A New Combination of Radio-Frequency Coil Configurations Using High-Permittivity Materials and Inductively Coupled Structures for Ultrahigh-Field Magnetic Resonance Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. EM Field Simulation Setup
2.2. EM Field Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thulborn, K.R. Clinical rationale for very-high field (3.0 Tesla) functional magnetic resonance imaging. Top. Magn. Reson. Imaging 1999, 10, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Yacoub, E.; Shmuel, A.; Pfeuffer, J.; Van De Moortele, P.F.; Adriany, G.; Andersen, P.; Vaughan, J.T.; Merkle, H.; Ugurbil, K.; Hu, X. Imaging brain function in humans at 7 tesla. Magn. Reson. Med. 2001, 45, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Frayne, R.; Goodyear, B.G.; Dickhoff, P.; Lauzon, M.L.; Sevick, R.J. Magnetic resonance imaging at 3.0 Tesla: Challenges and advantages in clinical neurological imaging. Investig. Radiol. 2003, 38, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Nagae-Poetscher, L.M.; Golay, X.; Lin, D.; Pomper, M.; van Zijl, P.C.M. Routine clinical brain MRI sequences for use at 3.0 Tesla. J. Magn. Reson. Imaging 2005, 22, 13–22. [Google Scholar] [CrossRef] [PubMed]
- FDA. Clears First 7T Magnetic Resonance Imaging Device. 2017. Available online: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm580154.htm (accessed on 27 June 2019).
- Kerchner, G.A. Ultra-high field 7T MRI: A new tool for studying Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 26, 91–95. [Google Scholar] [CrossRef]
- McKiernan, E.F.; O’Brien, J.T. 7T MRI for neurodegenerative dementias in vivo: A systematic review of the literature. J. Neurol. Neurosurg. Psychiatry 2017, 88, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Düzel, E.; Costagli, M.; Donatelli, G.; Speck, O.; Cosottini, M. Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance. Eur. Radiol. Exp. 2021, 5, 36. [Google Scholar] [CrossRef]
- Haeger, A.; Bottlaender, M.; Lagarde, J.; Porciuncula Baptista, R.; Rabrait-Lerman, C.; Luecken, V.; Schulz, J.B.; Vignaud, A.; Sarazin, M.; Reetz, K.; et al. What can 7T sodium MRI tell us about cellular energy depletion and neurotransmission in Alzheimer’s disease? Alzheimer’s Dement. 2021, 17, 1843–1854. [Google Scholar] [CrossRef]
- Okada, T.; Fujimoto, K.; Fushimi, Y.; Akasaka, T.; Thuy, D.H.D.; Shima, A.; Sawamoto, N.; Oishi, N.; Zhang, Z.; Funaki, T.; et al. Neuroimaging at 7 Tesla: A pictorial narrative review. Quant. Imaging Med. Surg. 2022, 12, 3406–3435. [Google Scholar] [CrossRef]
- Vaughan, J.T.; Garwood, M.; Collins, C.M.; Liu, W.; DelaBarre, L.; Adriany, G.; Andersen, P.; Merkle, H.; Goebel, R.; Smith, M.B.; et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn. Reson. Med. 2001, 46, 24–30. [Google Scholar] [CrossRef]
- Norris, D.G. High field human imaging. J. Magn. Reson. Imaging 2003, 18, 519–529. [Google Scholar] [CrossRef]
- Van der Zwaag, W.; Francis, S.; Head, K.; Peters, A.; Gowland, P.; Morris, P.; Bowtell, R. fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes. NeuroImage 2009, 47, 1425–1434. [Google Scholar] [CrossRef]
- Beisteiner, R.; Robinson, S.; Wurnig, M.; Hilbert, M.; Merksa, K.; Rath, J.; Höllinger, I.; Klinger, N.; Marosi, C.; Trattnig, S.; et al. Clinical fMRI: Evidence for a 7 T benefit over 3 T. NeuroImage 2011, 57, 1015–1021. [Google Scholar] [CrossRef] [Green Version]
- de Graaf, W.L.; Kilsdonk, I.D.; Lopez-Soriano, A.; Zwanenburg, J.J.M.; Visser, F.; Polman, C.H.; Castelijns, J.A.; Geurts, J.J.G.; Pouwels, P.J.W.; Luijten, P.R.; et al. Clinical application of multi-contrast 7-T MR imaging in multiple sclerosis: Increased lesion detection compared to 3 T confined to grey matter. Eur. Radiol. 2013, 23, 528–540. [Google Scholar] [CrossRef]
