Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = bioresorbable materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8575 KiB  
Article
Chlorogenic Acid–Strontium-Containing Dual-Functional Bioresorbable External Stent Suppresses Venous Graft Restenosis via Hippo-YAP Signaling Pathway
by Ge Zhu, Su Wang, Zhang Liu, Shengji Gu, Feng Chen and Wangfu Zang
J. Funct. Biomater. 2025, 16(7), 259; https://doi.org/10.3390/jfb16070259 - 11 Jul 2025
Viewed by 561
Abstract
Vein graft restenosis remains a major complication following coronary artery bypass grafting (CABG), mainly due to the abnormal proliferation of vascular smooth muscle cells (VSMCs) and impaired endothelial repair. While external stents (eStents) can provide mechanical support and limit adverse remodeling, traditional metallic [...] Read more.
Vein graft restenosis remains a major complication following coronary artery bypass grafting (CABG), mainly due to the abnormal proliferation of vascular smooth muscle cells (VSMCs) and impaired endothelial repair. While external stents (eStents) can provide mechanical support and limit adverse remodeling, traditional metallic stents are non-degradable and may induce chronic inflammation and fibrosis. In contrast, many bioresorbable materials degrade too quickly or lack mechanical strength. These challenges highlight the need for external stents that combine sufficient mechanical strength with biodegradability to support long-term graft patency. This is the first study that develops a chlorogenic acid–strontium (SrCA)-loaded polycaprolactone bioresorbable eStent that inhibits VSMC proliferation and enhances endothelial repair via Hippo–Yes-associated protein (YAP) signaling, addressing vein graft restenosis post-CABG. Combining mechanical support and biodegradability, it overcomes the limitations of non-degradable stents and rapidly degrading biomaterials, elucidates the potential of natural polyphenol–metal ion complexes in vascular remodeling, and offers an innovative strategy for the prevention of vein graft restenosis. Full article
Show Figures

Figure 1

58 pages, 9226 KiB  
Review
Biocompatible Glues: Recent Progress and Emerging Frontiers in Surgical Adhesion
by Marine Boursier, Yves Bayon, Claire Negrell, Julien Pinaud and Sylvain Caillol
Polymers 2025, 17(13), 1749; https://doi.org/10.3390/polym17131749 - 24 Jun 2025
Viewed by 846
Abstract
Surgical adhesives and glues have gained significant attention in the medical field due to their potential to replace traditional sutures and staples in various surgical applications. This review explores the evolution of biocompatible adhesives, focusing on their chemical composition, mechanical properties, and biocompatibility. [...] Read more.
Surgical adhesives and glues have gained significant attention in the medical field due to their potential to replace traditional sutures and staples in various surgical applications. This review explores the evolution of biocompatible adhesives, focusing on their chemical composition, mechanical properties, and biocompatibility. We discuss the key challenges in developing these materials, including their adhesive strength, degradation rate, and tissue compatibility. The article also delves into regulatory frameworks governing their use in clinical settings and highlights the ongoing innovations aimed at enhancing their performance and safety. Finally, the review examines the current trends in the development of next-generation surgical adhesives, with an emphasis on environmentally friendly and bioresorbable options. The importance of multidisciplinary collaboration in advancing these materials for clinical use is also underscored. Full article
(This article belongs to the Collection Selected Papers from "CNRS")
Show Figures

