high-power RF. Here, we propose a method to simultaneously improve transmission efficiency and reception sensitivity of a band-pass birdcage RF coil (BP-BC RF coil) by combining a multi-channel wireless RF element (MCWE) with a high permittivity material (HPM) in a 7.0 T MRI. Electromagnetic field (EM-field) simulations, performed using two types of phantoms, viz., a cylindrical phantom filled with oil and a human head model, were used to compare the effects of MCWE and HPM on BP-BC RF coils. EM-fields were calculated using the finite difference time-domain (FDTD) method and analyzed using Matlab software. Next, to improve RF transmission efficiency, we compared two HPM structures, namely, a hollow cylinder shape HPM (hcHPM) and segmented cylinder shape HPM (scHPM). The scHPM and MCWE model comprised 16 elements (16-rad BP-BC RF coil) and this coil configuration demonstrated superior RF transmission efficiency and reception sensitivity along with an acceptable SAR. We expect wider clinical application of this combination in 7.0 T MRIs, which were recently approved by the United States Food and Drug Administration. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

26 pages, 42631 KiB  
Article
A Preliminary Study for Reference RF Coil at 11.7 T MRI: Based on Electromagnetic Field Simulation of Hybrid-BC RF Coil According to Diameter and Length at 3.0, 7.0 and 11.7 T
by Jeung-Hoon Seo and Jun-Young Chung
Sensors 2022, 22(4), 1512; https://doi.org/10.3390/s22041512 - 15 Feb 2022
Cited by 9 | Viewed by 3232
Abstract
Magnetic resonance imaging (MRI) systems must undergo quantitative evaluation through daily and periodic performance assessments. In general, the reference or standard radiofrequency (RF) coils for these performance assessments of 1.5 to 7.0 T MRI systems have been low-pass-type birdcage (LP-BC) RF coils. However, [...] Read more.
Magnetic resonance imaging (MRI) systems must undergo quantitative evaluation through daily and periodic performance assessments. In general, the reference or standard radiofrequency (RF) coils for these performance assessments of 1.5 to 7.0 T MRI systems have been low-pass-type birdcage (LP-BC) RF coils. However, LP-BC RF coils are inappropriate for use as reference RF coils because of their relatively lower magnetic field (B1-field) sensitivity than other types of BC RF coils, especially in ultrahigh-field (UHF) MRI systems above 3.0 T. Herein, we propose a hybrid-type BC (Hybrid-BC) RF coil as a reference RF coil with improved B1-field sensitivity in UHF MRI system and applied it to an 11.7 T MRI system. An electromagnetic field (EM-field) analysis on the Hybrid-BC RF coil was performed to provide the proper dimensions for its use as a reference RF coil. Commercial finite difference time-domain program was used in EM-field simulation, and home-made analysis programs were used in analysis. The optimal specifications of the proposed Hybrid-BC RF coils for them to qualify as reference RF coils are proposed based on their B1+-field sensitivity under unnormalized conditions, as well as by considering their B1+-field uniformity and RF safety under normalized conditions. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