- Kilsdonk, I.D.; Jonkman, L.E.; Klaver, R.; van Veluw, S.J.; Zwanenburg, J.J.M.; Kuijer, J.P.A.; Pouwels, P.J.W.; Twisk, J.W.R.; Wattjes, M.P.; Luijten, P.R.; et al. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: A post-mortem verification study. Brain 2016, 139, 1472–1481. [Google Scholar] [CrossRef] [Green Version]
- Barisano, G.; Sepehrband, F.; Ma, S.; Jann, K.; Cabeen, R.; Wang, D.J.; Toga, A.W.; Law, M. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br. J. Radiol. 2019, 92, 20180492. [Google Scholar] [CrossRef]
- Oh, S.; Webb, A.G.; Neuberger, T.; Park, B.; Collins, C.M. Experimental and numerical assessment of MRI-induced temperature change and SAR distributions in phantoms and in vivo. Magn. Reson. Med. 2010, 63, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Hoff, M.N.; McKinney 4th, A.; Shellock, F.G.; Rassner, U.; Gilk, T.; Watson, R.E., Jr.; Greenberg, T.D.; Froelich, J.; Kanal, E. Safety considerations of 7-T MRI in clinical practice. Radiology 2019, 292, 509–518. [Google Scholar] [CrossRef]
- Golestanirad, L.; Rahsepar, A.A.; Kirsch, J.E.; Suwa, K.; Collins, J.C.; Angelone, L.M.; Keil, B.; Passman, R.S.; Bonmassar, G.; Serano, P.; et al. Changes in the specific absorption rate (SAR) of radiofrequency energy in patients with retained cardiac leads during MRI at 1.5 T and 3 T. Magn. Reson. Med. 2019, 81, 653–669. [Google Scholar] [CrossRef]
- Kraff, O.; Quick, H.H. 7T: Physics, safety, and potential clinical applications. J. Magn. Reson. Imaging 2017, 46, 1573–1589. [Google Scholar] [CrossRef]
- Uwano, I.; Metoki, T.; Sendai, F.; Yoshida, R.; Kudo, K.; Yamashita, F.; Higuchi, S.; Ito, K.; Harada, T.; Goodwin, J.; et al. Assessment of sensations experienced by subjects during MR imaging examination at 7T. Magn. Reson. Med. Sci. 2015, 14, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, B.; Markenroth Bloch, K.; Owman, T.; Nilsson, M.; Lätt, J.; Olsrud, J.; Björkman-Burtscher, I.M. Subjectively reported effects experienced in an actively shielded 7T MRI: A large-scale study. J. Magn. Reson. Imaging 2020, 52, 1265–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagan, A.J.; Bitz, A.K.; Björkman-Burtscher, I.M.; Collins, C.M.; Kimbrell, V.; Raaijmakers, A.J.E.; ISMRM Safety Committee. 7T MR safety. J. Magn. Reson. Imaging 2021, 53, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, T.M.; Orzada, S.; Flöser, M.; Rietsch, S.H.G.; Schmidt, S.; Stelter, J.K.; Wittrich, M.; Quick, H.H.; Bitz, A.K.; Ladd, M.E. Performance and safety assessment of an integrated transmit array for body imaging at 7 T under consideration of specific absorption rate, tissue temperature, and thermal dose. NMR Biomed. 2022, 35, e4656. [Google Scholar] [CrossRef] [PubMed]
- Röschmann, P. Radiofrequency penetration and absorption in the human body: Limitations to high field whole-body nuclear magnetic resonance imaging. Med. Phys. 1987, 14, 922–931. [Google Scholar] [CrossRef]
- Keltner, J.R.; Carlson, J.W.; Roos, M.S.; Wong, S.T.; Wong, T.L.; Budinger, T.F. Electromagnetic fields of surface coil in vivo NMR at high frequencies. Magn. Reson. Med. 1991, 22, 467–480. [Google Scholar] [CrossRef]
- Bottomley, P.A.; Roemer, P.B. Homogeneous tissue model estimates of RF power deposition in human NMR studies. Local elevations predicted in surface coil decoupling. Ann. N. Y. Acad. Sci. 1992, 649, 144–159. [Google Scholar] [CrossRef]
- Lattanzi, R.; Sodickson, D.K.; Grant, A.K.; Zhu, Y. Electrodynamic constraints on homogeneity and radiofrequency power deposition in multiple coil excitations. Magn. Reson. Med. 2009, 61, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Puddu, C.; Fanti, A.; Curreli, N.; Mazzarella, G. Challenging the lumped birdcage coil model for high field MRI. In Proceedings of the IEEE 2014 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, Leicestershire, UK, 10–11 November 2014; pp. 308–311. [Google Scholar]
- Woo, M.K.; DelaBarre, L.; Waks, M.; Radder, J.; Choi, U.-S.; Lagore, R.; Ugurbil, K.; Adriany, G. A 16-channel dipole antenna array for human head magnetic resonance imaging at 10.5 tesla. Sensors 2021, 21, 7250. [Google Scholar] [CrossRef]