Graphical abstract

17 pages, 4192 KiB  
Article
Significant Enhancement of Strength and Ductility in Bioresorbable Zn–0.1Mg Alloy via ECAP Processing
by Iryna Cuperová, Martin Fujda, Róbert Kočiško, Patrik Petroušek, Zuzana Molčanová, Miloš Matvija, Róbert Džunda, Beáta Ballóková, Dávid Csík, Katarína Gáborová and Karel Saksl
Inorganics 2025, 13(6), 193; https://doi.org/10.3390/inorganics13060193 - 10 Jun 2025
Cited by 1 | Viewed by 551
Abstract
Zinc (Zn)-based alloys are considered promising bioresorbable materials for intracorporeal implants due to their good biocompatibility and suitable degradation rate in physiological environments. However, their broader application is hindered by insufficient mechanical properties, which are essential for fulfilling the therapeutic function of bioresorbable [...] Read more.
Zinc (Zn)-based alloys are considered promising bioresorbable materials for intracorporeal implants due to their good biocompatibility and suitable degradation rate in physiological environments. However, their broader application is hindered by insufficient mechanical properties, which are essential for fulfilling the therapeutic function of bioresorbable implants. This study investigates the effect of severe plastic deformation on the microstructure and mechanical properties of as-cast Zn–0.1Mg (wt.%) alloy. The as-cast alloy, characterised by a coarse-grained microstructure with intermetallic phases at grain boundaries and low strength and ductility, was subjected to two passes of Equal Channel Angular Pressing (ECAP). The intense plastic deformation transformed the coarse-grained structure into an ultrafine-grained solid solution matrix. This substantial microstructural refinement led to a significant enhancement in mechanical performance. The yield strength (YS) and ultimate tensile strength (UTS) more than doubled, reaching 198 MPa and 215 MPa, respectively. Remarkably, the elongation increased from 2.2% to 187% in tensile testing. These findings confirm the beneficial effect of grain refinement and dynamic recrystallisation on the mechanical behaviour of bioresorbable Zn–0.1Mg alloy and highlight the high potential of ECAP processing for optimising the mechanical properties of Zn-based biodegradable materials. Full article
Show Figures

Figure 1

36 pages, 13208 KiB  
Review
Additive Manufacturing of Metal-Infilled Polylactic Acid-Based Sustainable Biocomposites—A Review of Methods, Properties and Applications Abetted with Patent Landscape Analysis
by Sengottaiyan Sivalingam, Venkateswaran Bhuvaneswari, Lakshminarasimhan Rajeshkumar and Devarajan Balaji
Polymers 2025, 17(11), 1565; https://doi.org/10.3390/polym17111565 - 4 Jun 2025
Viewed by 1144
Abstract
Innovations in additive manufacturing (AM) methods represent a significant advancement in manufacturing technology, opening new avenues for creating objects in various shapes and sizes. Fused deposition modeling (FDM) is a specialized AM technique in which computers build layers upon each other to form [...] Read more.
Innovations in additive manufacturing (AM) methods represent a significant advancement in manufacturing technology, opening new avenues for creating objects in various shapes and sizes. Fused deposition modeling (FDM) is a specialized AM technique in which computers build layers upon each other to form a complete 3D object. The feasibility of producing metal parts using these methods has been thoroughly analyzed, but the design process has yet to catch up with manufacturing capabilities. Biodegradable aliphatic polyester PLA is derived from lactic acid. To enhance its strength, PLA is combined with metal particles, resulting in versatile property improvements and applications. While the aesthetic and functional qualities of PLA–metal composite filaments are intriguing, they also present difficulties related to extrusion, equipment wear, and maintaining consistent print quality. These challenges could be mitigated, to some extent, with careful tuning and specialized hardware. However, the inferior mechanical properties of bioresorbable PLA filaments highlight the need for the development of infilled PLA filaments to improve strength and other characteristics. This review discusses the 3D printing of PLA infilled with metal particles, various materials used, and their properties as a matter of interest in AM technology. Additionally, the applications of PLA–metal composites, along with their implications, limitations, and prospects, are comprehensively examined in this article. This sets the stage for the development of high-strength, sustainable materials for use in a range of engineering and technology fields. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

