Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = biomimetic springs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3808 KiB  
Article
Mechanical Design, Control, and Laboratory Test of a Two-Degrees-of-Freedom Elbow Prosthesis
by Ramsés Hernández-Cerero, Juan Alejandro Flores-Campos, José Juan Mojica-Martínez, Adolfo Angel Casarez-Duran, Luis Angel Guerrero-Hernández and Christopher René Torres-SanMiguel
Bioengineering 2025, 12(7), 695; https://doi.org/10.3390/bioengineering12070695 - 25 Jun 2025
Viewed by 392
Abstract
This study presents the design and experimental testing of a two-degrees-of-freedom (2DOF) elbow prosthesis prototype designed to replicate the movement patterns of a native or normal human elbow. Two methods of the control of the prosthesis, namely, the proportional–integral–derivative method (PID; a well-established [...] Read more.
This study presents the design and experimental testing of a two-degrees-of-freedom (2DOF) elbow prosthesis prototype designed to replicate the movement patterns of a native or normal human elbow. Two methods of the control of the prosthesis, namely, the proportional–integral–derivative method (PID; a well-established method) and a combination of sliding mode control with a time base generator strategy (SMC + TBG; an advanced method), were compared on the basis of various performance metrics of the prosthesis, as obtained in laboratory tests. Among these metrics were the angular displacement and velocity as a function of time. The mechanical design combined 3D-printed components with custom-designed joints, featuring a worm gear transmission with a crown gear for flexion–extension, enhanced by torsional springs, and a pinion gear with a crown gear for pronation–supination and control. Sensors for voltage and current data acquisition enabled real-time monitoring and control. The prosthesis was tested in the laboratory with a range of motion of 100–120° for flexion–extension, 50° for supination, and 75° for pronation, demonstrating the adaptability of the actuators and validating their autonomy through battery-powered operation. The results showed that control using SMC + TBG resulted in biomimetic patterns for angular displacement and angular velocity of the prosthesis, whereas control using PID did not. Thus, the prosthesis with control provided using an SMC + TBG strategy may have been promised for use by people who have undergone transhumeral amputation. Full article
(This article belongs to the Special Issue Joint Biomechanics and Implant Design)
Show Figures

Figure 1

23 pages, 5796 KiB  
Article
Motion Patterns Under Multiple Constraints and Master–Slave Control of a Serial Modular Biomimetic Robot with 3-DOF Hydraulic Muscle-Driven Continuum Segments
by Yunrui Jia, Zengmeng Zhang, Junhao Guo, Yong Yang and Yongjun Gong
Biomimetics 2025, 10(5), 278; https://doi.org/10.3390/biomimetics10050278 - 29 Apr 2025
Viewed by 496
Abstract
Soft modular biomimetic robots, driven by flexible actuators, are extensively used in various fields due to their excellent flexibility, environmental adaptability, and isomorphism. However, existing flexible modules typically possess no more than two degrees of freedom for structural limitations. In this study, a [...] Read more.
Soft modular biomimetic robots, driven by flexible actuators, are extensively used in various fields due to their excellent flexibility, environmental adaptability, and isomorphism. However, existing flexible modules typically possess no more than two degrees of freedom for structural limitations. In this study, a three-degree-of-freedom biomimetic segment driven by water hydraulic artificial muscles (WHAMs) and supported by springs was proposed, achieving integrated and modular design. The continuum robot composed of this segment can execute earthworm-, snake-, and elephant trunk-biomimetic motion modes based on operational environmental constraints. During long-distance operational tasks, distinct segments of the continuum robot can adopt varying biomimetic configurations to meet specific requirements. The closed-loop control characteristic tests were conducted on a single segment to evaluate its motion characteristics. The isomorphic master controller was designed based on the motion range of a single segment, with the maximum bending angle deviation between the master controller and biomimetic segment not exceeding 4°, and the system demonstrating favorable stability. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Figure 1

23 pages, 55937 KiB  
Article
The Design, Modeling, and Experiment of a Novel Diving-Beetle-Inspired Paddling Propulsion Robot
by Jiang Ding, Jingyu Li, Tianbo Lan, Kai He and Qiyang Zuo
Biomimetics 2025, 10(3), 182; https://doi.org/10.3390/biomimetics10030182 - 14 Mar 2025
Viewed by 683
Abstract
Bionic paddling robots, as a novel type of underwater robot, demonstrate significant potential in the fields of underwater exploration and development. However, current research on bionic paddling robots primarily focuses on the motion mechanisms of large organisms such as frogs, while the exploration [...] Read more.
Bionic paddling robots, as a novel type of underwater robot, demonstrate significant potential in the fields of underwater exploration and development. However, current research on bionic paddling robots primarily focuses on the motion mechanisms of large organisms such as frogs, while the exploration of small and highly agile bionic propulsion robots remains relatively limited. Additionally, existing biomimetic designs often face challenges such as structural complexity and cumbersome control systems, which hinder their practical applications. To address these challenges, this study proposes a novel diving-beetle-inspired paddling robot, drawing inspiration from the low-resistance physiological structure and efficient paddling locomotion of diving beetles. Specifically, a passive bionic swimming foot and a periodic paddling propulsion mechanism were designed based on the leg movement patterns of diving beetles, achieving highly efficient propulsion performance. In the design process, a combination of incomplete gears and torsion springs was employed, significantly reducing the driving frequency of servos and simplifying control complexity. Through dynamic simulations and experimental validation, the robot demonstrated a maximum forward speed of 0.82 BL/s and a turning speed of 18°/s. The results indicate that this design not only significantly improves propulsion efficiency and swimming agility but also provides new design insights and technical references for the development of small bionic underwater robots. Full article
(This article belongs to the Special Issue Biorobotics: Challenges and Opportunities)
Show Figures