- Hong, S.-E.; Oh, S.; Choi, H.-D. RF exposure assessment for various poses of patient assistant in open MRI environment. Appl. Sci. 2021, 11, 4967. [Google Scholar] [CrossRef]
- Bottomley, P.A.; Andrew, E.R. RF magnetic field penetration, phase shift and power dissipation in biological tissue: Implications for NMR imaging. Phys. Med. Biol. 1978, 23, 630–643. [Google Scholar] [CrossRef]
- Buchli, R.; Saner, M.; Meier, D.; Boskamp, E.B.; Boesiger, P. Increased RF power absorption in MR imaging due to RF coupling between body coil and surface coil. Magn. Reson. Med. 1989, 9, 105–112. [Google Scholar] [CrossRef]
- Grandolfo, M.; Vecchia, P.; Gandhi, O.P. Magnetic resonance imaging: Calculation of rates of energy absorption by a human-torso model. Bioelectromagnetics 1990, 11, 117–128. [Google Scholar] [CrossRef]
- Simunic, D.; Wach, P.; Renhart, W.; Stollberger, R. Spatial distribution of high-frequency electromagnetic energy in human head during MRI: Numerical results and measurements. IEEE Trans. Biomed. Eng. 1996, 43, 88–94. [Google Scholar] [CrossRef]
- Jin, J.; Chen, J. On the SAR and field inhomogeneity of birdcage coils loaded with the human head. Magn. Reson. Med. 1997, 38, 953–963. [Google Scholar] [CrossRef]
- Qian, D.; El-Sharkawy, A.-M.M.; Bottomley, P.A.; Edelstein, W.A. An RF dosimeter for independent SAR measurement in MRI scanners. Med. Phys. 2013, 40, 122303. [Google Scholar] [CrossRef] [Green Version]
- Yetisir, F.; Turk, E.A.; Guerin, B.; Gagoski, B.A.; Grant, P.E.; Adalsteinsson, E.; Wald, L.L. Safety and imaging performance of two-channel RF shimming for fetal MRI at 3T. Magn. Reson. Med. 2021, 86, 2810–2821. [Google Scholar] [CrossRef]
- Noetscher, G.M.; Serano, P.; Wartman, W.A.; Fujimoto, K.; Makarov, S.N. Visible Human Project® female surface based computational phantom (Nelly) for radio-frequency safety evaluation in MRI coils. PLoS ONE 2021, 16, e0260922. [Google Scholar] [CrossRef]
- Seo, J.-H.; Ryu, Y.; Chung, J.-Y. Simulation study of radio frequency safety and the optimal size of a single-channel surface radio frequency coil for mice at 9.4 T magnetic resonance imaging. Sensors 2022, 22, 4274. [Google Scholar] [CrossRef]
- Tarasek, M.R.; Shu, Y.; Kang, D.; Tao, S.; Gray, E.; Huston, J.; Hua, Y.; Yeo, D.T.B.; Bernstein, M.A.; Foo, T.K. Average SAR prediction, validation, and evaluation for a compact MR scanner head-sized RF coil. Magn. Reson. Imaging 2022, 85, 168–176. [Google Scholar] [CrossRef]
- Pang, Y.; Xie, Z.; Li, Y.; Xu, D.; Vigneron, D.; Zhang, X. Resonant mode reduction in radiofrequency volume coils for ultrahigh field magnetic resonance imaging. Materials 2011, 4, 1333–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santarelli, M.F.; Giovannetti, G.; Hartwig, V.; Celi, S.; Positano, V.; Landini, L. The core of medical imaging: State of the art and perspectives on the detectors. Electronics 2021, 10, 1642. [Google Scholar] [CrossRef]
- Yoon, J.-S.; Kim, J.-M.; Chung, H.-J.; Jeong, Y.-J.; Jeong, G.-W.; Park, I.; Kim, G.-W.; Oh, C.-H. Development of a proton-frequency-transparent birdcage radiofrequency coil for in vivo 13C MRS/MRSI study in a 3.0 T MRI system. Appl. Sci. 2021, 11, 11445. [Google Scholar] [CrossRef]
- Seo, J.-H.; Chung, J.-Y. A preliminary study for reference RF coil at 11.7 T MRI: Based on electromagnetic field simulation of hybrid-BC RF coil according to diameter and length at 3.0, 7.0 and 11.7 T. Sensors 2022, 22, 1512. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.-H.; Han, Y.; Chung, J.-Y. A comparative study of birdcage RF coil configurations for ultra-high field magnetic resonance imaging. Sensors 2022, 22, 1741. [Google Scholar] [CrossRef]
- Bottomley, P.A.; Redington, R.W.; Edelstein, W.A.; Schenck, J.F. Estimating radiofrequency power deposition in body NMR imaging. Magn. Reson. Med. 1985, 2, 336–349. [Google Scholar] [CrossRef]