22 pages, 2398 KiB  
Review
Current State of Knowledge Regarding the Treatment of Cranial Bone Defects: An Overview
by Jagoda Kurowiak, Krystian Piesik and Tomasz Klekiel
Materials 2025, 18(9), 2021; https://doi.org/10.3390/ma18092021 - 29 Apr 2025
Viewed by 1042
Abstract
In this article, an analysis of the problem of treating bone defects using cranial bone disorders as an example is presented. The study was performed in the context of the development of various implant biomaterials used to fill bone defects. An analysis of [...] Read more.
In this article, an analysis of the problem of treating bone defects using cranial bone disorders as an example is presented. The study was performed in the context of the development of various implant biomaterials used to fill bone defects. An analysis of the requirements for modern materials is undertaken, indicating the need for their further development. The article focuses particular attention on these biomaterial properties, which have an influence on bioresorbability and promote osteointegration and bone growth. The analysis showed the need for further development of biomaterials, the characteristics of which may be multifunctionality. Multifunctional scaffolds are those that simultaneously fill and stabilize the defect and contribute to the proper process of regeneration and reconstruction of cranial bones. Due to the complex structure of the skull and special protective functions, there is a need to develop innovative implants. Implants with complex geometries can be successfully manufactured using additive technologies. Full article
(This article belongs to the Special Issue Advances in Implant Materials and Biocompatibility)
Show Figures

Figure 1

14 pages, 3971 KiB  
Article
Effect of Annealing on the Mechanical Properties of Composites of PLA Mixed with Mg and with HA
by Carmen Sánchez González, Aurora Pérez Jiménez, Mauro Malvé and Cristina Díaz Jiménez
Polymers 2025, 17(9), 1207; https://doi.org/10.3390/polym17091207 - 28 Apr 2025
Cited by 1 | Viewed by 719
Abstract
Polylactic acid (PLA) is a bioresorbable and biocompatible material and is a promising alternative to the current materials used for permanent implants as it has osteosynthesis properties. However, this material has some drawbacks due to its low mechanical and thermal resistance after 3D [...] Read more.
Polylactic acid (PLA) is a bioresorbable and biocompatible material and is a promising alternative to the current materials used for permanent implants as it has osteosynthesis properties. However, this material has some drawbacks due to its low mechanical and thermal resistance after 3D printing. Extensive research has been conducted to improve the properties of this material, for example, with the addition of other compounds, such as magnesium (Mg) or Hydroxyapatite (HA). These reinforced materials have been shown to reduce the internal stress of the matrix of PLA, improving the thermal, optical and structural properties of the material, even though the performance achieved is lower than needed to be implanted. In addition, although it is known that the addition of Mg or HA affects the mechanical performance of the material, mechanical properties have not been studied in the literature. Thus, the aim of this study is to research the effect of thermal post-processing based on annealing of composites made of PLA with Mg and PLA with HA, manufactured by fused filament fabrication, with the goal of finding an improvement in the mechanical properties of these materials. As a result, different designs of annealing processes have been studied with different reinforced materials and their mechanical properties have been compared, studying axial traction and compression, radial compression as well as flexibility, among others. The comparative results achieved show the relevance of the design of the annealing process for the improvement of the mechanical properties of these materials. Full article
(This article belongs to the Special Issue Polymer/Ceramic Composites, 2nd Edition)
Show Figures

Figure 1

48 pages, 2918 KiB  
Review
History of Metallic Orthopedic Materials
by Elia Marin and Alex Lanzutti
Metals 2025, 15(4), 378; https://doi.org/10.3390/met15040378 - 28 Mar 2025
Viewed by 2580
Abstract
The history of metallic orthopedic materials spans a few centuries, from the use of carbon steel to the widespread adoption of titanium and its alloys. This paper explores the evolution of these materials, emphasizing their mechanical properties, biocompatibility, and the roles that they [...] Read more.
The history of metallic orthopedic materials spans a few centuries, from the use of carbon steel to the widespread adoption of titanium and its alloys. This paper explores the evolution of these materials, emphasizing their mechanical properties, biocompatibility, and the roles that they have played in improving orthopedic care. Key developments include the discovery of titanium’s osseointegration capability, the advent of porous coatings for osseointegration, surface modifications, and the rise of additive manufacturing for patient-specific implants. Beyond titanium, emerging materials such as biodegradable alloys, tantalum, zirconium, and amorphous metals are creating a completely new field of application for orthopedic metals. These innovations address longstanding challenges, including stress shielding, corrosion, and implant longevity, while leading the way for bioresorbable and 3D-printed patient-specific solutions. This paper concludes by examining future trends and their potential for industrial application. By understanding the historical developments in metallic orthopedic materials, this review highlights how past advancements have laid the foundation for both current and future innovations, guiding research towards solutions that better mimic the properties of biological tissues, offer higher reliability in vivo, and enable patient-specific treatments. Full article
Show Figures