14 pages, 3342 KiB  
Article
Development of a Proton-Frequency-Transparent Birdcage Radiofrequency Coil for In Vivo 13C MRS/MRSI Study in a 3.0 T MRI System
by Jun-Sik Yoon, Jong-Min Kim, Han-Jae Chung, You-Jin Jeong, Gwang-Woo Jeong, Ilwoo Park, Gwang-Won Kim and Chang-Hyun Oh
Appl. Sci. 2021, 11(23), 11445; https://doi.org/10.3390/app112311445 - 2 Dec 2021
Cited by 3 | Viewed by 2548
Abstract
A proton-frequency-transparent (PFT) birdcage RF coil that contains carbon-proton switching circuits (CPSCs) is presented to acquire 13C MR signals, which, in turn, enable 1H imaging with existing 1H RF coils without being affected by a transparent 13C birdcage RF [...] Read more.
A proton-frequency-transparent (PFT) birdcage RF coil that contains carbon-proton switching circuits (CPSCs) is presented to acquire 13C MR signals, which, in turn, enable 1H imaging with existing 1H RF coils without being affected by a transparent 13C birdcage RF coil. CPSCs were installed in the PFT 13C birdcage RF coil to cut the RF coil circuits during 1H MR imaging. Finite-difference time-domain (FDTD) electromagnetic (EM) simulations were performed to verify the performance of the proposed CPSCs. The performance of the PFT 13C birdcage RF coil with CPSCs was verified via phantom and in vivo MR studies. In the phantom MR studies, 1H MR images and 13C MR spectra were acquired and compared with each other using the 13C birdcage RF coil with and without the CPSCs. For the in vivo MR studies, hyperpolarized 13C cardiac MRS and MRSI of swine were performed. The proposed PFT 13C birdcage RF coil with CPSCs led to a percent image uniformity (PIU) reduction of 1.53% in the proton MR images when compared with the case without it. FDTD EM simulations revealed PIU reduction of 0.06% under the same conditions as the phantom MR studies. Furthermore, an SNR reduction of 5.5% was observed at 13C MR spectra of corn-oil phantom using the PFT 13C birdcage RF coil with CPSCs compared with that of the 13C birdcage RF coil without CPSCs. Utilizing the PFT 13C birdcage RF coil, 13C-enriched compounds were successfully acquired via in vivo hyperpolarized 13C MRS/MRSI experiments. In conclusion, the applicability and utility of the proposed 16-leg low-pass PFT 13C birdcage RF coil with CPSCs were verified via 1H MR imaging and hyperpolarized 13C MRS/MRSI studies using a 3.0 T MRI system. Full article
Show Figures

Figure 1

14 pages, 3857 KiB  
Article
Design and Implementation of Split-Leg Type Elliptical Whole-Body Birdcage RF Coil at 1.5 T MRI
by Suchit Kumar, Han-Jae Chung, You-Jin Jeong, Heung-Kyu Lee and Chang-Hyun Oh
Appl. Sci. 2021, 11(16), 7448; https://doi.org/10.3390/app11167448 - 13 Aug 2021
Cited by 5 | Viewed by 3923
Abstract
The feasibility and the development of a four-port elliptical birdcage radio frequency (RF) coil for generating a homogenous RF magnetic (B1) field is presented for a space-constrained narrow-bore magnetic resonance imaging (MRI) system. Optimization was performed for the elliptical birdcage RF [...] Read more.
The feasibility and the development of a four-port elliptical birdcage radio frequency (RF) coil for generating a homogenous RF magnetic (B1) field is presented for a space-constrained narrow-bore magnetic resonance imaging (MRI) system. Optimization was performed for the elliptical birdcage RF coil by adjusting the position and the structure of the legs to maximize the B1+-field uniformity. Electromagnetic (EM) simulations based on RF coil circuit co-simulations were performed on a cylindrical uniform phantom and a three-dimensional human model to evaluate the B1+-field uniformity, the transmission efficiency, and the specific absorption rate (SAR) deposition. An elliptical birdcage RF coil was constructed, and its performance was evaluated through network analysis measurements such as S-parameters and Q-factor. Quadrature transmit and receive MRI experiments were conducted using both phantom and in vivo human for validation. The EM simulation results indicate reasonable B1+-field uniformity and transmission efficiency for the proposed elliptical birdcage RF coil. The signal-to-noise ratio and the flip angle maps of the uniform phantom and the in vivo human MR images acquired using an elliptical birdcage (62 cm × 58 cm) were similar to those of a commercial circular birdcage (diameter, 58 cm), thereby indicating acceptable performance. In conclusion, the proposed split-type asymmetric elliptical birdcage RF coil is useful for whole-body MRI applications and can be used for imaging larger human subjects comfortably in a spacious imaging space. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

11 pages, 2598 KiB  
Article
Three-Line Microstrip Array for Whole-Body MRI System at 7 T
by Daniel Hernandez
Appl. Sci. 2021, 11(1), 73; https://doi.org/10.3390/app11010073 - 23 Dec 2020
Cited by 2 | Viewed by 2219
Abstract
This paper proposes the use of a triple-line microstrip array for transmitting a magnetic field (|B1+|) into the whole body for magnetic resonance applications at ultra-high field strength, such as 7 T. We explored some technologies that can potentially be [...] Read more.
This paper proposes the use of a triple-line microstrip array for transmitting a magnetic field (|B1+|) into the whole body for magnetic resonance applications at ultra-high field strength, such as 7 T. We explored some technologies that can potentially be applied for whole-body 7 T magnetic resonance imaging, as there is ongoing research on this topic. The triple-line microstrip transmission line (t-MTL) array consists of 32 channels. Each channel has a t-MTL, comprising a main conductor line and two adjacent coupled lines. The adjacent lines are not connected directly to the source. This configuration resulted in increased intensity and a centered |B1+|-field. We compared the proposed structure and some reference radiofrequency (RF) transmitters, such as a patch antenna, using a magnet bore as a waveguide and a whole-body birdcage coil. We evaluated the performance of the t-MTL using cylindrical phantoms. We computed the |B1+|-field from each RF transmitter inside a 3D human model containing more than 200 tissues. We compared their uniformity and field intensity and proposed a t-MTL array that yielded better performance. The proposed design also showed a lower specific absorption rate compared with a patch antenna. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