- Chen, C.N.; Sank, V.J.; Cohen, S.M.; Hoult, D.I. The field dependence of NMR imaging. I. Laboratory assessment of signal-to-noise ratio and power deposition. Magn. Reson. Med. 1986, 3, 722–729. [Google Scholar] [CrossRef]
- Robitaille, P.M. On RF power and dielectric resonances in UHF MRI. NMR Biomed. 1999, 12, 318–319. [Google Scholar] [CrossRef]
- Hoult, D.I.; Phil, D. Sensitivity and power deposition in a high field imaging experiment. J. Magn. Reson. Imaging 2000, 12, 46–67. [Google Scholar] [CrossRef]
- Barberi, E.A.; Gati, J.S.; Rutt, B.K.; Menon, R.S. A transmit-only/receive-only (TORO) RF system for high field MRI/MRS applications. Magn. Reson. Med. 2000, 43, 284–289. [Google Scholar] [CrossRef]
- Collins, C.M.; Smith, M.B. Signal-to-noise ratio and absorbed power as functions of main magnetic field strength, and definition of “90 degrees” RF pulse for the head in the birdcage coil. Magn. Reson. Med. 2001, 45, 684–691. [Google Scholar] [CrossRef]
- Yang, Q.X.; Wang, J.; Zhang, X.; Collins, C.M.; Smith, M.B.; Liu, H.; Zhu, X.-H.; Vaughan, J.T.; Ugurbil, K.; Chen, W. Analysis of wave behavior in lossy dielectric samples at high field. Magn. Reson. Med. 2002, 47, 982–989. [Google Scholar] [CrossRef]
- Apurva, R.; Yadav, R.; Bhuiya, T.; Harsh, R. Development of compact and flexible quadrature hybrid coupler using coaxial cable with capacitive loading for 1.5T indigenous MRI system. Prog. Electromagn. Res. Lett. 2020, 93, 143–151. [Google Scholar] [CrossRef]
- Uğurbil, K. Magnetic resonance imaging at ultrahigh fields. IEEE Trans. Biomed. Eng. 2014, 61, 1364–1379. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.J.; Hand, J.W.; Satnarine, R.; Price, A.N.; Hajnal, J.V. Specific absorption rate and temperature in neonate models resulting from exposure to a 7T head coil. Magn. Reson. Med. 2021, 86, 1299–1313. [Google Scholar] [CrossRef]
- Malik, S.J.; Hand, J.W.; Carmichael, D.W.; Hajnal, J.V. Evaluation of specific absorption rate and heating in children exposed to a 7T MRI head coil. Magn. Reson. Med. 2022, 88, 1434–1449. [Google Scholar] [CrossRef]
- Edelstein, W.A.; Glover, G.H.; Hardy, C.J.; Redington, R.W. The intrinsic signal-to-noise ratio in NMR imaging. Magn. Reson. Med. 1986, 3, 604–618. [Google Scholar] [CrossRef]
- De Zwart, J.A.; Ledden, P.J.; Gelderen, P.V.; Bodurka, J.; Chu, R.; Duyn, J.H. Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn. Reson. Med. 2004, 51, 22–26. [Google Scholar] [CrossRef]
- Kim, K.-N.; Seo, J.-H.; Han, S.-D.; Heo, P.; Im, G.H.; Lee, J.H. Development of double-layer coupled coil for improving S/N in 7 T small-animal MRI. Scanning 2015, 37, 361–371. [Google Scholar] [CrossRef]
- Kim, K.-N.; Ryu, Y.; Seo, J.-H.; Kim, Y.-B. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil. Scanning 2016, 38, 515–524. [Google Scholar] [CrossRef]
- Kim, K.-N.; Hernandez, D.; Seo, J.-H.; Noh, Y.; Han, Y.; Ryu, Y.C.; Chung, J.-Y. Quantitative assessment of phased array coils with different numbers of receiving channels in terms of signal-to-noise ratio and spatial noise variation in magnetic resonance imaging. PLoS ONE 2019, 14, e0219407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, G.; Flori, A.; Martini, N.; Francischello, R.; Aquaro, G.D.; Pingitore, A.; Frijia, F. Sodium radiofrequency coils for magnetic resonance: From design to applications. Electronics 2021, 10, 1788. [Google Scholar] [CrossRef]
- Kell, R.C.; Greenham, A.C.; Olds, G.C.E. High-permittivity temperature-stable ceramic dielectrics with low microwave loss. Am. Ceram. Soc. 1973, 56, 352–354. [Google Scholar] [CrossRef] [Green Version]
- Dang, Z.-M.; Yuan, J.-K.; Yao, S.-H.; Liao, R.-J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-Y.; Zhu, X.-H.; Rupprecht, S.; Lanagan, M.T.; Yang, Q.X.; Chen, W. Large improvement of RF transmission efficiency and reception sensitivity for human in vivo 31P MRS imaging using ultrahigh dielectric constant materials at 7 T. Magn. Reson. Imaging 2017, 42, 158–163. [Google Scholar] [CrossRef]