Graphical abstract

17 pages, 5184 KiB  
Article
Ultrashort Pulse Laser Fabrication and Evaluation of Innovative Resorbable Barbed Sutures
by Karuna Nambi Gowri, Walid Al Asad, Shubha Majumder, Xin Zhao and Martin William King
Polymers 2025, 17(4), 544; https://doi.org/10.3390/polym17040544 - 19 Feb 2025
Viewed by 696
Abstract
Laser micro-machining is a rapidly growing technique to create, manufacture and fabricate microstructures on different materials ranging from metals and ceramics to polymers. Micro- and nano-machining on different materials has been helpful and useful for various biomedical applications. This study focuses on the [...] Read more.
Laser micro-machining is a rapidly growing technique to create, manufacture and fabricate microstructures on different materials ranging from metals and ceramics to polymers. Micro- and nano-machining on different materials has been helpful and useful for various biomedical applications. This study focuses on the micro-machining of innovative barbed sutures using an ultrashort pulse laser, specifically a femtosecond (fs) laser system. Two bioresorbable polymeric materials, namely, catgut and poly (4-hydroxybutyrate) (P4HB), were studied and micro-machined using the femtosecond (fs) laser system. The optimized laser parameter was used to fabricate two different barb geometries, namely, straight and curved barbs. The mechanical properties were evaluated via tensile testing, and the anchoring performance was studied by means of a suture–tissue pull-out protocol using porcine dermis tissue which was harvested from the medial dorsal site. Along with the evaluation of the mechanical and anchoring properties, the thermal characteristics and degradation profiles were assessed and compared against mechanically cut barbed sutures using a flat blade. The mechanical properties of laser-fabricated barbed sutures were significantly improved when compared to the mechanical properties of the traditionally/mechanically cut barbed sutures, while there was not any significant difference in the anchoring properties of the barbed sutures fabricated through either of the fabrication techniques. Based on the differential scanning calorimetry (DSC) results for thermal transitions, there was no major impact on the inherent material properties due to the laser treatment. This was also observed in the degradation results, where both the mechanically cut and laser-fabricated barbed sutures exhibited similar profiles throughout the evaluation time period. It was concluded that switching the fabrication technique from mechanical cutting to laser fabrication would be beneficial in producing a more reproducible and consistent barb geometry with more precision and accuracy. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Graphical abstract

23 pages, 6905 KiB  
Review
Bioresorbable Materials for Wound Management
by Hye-Min Lee and Hanjun Ryu
Biomimetics 2025, 10(2), 108; https://doi.org/10.3390/biomimetics10020108 - 12 Feb 2025
Viewed by 1471
Abstract
Chronic wounds pose a significant healthcare challenge due to their risk of severe complications, necessitating effective management strategies. Bioresorbable materials have emerged as an innovative solution, offering advantages such as eliminating the need for secondary surgical removal, reducing infection risks, and enabling time-delayed [...] Read more.
Chronic wounds pose a significant healthcare challenge due to their risk of severe complications, necessitating effective management strategies. Bioresorbable materials have emerged as an innovative solution, offering advantages such as eliminating the need for secondary surgical removal, reducing infection risks, and enabling time-delayed drug delivery. This review examines recent advancements in bioresorbable wound healing materials, focusing on a systematic review of bioresorbable materials, systems incorporating electrical stimulation, and drug delivery technologies to accelerate tissue repair. The discussion encompasses the fundamental principles of bioresorbable materials, including their resorption mechanisms and key properties, alongside preclinical applications that demonstrate their practical potential. Critical challenges impeding widespread adoption are addressed, and prospects for integrating these cutting-edge systems into clinical practice are outlined. Together, these insights underscore the promise of bioresorbable materials in revolutionizing chronic wound care. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Wound Healing Application)
Show Figures