19 pages, 1258 KiB  
Review
Recent Progress in Birdcage RF Coil Technology for MRI System
by Sheikh Faisal Ahmad, Young Cheol Kim, Ick Chang Choi and Hyun Deok Kim
Diagnostics 2020, 10(12), 1017; https://doi.org/10.3390/diagnostics10121017 - 27 Nov 2020
Cited by 29 | Viewed by 9291
Abstract
The radio frequency (RF) coil is one of the key components of the magnetic resonance imaging (MRI) system. It has a significant impact on the performance of the nuclear magnetic resonance (NMR) detection. Among numerous practical designs of RF coils for NMR imaging, [...] Read more.
The radio frequency (RF) coil is one of the key components of the magnetic resonance imaging (MRI) system. It has a significant impact on the performance of the nuclear magnetic resonance (NMR) detection. Among numerous practical designs of RF coils for NMR imaging, the birdcage RF coil is the most popular choice from low field to ultra-high field MRI systems. In the transmission mode, it can establish a strong and homogeneous transverse magnetic field B1 for any element at its Larmor frequency. Similarly, in the reception mode, it exhibits extremely high sensitivity for the detection of even faint NMR signals from the volume of interest. Despite the sophisticated 3D structure of the birdcage coil, the developments in the design, analysis, and implementation technologies during the past decade have rendered the development of the birdcage coils quite reasonable. This article provides a detailed review of the recent progress in the birdcage RF coil technology for the MRI system. Full article
(This article belongs to the Special Issue Advanced Techniques in Body Magnetic Resonance Imaging)
Show Figures

Figure 1

16 pages, 4583 KiB  
Article
A Simple Analytical Solution for the Designing of the Birdcage RF Coil Used in NMR Imaging Applications
by Young Cheol Kim, Hyun Deok Kim, Byoung-Ju Yun and Sheikh Faisal Ahmad
Appl. Sci. 2020, 10(7), 2242; https://doi.org/10.3390/app10072242 - 26 Mar 2020
Cited by 18 | Viewed by 6652
Abstract
A novel analytical solution for the designing of the birdcage RF coil has been demonstrated in this paper. A new concept of dominant resonance path has been introduced in this paper which is used to identify the specific closed current loop in the [...] Read more.
A novel analytical solution for the designing of the birdcage RF coil has been demonstrated in this paper. A new concept of dominant resonance path has been introduced in this paper which is used to identify the specific closed current loop in the birdcage RF coil which is responsible for the dominant resonance frequency mode. This concept is used to determine the precise numerical values of the lumped capacitance deployed in the legs and/or end-rings of the birdcage RF coil for its proper operation at the desired resonance frequency. The analytical solution presented in this paper has been established by performing the two-port network based equivalent circuit modeling of the birdcage RF coil. The proposed analytical solution uses T-matrix theory and develops a relationship between the input impedance of the birdcage coil and the impedances of its leg and end-ring segments. The proposed analytical solution provides the information about the resonance frequency spectrum of the birdcage RF coil and solves the issue of its interfacing with external circuits without affecting its resonance characteristics. Based upon the proposed analysis and designing strategy presented in this paper, the low pass, high pass and band pass configurations of the birdcage RF coil were successfully implemented with FPCB (Flexible Printed Circuit board) technique for small volume NMR imaging applications at 1.5 T and 3.0 T MRI system. The results obtained for the implemented birdcage coils using the proposed analysis and designing technique are in closed agreement with already established methods. Full article
(This article belongs to the Special Issue Numerical and Analytical Methods in Electromagnetics)
Show Figures

Figure 1

Back to TopTop