- Zivkovic, I.; Teeuwisse, W.; Slobozhanyuk, A.; Nenasheva, E.; Webb, A. High permittivity ceramics improve the transmit field and receive efficiency of a commercial extremity coil at 1.5 Tesla. J. Magn. Reson. 2019, 299, 59–65. [Google Scholar] [CrossRef]
- Vorobyev, V.; Shchelokova, A.; Zivkovic, I.; Slobozhanyuk, A.; Baena, J.D.; Del Risco, J.P.; Abdeddaim, R.; Webb, A.; Glybovski, S. An artificial dielectric slab for ultrahigh field MRI: Proof of concept. J. Magn. Reson. 2020, 320, 106835. [Google Scholar] [CrossRef]
- Hoult, D.I.; Tomanek, B. Use of mutually inductive coupling in probe design. Concepts Magn. Reson. 2002, 15, 262–285. [Google Scholar] [CrossRef]
- Wang, T.; Ciobanu, L.; Zhang, X.; Webb, A. Inductively coupled RF coil design for simultaneous microimaging of multiple samples. Concepts Magn. Reson. B 2008, 33B, 236–243. [Google Scholar] [CrossRef]
- Bulumulla, S.B.; Fiveland, E.; Park, K.J.; Foo, T.K.; Hardy, C.J. Inductively coupled wireless RF coil arrays. Magn. Reson. Imaging 2015, 33, 351–357. [Google Scholar] [CrossRef]
- Mett, R.R.; Sidabras, J.W.; Hyde, J.S. MRI surface-coil pair with strong inductive coupling. Rev. Sci. Instrum. 2016, 87, 124704. [Google Scholar] [CrossRef]
- Byun, J.-D.; Seo, J.-H.; Kang, T.; Ryu, Y.; Kim, K.-N. Birdcage coil with inductively coupled RF coil array for improving |B1| field sensitivity in 7-T MRI. J. Magn. 2017, 22, 378–381. [Google Scholar] [CrossRef]
- Seo, J.-H.; Lee, J.J.; Kim, K.-N. Surface coil with an inductively coupled wireless surface and volume coil for improving the magnetic field sensitivity at 400-MHz MRI. J. Magn. 2018, 23, 192–195. [Google Scholar] [CrossRef]
- Mahmood, M.F.; Gharghan, S.K.; Mohammed, S.L.; Al-Naji, A.; Chahl, J. Design of powering wireless medical sensor based on spiral-spider coils. Designs 2021, 5, 59. [Google Scholar] [CrossRef]
- Teeuwisse, W.M.; Brink, W.M.; Haines, K.N.; Webb, A.G. Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric. Magn. Reson. Med. 2012, 67, 912–918. [Google Scholar] [CrossRef]
- Seo, J.-H.; Ryu, Y.; Han, S.-D.; Song, H.; Kim, H.-K.; Kim, K.-N. Influence of biological subject, shielding cage, and resonance frequency on radio wave propagation in a birdcage coil. Electron. Lett. 2016, 52, 801–803. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Kim, Y.C.; Choi, I.C.; Kim, H.D. Recent progress in birdcage RF coil technology for MRI system. Diagnostics 2020, 10, 1017. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, H.D.; Yun, B.-J.; Ahmad, S.F. A simple analytical solution for the designing of the birdcage RF coil used in NMR imaging applications. Appl. Sci. 2020, 10, 2242. [Google Scholar] [CrossRef] [Green Version]
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1996, 14, 302–307. [Google Scholar]
- Haemer, G.G.; Vaidya, M.; Collins, C.M.; Sodickson, D.K.; Wiggins, G.C.; Lattanzi, R. Approaching ultimate intrinsic specific absorption rate in radiofrequency shimming using high-permittivity materials at 7 Tesla. Magn. Reson. Med. 2018, 80, 391–399. [Google Scholar] [CrossRef]
- Liu, W.; Kao, C.-P.; Collins, C.M.; Smith, M.B.; Yang, Q.X. On consideration of radiated power in RF field simulations for MRI. Magn. Reson. Med. 2013, 69, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.X.; Rupprecht, S.; Luo, W.; Sica, C.; Herse, Z.; Wang, J.; Cao, Z.; Vesek, J.; Lanagan, M.T.; Carluccio, G.; et al. Radiofrequency field enhancement with high dielectric constant (HDC) pads in a receive array coil at 3.0 T. J. Magn. Reson. Imaging 2013, 38, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.; Park, J.; Cho, Z.-H.; Collins, C.M. Numerical evaluation of image homogeneity, signal-to-noise ratio, and specific absorption rate for human brain imaging at 1.5, 3, 7, 10.5, and 14 T in an 8-channel transmit/receive array. J. Magn. Reson. Imaging 2015, 41, 1432–1439. [Google Scholar] [CrossRef] [Green Version]