Graphical abstract

17 pages, 11750 KiB  
Article
Preparation and Optimization of a Polyhydroxyoctanoate–Hydroxyapatite Composite Available to Scaffolds in Implantable Devices
by Dana-Maria Miu, Ramona Daniela Pavaloiu, Fawzia Sha’at, Mariana-Gratiela Vladu, Georgeta Neagu, Vasile-Sorin Manoiu and Mihaela-Carmen Eremia
Molecules 2025, 30(3), 730; https://doi.org/10.3390/molecules30030730 - 6 Feb 2025
Viewed by 777
Abstract
Biomaterials represent a distinct class of materials used in various medical applications, such as replicating the shape or function of damaged tissue caused by disease or trauma. The increasing focus on polyhydroxyalkanoate (PHA) research can be attributed to their properties, such as biodegradability, [...] Read more.
Biomaterials represent a distinct class of materials used in various medical applications, such as replicating the shape or function of damaged tissue caused by disease or trauma. The increasing focus on polyhydroxyalkanoate (PHA) research can be attributed to their properties, such as biodegradability, biocompatibility, and bioresorbability. PHAs can be incorporated into polymeric complexes or combined with bioceramics or bioactive substances. Films of PHO-HAp-Curcumin were prepared, and optimization studies were conducted using Design-Expert software (Stat-Ease 360-Trial Version). The effects of independent variables (amount of PHO, HAp, and curcumin) on biodegradability, film thickness, and curcumin release were studied. Statistical modeling revealed significant interactions among the components, with the 2FI and quadratic models providing strong predictive accuracy. The interaction of HAp and PHO amounts (X2X3) has a significant effect on biodegradability (Y1) and film thickness (Y3). For the degree of the cumulative release of curcumin (CDR), there was no significant interaction between the independent variables (curcumin-X1, HAp-X2, and PHO-X3). Optimized film exhibited a maximum desirability of 0.777 with 1 mg of curcumin, 100 mg of HAp, and 172.31 mg of PHO. A morphological analysis of optimized film revealed a rough, particle-rich surface favorable for biomedical use. The findings highlight the promise of PHO-HAp-Curcumin composite films in advancing tissue engineering. Full article
(This article belongs to the Special Issue Synthesis and Applications of Natural Polymers and Their Derivatives)
Show Figures

Figure 1

25 pages, 10735 KiB  
Review
Recent Advances in Polyurethane for Artificial Vascular Application
by Hua Ji, Xiaochen Shi and Hongjun Yang
Polymers 2024, 16(24), 3528; https://doi.org/10.3390/polym16243528 - 18 Dec 2024
Cited by 2 | Viewed by 1811
Abstract
Artificial blood vessels made from polyurethane (PU) have been researched for many years but are not yet in clinical use. The main reason was that the PU materials are prone to degradation after contact with blood and will also cause inflammation after long-term [...] Read more.
Artificial blood vessels made from polyurethane (PU) have been researched for many years but are not yet in clinical use. The main reason was that the PU materials are prone to degradation after contact with blood and will also cause inflammation after long-term implantation. At present, PU has made progress in biostability and biocompatibility, respectively. The PU for artificial blood vessels still requires a balance between material stability and biocompatibility to maintain its long-term stability in vivo, which needs to be further optimized. Based on the requirement of PU materials for artificial vascular applications, this paper views the development of biostable PU, bioactive PU, and bioresorbable PU. The improvement of biostable PU from the monomer structure, chemical composition, and additives are discussed to improve the long-term biostability in vivo. The surface grafting and functionalization methods of bioactive PU to reduce thrombosis and promote endothelialization for improving biocompatibility are summarized. In addition, the bioresorbable PU for tissue-engineered artificial blood vessels is discussed to balance between the degradation rate and mechanical properties. The ideal PU materials for artificial blood vessels must have good mechanical properties, stability, and biocompatibility at the same time. Finally, the application potential of PU materials in artificial vascular is prospected. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

14 pages, 4086 KiB  
Article
3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
by Nayla J. Lores, Beatriz Aráoz, Xavier Hung, Mariano H. Talou, Aldo R. Boccaccini, Gustavo A. Abraham, Élida B. Hermida and Pablo C. Caracciolo
Polymers 2024, 16(23), 3355; https://doi.org/10.3390/polym16233355 - 29 Nov 2024
Cited by 1 | Viewed by 1133
Abstract
Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present [...] Read more.
Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering. Strategies such as blending and composite filament production still constitute an important challenge in addressing SPEU limitations. In this work, SPEU-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blends and SPEU-PHBV-Bioglass 45S5® (BG) composite materials were processed into filaments and 3D structures. A comprehensive characterization of their morphology and thermal and mechanical properties is presented. The production of 3D structures based on SPEU-PHBV with excellent dimensional precision was achieved. Although SPEU-PHBV-BG printed structures showed some defects associated with the printing process, the physicochemical, thermal, and mechanical properties of these materials hold promise. The blend composition, BG content and particle size, processing parameters, and blending techniques were carefully managed to ensure that the mechanical behavior of the material remained under control. The incorporation of PHBV in SPEU-PHBV at 70:30 w/w and BG (5 wt%) acted as reinforcement, enhancing both the elastic modulus of the filaments and the compressive mechanical behavior of the 3D matrices. The compressive stress of the printed scaffold was found to be 1.48 ± 0.13 MPa, which is optimal for tissues such as human proximal tibial trabecular bone. Therefore, these materials show potential for use in the design and manufacture of customized structures for bone tissue engineering. Full article
Show Figures

Graphical abstract

29 pages, 1560 KiB  
Review
The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration
by Julia Weronika Łuczak, Małgorzata Palusińska, Damian Matak, Damian Pietrzak, Paweł Nakielski, Sławomir Lewicki, Marta Grodzik and Łukasz Szymański
Int. J. Mol. Sci. 2024, 25(23), 12766; https://doi.org/10.3390/ijms252312766 - 27 Nov 2024
Cited by 21 | Viewed by 9510
Abstract
Bone defects and fractures present significant clinical challenges, particularly in orthopedic and maxillofacial applications. While minor bone defects may be capable of healing naturally, those of a critical size necessitate intervention through the use of implants or grafts. The utilization of traditional methodologies, [...] Read more.
Bone defects and fractures present significant clinical challenges, particularly in orthopedic and maxillofacial applications. While minor bone defects may be capable of healing naturally, those of a critical size necessitate intervention through the use of implants or grafts. The utilization of traditional methodologies, encompassing autografts and allografts, is constrained by several factors. These include the potential for donor site morbidity, the restricted availability of suitable donors, and the possibility of immune rejection. This has prompted extensive research in the field of bone tissue engineering to develop advanced synthetic and bio-derived materials that can support bone regeneration. The optimal bone substitute must achieve a balance between biocompatibility, bioresorbability, osteoconductivity, and osteoinductivity while simultaneously providing mechanical support during the healing process. Recent innovations include the utilization of three-dimensional printing, nanotechnology, and bioactive coatings to create scaffolds that mimic the structure of natural bone and enhance cell proliferation and differentiation. Notwithstanding the advancements above, challenges remain in optimizing the controlled release of growth factors and adapting materials to various clinical contexts. This review provides a comprehensive overview of the current advancements in bone substitute materials, focusing on their biological mechanisms, design considerations, and clinical applications. It explores the role of emerging technologies, such as additive manufacturing and stem cell-based therapies, in advancing the field. Future research highlights the need for multidisciplinary collaboration and rigorous testing to develop advanced bone graft substitutes, improving outcomes and quality of life for patients with complex defects. Full article
(This article belongs to the Special Issue Regenerative Medicine: Biomaterials and Stem Cell Research)
Show Figures