- Alon, L.; Deniz, C.M.; Carluccio, G.; Brown, R.; Sodickson, D.K.; Collins, C.M. Effects of anatomical differences on electromagnetic fields, SAR, and temperature change. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2016, 46, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, M.V.; Collins, C.M.; Sodickson, D.K.; Brown, R.; Wiggins, G.C.; Lattanzi, R. Dependence of B1+ and B1− field patterns of surface coils on the electrical properties of the sample and the MR operating frequency. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2016, 46, 25–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alon, L.; Lattanzi, R.; Lakshmanan, K.; Brown, R.; Deniz, C.M.; Sodickson, D.K.; Collins, C.M. Transverse slot antennas for high field MRI. Magn. Reson. Med. 2018, 80, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, M.V.; Deniz, C.M.; Collins, C.M.; Sodickson, D.K.; Lattanzi, R. Manipulating transmit and receive sensitivities of radiofrequency surface coils using shielded and unshielded high-permittivity materials. Magn. Reson. Mater. Phys. Biol. Med. 2018, 31, 355–366. [Google Scholar] [CrossRef]
- Vaidya, M.V.; Lazar, M.; Deniz, C.M.; Haemer, G.G.; Chen, G.; Bruno, M.; Sodickson, D.K.; Lattanzi, R.; Collins, C.M. Improved detection of fMRI activation in the cerebellum at 7 T with dielectric pads extending the imaging region of a commercial head coil. J. Magn. Reson. Imaging 2018, 48, 431–440. [Google Scholar] [CrossRef]
- Hoult, D.I. The principle of reciprocity in signal strength calculations—A mathematical guide. Concepts Magn. Reson. 2000, 12, 173–187. [Google Scholar] [CrossRef]
- Im, G.H.; Seo, J.-H.; Kim, K.-N.; Heo, P.; Chung, C.C.; Jang, M.S.; Lee, J.H.; Kim, S.I. Effective arrangement of separated transmit-only/receive-only RF coil for improvement of B1 homogeneity at 7 Tesla. J. Korean Phys. Soc. 2014, 65, 616–624. [Google Scholar] [CrossRef]
- Tang, L.; Hue, Y.K.; Ibrahim, T.S. Studies of RF shimming techniques with minimization of RF power deposition and their associated temperature changes. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2011, 39B, 11–25. [Google Scholar] [CrossRef]
- Herrmann, T.; Liebig, T.; Mallow, J.; Bruns, C.; Stadler, J.; Mylius, J.; Brosch, M.; Svedja, J.T.; Chen, Z.; Rennings, A.; et al. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields. PLoS ONE 2018, 13, e0191719. [Google Scholar] [CrossRef]
BP-BC RF Coil wo-scHPM | BP-BC RF Coil w-scHPM | 16-ch RF Coil wo-scHPM | 16-ch RF Coil w-scHPM | ||||
---|---|---|---|---|---|---|---|
Max values of the unnormalized || field | ×10−5 (μT) | ||||||
Oil-based cylindrical phantom | wo-WE | 0.247 | 0.291 | 0.742 | 2.342 | ||
w-WE | 0.284 | 0.443 | 2.810 | 3.133 | |||
Human head model | wo-WE | 0.588 | 0.609 | 0.554 | 1.068 | ||
w-WE | 0.637 | 0.781 | 1.112 | 2.387 | |||
SD values of the unnormalized || field | ×10−5 (μT) | ||||||
Oil-based cylindrical phantom | wo-WE | 0.004 | 0.004 | 0.007 | 0.009 | ||
w-WE | 0.003 | 0.011 | 0.058 | 0.071 | |||
Human head model | wo-WE | 0.093 | 0.094 | 0.086 | 0.165 | ||
w-WE | 0.100 | 0.120 | 0.173 | 0.371 | |||
Max values of the unnormalized || field | ×10−5 (μT) | ||||||
Oil-based cylindrical phantom | wo-WE | 0.050 | 0.071 | 0.156 | 0.537 | ||
w-WE | 0.058 | 0.128 | 0.659 | 0.784 | |||
Human head model | wo-WE | 0.271 | 0.273 | 0.256 | 0.487 | ||
w-WE | 0.292 | 0.346 | 0.508 | 1.081 | |||
SD values of the unnormalized || field | ×10−5 (μT) | ||||||
Oil-based cylindrical phantom | wo-WE | 0.014 | 0.016 | 0.041 | 0.137 | ||
w-WE | 0.014 | 0.025 | 0.154 | 0.170 | |||
Human head model | wo-WE | 0.048 | 0.049 | 0.046 | 0.088 | ||
w-WE | 0.052 | 0.060 | 0.091 | 0.191 | |||
Max values of the unnormalized |E| field | (V/m) | ||||||
Oil-based cylindrical phantom | wo-WE | 260.257 | 202.869 | 644.104 | 2163.678 | ||