Figure 1

29 pages, 13992 KiB  
Review
External Scaffold for Strengthening the Pulmonary Autograft in the Ross Procedure
by Francesco Nappi, Aubin Nassif and Thibaut Schoell
Biomimetics 2024, 9(11), 674; https://doi.org/10.3390/biomimetics9110674 - 5 Nov 2024
Viewed by 1347
Abstract
Despite offering several potential benefits over standard prosthetic aortic valve replacement, the use of the pulmonary autograft has been limited to date due to concerns over the risk of pulmonary autograft expansion and the need for reintervention. Several techniques using materials with biomimetic [...] Read more.
Despite offering several potential benefits over standard prosthetic aortic valve replacement, the use of the pulmonary autograft has been limited to date due to concerns over the risk of pulmonary autograft expansion and the need for reintervention. Several techniques using materials with biomimetic potential have been developed to reduce this complication. The incidence, risk factors, and pathophysiology of pulmonary autograft dilatation are discussed in this article. This seminar will provide an overview of the techniques of external pulmonary autograft support and their advantages and limitations. It also considers future directions for further investigation and future clinical applications of external pulmonary autograft support. Dilatation of the autograft is more likely to occur in patients with aortic regurgitation and a dilated aortic annulus. External scaffolding may prevent autograft stretching and expansion in these specific cases. However, from a biomimetic point of view, any permanent scaffold potentially restricts the movement of the autograft root. This reduces some of the benefits associated with the use of autologous tissue, which is the priority of the Ross procedure. To address this issue, several bioresorbable matrices could be used to support the root during its initial adaptive phase. Control of blood pressure with aggressive therapy is the first line to avoid this problem in the first year after pulmonary autograft implantation, together with support of the annular and sinotubular junction in some selected cases. This is the best way to maintain stable autograft root dimensions while preserving root dynamics. However, to determine the efficacy of this combined external support and best medical management, it is important to perform regular imaging and clinical follow-up. Full article
(This article belongs to the Special Issue Biomechanics and Biomimetics in Engineering Design)
Show Figures

Figure 1

17 pages, 4406 KiB  
Article
Enhanced Experimental Setup and Methodology for the Investigation of Corrosion Fatigue in Metallic Biodegradable Implant Materials
by Lukas Schumacher, Ikra-Nur Cetin, Sira Bielefeldt, Frank Rupp and Ariadne Roehler
Materials 2024, 17(21), 5146; https://doi.org/10.3390/ma17215146 - 22 Oct 2024
Viewed by 893
Abstract
Biodegradable implants as bone fixations may present a safe alternative to traditional permanent implants, reducing the risk of infections, promoting bone healing, and eliminating the need for removal surgeries. Structural integrity is an important consideration when choosing an implant material. As a biodegradable [...] Read more.
Biodegradable implants as bone fixations may present a safe alternative to traditional permanent implants, reducing the risk of infections, promoting bone healing, and eliminating the need for removal surgeries. Structural integrity is an important consideration when choosing an implant material. As a biodegradable implant is being resorbed, until the natural bone has regrown, the implant material needs to provide mechanical stability. However, the corrosive environment of the human body may affect the fatigue life of the material. Conversely, mechanical stress can have an effect on electrochemical corrosion processes. This is known as corrosion fatigue. In the presented work, an experimental setup and methodology was established to analyze the corrosion fatigue of experimental bioresorbable materials while simultaneously monitoring the electrochemical processes. A double-walled measurement cell was constructed for a three-point bending test in Dulbecco‘s Phosphate-Buffered Saline (DPBS− −), which was used as simulated body fluid (SBF), at 37 ± 1 °C. The setup was combined with a three-electrode setup for corrosion measurements. Rod-shaped zinc samples were used to validate the setup’s functionality. Preliminary static and dynamic bending tests were carried out as per the outlined methodology to determine the test parameters. Open-circuit as well as potentiostatic polarization measurements were performed with and without mechanical loading. For the control, fatigue tests were performed in an air environment. The tested zinc samples were inspected via scanning electron microscopy (SEM). Based on the measured mechanical and electrochemical values as well as the SEM images, the effects of the different environments were investigated, and the setup’s functionality was verified. An analysis of the data showed that a comprehensive investigation of corrosion fatigue characteristics is feasible with the outlined approach. Therefore, this novel methodology shows great potential for furthering our understanding of the effects of corrosion on the fatigue of biodegradable implant materials. Full article
Show Figures

Figure 1

Back to TopTop