w-WE | 224.388 | 296.424 | 1998.820 | 1900.393 | |||
Human head model | wo-WE | 727.420 | 711.303 | 603.219 | 1186.803 | ||
w-WE | 740.012 | 918.380 | 1230.528 | 2725.248 | |||
SD values of the unnormalized |E| field | (V/m) | ||||||
Oil-based cylindrical phantom | wo-WE | 60.182 | 44.438 | 154.113 | 516.632 | ||
w-WE | 50.242 | 64.141 | 463.342 | 422.434 | |||
Human head model | wo-WE | 62.877 | 63.044 | 57.199 | 110.145 | ||
w-WE | 66.373 | 79.834 | 115.689 | 246.113 |
BP-BC RF Coil w-scHPM – wo-WE | 16-ch RF Coil w-scHPM – wo-WE | Capability Rate | ||||
---|---|---|---|---|---|---|
Sensitivity change ratio of the unnormalized || field | (%) | |||||
Oil-based cylindrical phantom | w-scHPM | 117.814 | 315.633 | 267.909 | ||
w-WE | 114.980 | 378.706 | 329.368 | |||
w-scHPM – w-WE | 132.823 | 430.866 | 324.391 | |||
Human head model | w-scHPM | 103.571 | 192.780 | 186.132 | ||
w-WE | 108.333 | 200.722 | 182.282 | |||
w-scHPM – w-WE | 132.823 | 430.866 | 324.391 | |||
Sensitivity change ratio of the unnormalized || field | (%) | |||||
Oil-based cylindrical phantom | w-scHPM | 142.000 | 344.231 | 242.146 | ||
w-WE | 116.000 | 422.436 | 364.169 | |||
w-scHPM – w-WE | 256.000 | 502.564 | 196.314 | |||
Human head model | w-scHPM | 100.738 | 190.234 | 188.841 | ||
w-WE | 107.749 | 198.438 | 184.166 | |||
w-scHPM – w-WE | 127.675 | 422.266 | 330.734 | |||
Sensitivity change ratio of the unnormalized |E| field | (%) | |||||
Oil-based cylindrical phantom | w-scHPM | 77.950 | 335.921 | 430.947 | ||
w-WE | 86.218 | 310.326 | 359.932 | |||
w-scHPM – w-WE | 113.897 | 295.044 | 259.046 | |||
Human head model | w-scHPM | 97.784 | 196.745 | 201.203 | ||
w-WE | 101.731 | 203.994 | 200.522 | |||
w-scHPM – w-WE | 126.252 | 451.784 | 357.844 |
BP-BC RF Coil w-scHPM – wo-WE | 16-ch RF Coil w-scHPM – wo-WE | Capability Rate | ||||
---|---|---|---|---|---|---|
SD change ratio of the unnormalized || field | (%) | |||||
Oil-based cylindrical phantom | w-scHPM | 100.000 | 128.571 | 128.571 | ||
w-WE | 75.000 | 828.571 | 1104.762 | |||
w-scHPM – w-WE | 275.000 | 1014.286 | 368.831 | |||
Human head model | w-scHPM | 101.075 | 191.861 | 189.819 | ||
w-WE | 107.527 | 201.163 | 187.081 | |||
w-scHPM – w-WE | 129.032 | 431.395 | 334.331 | |||
SD change ratio of the unnormalized || field | (%) | |||||
Oil-based cylindrical phantom | w-scHPM | 114.286 | 334.146 | 292.378 | ||
w-WE | 100.000 | 375.601 | 375.610 | |||
w-scHPM – w-WE | 178.571 | 414.634 | 232.195 | |||
Human head model | w-scHPM | 102.083 | 191.304 | 187.400 | ||
w-WE | 108.333 | 197.826 | 182.609 | |||
w-scHPM – w-WE | 125.000 | 415.217 | 332.174 | |||
SD change ratio of the unnormalized |E| field | (%) | |||||
Oil-based cylindrical phantom | w-scHPM | 73.839 | 335.229 | 453.999 | ||
w-WE | 83.484 | 300.650 | 360.129 | |||
w-scHPM – w-WE | 106.579 | 274.106 | 257.186 | |||
Human head model | w-scHPM | 100.266 | 192.566 | 192.056 | ||
w-WE | 105.556 | 202.258 | 191.606 | |||
w-scHPM – w-WE | 126.968 | 430.279 | 338.888 |
BP-BC RF Coil wo-scHPM | BP-BC RF Coil w-scHPM | 16-ch RF Coil wo-scHPM | 16-ch RF Coil w-scHPM | ||||
---|---|---|---|---|---|---|---|
Mean values of the unnormalized || field | ×10−5 (μT) | ||||||
Oil-based cylindrical phantom | wo-WE | 0.237 | 0.271 | 0.722 | 2.827 | ||
w-WE | 0.276 | 0.383 | 2.312 | 2.656 | |||
Human head model | wo-WE | 0.251 | 0.269 | 0.251 | 0.499 | ||
w-WE | 0.280 | 0.350 | 0.512 | 1.112 | |||
Mean values of the unnormalized || field | ×10−5 (μT) | ||||||
Oil-based cylindrical phantom | wo-WE | 0.026 | 0.024 | 0.063 | 0.248 | ||
w-WE | 0.023 | 0.038 | 0.234 | 0.262 | |||
Human head model | wo-WE | 0.137 | 0.131 | 0.118 | 0.220 | ||
w-WE | 0.141 | 0.164 | 0.229 | 0.480 | |||
Mean values of the unnormalized |E| field | (V/m) | ||||||
Oil-based cylindrical phantom | wo-WE | 170.457 | 135.949 | 141.255 | 140.482 | ||
w-WE | 152.245 | 189.240 | 150.249 | 180.131 | |||
Human head model | wo-WE | 141.255 | 140.482 | 131.268 | 252.349 | ||
w-WE | 150.249 | 180.131 | 267.025 | 566.399 | |||
CV (SD/mean) of the unnormalized || field | (%) | ||||||
Oil-based cylindrical phantom | wo-WE | 1.688 | 1.4777 | 0.9695 | 0.3184 | ||
w-WE | 1.086 | 2.8728 | 2.5087 | 2.6732 | |||
Human head model | wo-WE | 37.067 | 34.905 | 34.263 | 33.066 | ||
w-WE | 35.753 | 34.325 | 33.789 | 33.363 | |||
CV (SD/mean) of the unnormalized || field | (%) | ||||||
Oil-based cylindrical phantom | wo-WE | 53.640 | 65.871 | 65.600 | 55.153 | ||
w-WE | 60.450 | 65.036 | 65.840 | 64.886 | |||
Human head model | wo-WE | 35.139 | 37.433 | 39.082 | 40.073 | ||
w-WE | 36.932 | 36.563 | 39.808 | 39.800 | |||
CV (SD/mean) of the unnormalized |E| field | (%) | ||||||
Oil-based cylindrical phantom | wo-WE | 35.306 | 32.687 | 109.103 | 367.758 | ||
w-WE | 33.001 | 33.894 | 308.384 | 234.515 | |||
Human head model | wo-WE | 44.513 | 44.877 | 43.574 | 43.648 | ||
w-WE | 44.175 | 44.320 | 43.325 | 43.452 |
BP-BC RF Coil wo-scHPM | BP-BC RF Coil w-scHPM | 16-ch RF Coil wo-scHPM | 16-ch RF Coil w-scHPM | |||
---|---|---|---|---|---|---|
Norm-COEF (Oil-based cylindrical phantom) | (a.u.) | |||||
wo-WE | 0.793 | 0.723 | 0.264 | 0.085 | ||
w-WE | 0.689 | 0.521 | 0.076 | 0.071 | ||
Norm-COEF (Human head model) | (a.u.) | |||||
wo-WE | 0.362 | 0.352 | 0.383 | 0.199 | ||
w-WE | 0.334 | 0.273 | 0.192 | 0.087 |
BP-BC RF Coil wo-scHPM | BP-BC RF Coil w-scHPM | 16-ch RF Coil wo-scHPM | 16-ch RF Coil w-scHPM | ||||
---|---|---|---|---|---|---|---|
field | ×10−5 (μT) | ||||||
Oil-based cylindrical phantom | wo-WE | 0.191 | 0.200 | 0.188 | 0.196 | ||
w-WE | 0.196 | 0.203 | 0.190 | 0.200 | |||
Human head model | wo-WE | 0.096 | 0.100 | 0.091 | 0.095 | ||
w-WE | 0.098 | 0.099 | 0.094 | 0.096 | |||
field | ×10−5 (μT) | ||||||
Oil-based cylindrical phantom | wo-WE | 0.002 | 0.005 | 0.003 | 0.003 | ||
w-WE | 0.001 | 0.004 | 0.002 | 0.006 | |||
Human head model | wo-WE | 0.033 | 0.033 | 0.034 | 0.033 | ||
w-WE | 0.033 | 0.033 | 0.034 | 0.033 | |||
field | (%) | ||||||
Oil-based cylindrical phantom | wo-WE | 1.011 | 2.527 | 1.569 | 1.430 | ||
w-WE | 0.409 | 2.183 | 1.022 | 2.902 | |||
Human head model | wo-WE | 34.304 | 33.084 | 37.142 | 35.043 | ||
w-WE | 33.745 | 33.256 | 35.866 | 34.429 |
BP-BC RF Coil wo-scHPM | BP-BC RF Coil w-scHPM | 16-ch RF Coil wo-scHPM | 16-ch RF Coil w-scHPM | |||
---|---|---|---|---|---|---|
Whole-averaged SAR (Mean SAR values) | (W/kg) | |||||
wo-WE | 0.209 | 0.215 | 0.249 | 0.238 | ||
w-WE | 0.216 | 0.211 | 0.243 | 0.227 | ||
Max SAR values | (W/kg) | |||||
wo-WE | 8.203 | 8.461 | 8.496 | 8.472 | ||
w-WE | 8.376 | 8.248 | 8.284 | 8.552 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.-H.; Jo, Y.-S.; Oh, C.-H.; Chung, J.-Y. A New Combination of Radio-Frequency Coil Configurations Using High-Permittivity Materials and Inductively Coupled Structures for Ultrahigh-Field Magnetic Resonance Imaging. Sensors 2022, 22, 8968. https://doi.org/10.3390/s22228968
Seo J-H, Jo Y-S, Oh C-H, Chung J-Y. A New Combination of Radio-Frequency Coil Configurations Using High-Permittivity Materials and Inductively Coupled Structures for Ultrahigh-Field Magnetic Resonance Imaging. Sensors. 2022; 22(22):8968. https://doi.org/10.3390/s22228968
Chicago/Turabian StyleSeo, Jeung-Hoon, Young-Seung Jo, Chang-Hyun Oh, and Jun-Young Chung. 2022. "A New Combination of Radio-Frequency Coil Configurations Using High-Permittivity Materials and Inductively Coupled Structures for Ultrahigh-Field Magnetic Resonance Imaging" Sensors 22, no. 22: 8968. https://doi.org/10.3390/s22228968
APA StyleSeo, J.-H., Jo, Y.-S., Oh, C.-H., & Chung, J.-Y. (2022). A New Combination of Radio-Frequency Coil Configurations Using High-Permittivity Materials and Inductively Coupled Structures for Ultrahigh-Field Magnetic Resonance Imaging. Sensors, 22(22), 8968. https://doi.org/10.3390/s22228968