Graphical abstract

18 pages, 5477 KiB  
Article
Design and Experimental Study of a Biomimetic Pod-Pepper-Picking Drum Based on Multi-Finger Collaboration
by Chuanxing Du, Weiquan Fang, Dianlei Han, Xuegeng Chen and Xinzhong Wang
Agriculture 2024, 14(2), 314; https://doi.org/10.3390/agriculture14020314 - 16 Feb 2024
Cited by 11 | Viewed by 1696
Abstract
In order to reduce ground drop loss during mechanical pepper picking and improve the net recovery rate, a drum snap finger picking device was designed. The picking device is mainly composed of a picking drum and auxiliary picking components; the picking finger arrangement [...] Read more.
In order to reduce ground drop loss during mechanical pepper picking and improve the net recovery rate, a drum snap finger picking device was designed. The picking device is mainly composed of a picking drum and auxiliary picking components; the picking finger arrangement was designed biomimetically and its structure and operating parameters were optimized by the DEM (discrete element method). According to the physical and mechanical characteristics of the pepper and the simplified three-dimensional model of the picking device, a virtual simulation model of the pepper-picking device was established using the EDEM software. Through simulation analysis and using the orthogonal test method, the main factors which affect the ground drop loss rate of pepper and their optimal parameter combination values were determined. The simulation results were verified by a pepper-picking field experiment. Orthogonal tests show that, when the picking drum speed (V) is 210 rpm, the pepper-feeding speed (V) is 1100 mm·s1, the bending angle of each picking spring tooth (C) is 162°, and each group of circumferential fingers has rows, the picking device has a good picking effect. At this time, the ground drop loss rates in both the simulation and field test were 7.50% and 7.85%, respectively, and the drop error was only 4.46%, which was within the allowable range. The design form and parameter optimization simulation method in this paper provide an important reference for the design and optimization of pepper-harvesting machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 6640 KiB  
Article
Parametric Design and Prototyping of a Low-Power Planar Biped Robot
by Koray K. Şafak, Turgut Batuhan Baturalp and Selim Bozkurt
Biomimetics 2023, 8(4), 346; https://doi.org/10.3390/biomimetics8040346 - 5 Aug 2023
Cited by 3 | Viewed by 2335
Abstract
This study proposes a design approach and the development of a low-power planar biped robot named YU-Bibot. The kinematic structure of the robot consists of six independently driven axes, and it weighs approximately 20 kg. Based on biomimetics, the robot dimensions were selected [...] Read more.
This study proposes a design approach and the development of a low-power planar biped robot named YU-Bibot. The kinematic structure of the robot consists of six independently driven axes, and it weighs approximately 20 kg. Based on biomimetics, the robot dimensions were selected as the average anthropomorphic dimensions of the human lower extremities. The optimization of the mechanical design and actuator selection of the robot was based on the results of parametric simulations. The natural human walking gait was mimicked as a walking pattern in these simulations. As a result of the optimization, a low power-to-weight ratio of 30 W/kg was obtained. The drive system of the robot joints consists of servo-controlled brushless DC motors with reduction gears and additional bevel gears at the knee and ankle joints. The robot features spring-supported knee and ankle joints that counteract the robot’s weight and compensate for the backlash present in these joints. The robot is constrained to move only in the sagittal plane by using a lateral support structure. The robot’s feet are equipped with low-cost, force-sensitive resistor (FSR)-type sensors for monitoring ground contact and zero-moment point (ZMP) criterion. The experimental results indicate that the proposed robot mechanism can follow the posture commands accurately and demonstrate locomotion at moderate stability. The proposed parametric natural gait simulation-based design approach and the resulting biped robot design with a low power/weight ratio are the main contributions of this study. Full article
(This article belongs to the Special Issue Advanced Service Robots: Exoskeleton Robots)
Show Figures

Figure 1

28 pages, 13000 KiB  
Article
Thrust Enhancement of DTMB 5415 with Elastic Flapping Foil in Regular Head Waves
by Lei Mei, Wenhui Yan, Junwei Zhou and Weichao Shi
J. Mar. Sci. Eng. 2023, 11(3), 632; https://doi.org/10.3390/jmse11030632 - 17 Mar 2023
Cited by 4 | Viewed by 2838
Abstract
Recent studies indicate that bow foil biomimetic systems can significantly improve ship propulsion in waves. In this paper, the DTMB 5415 ship model is taken as the object and a semi-active elastic flapping foil is proposed to install at its bow underwater position. [...] Read more.
Recent studies indicate that bow foil biomimetic systems can significantly improve ship propulsion in waves. In this paper, the DTMB 5415 ship model is taken as the object and a semi-active elastic flapping foil is proposed to install at its bow underwater position. When a ship sails in head wave, heave and pitch motion will occur, which will drive the bow foil to form heave motion. According to the working characteristics of elastic foil, bow foil can generate forward thrust under drive of given heave motion. At first, co-simulation of the ship with self-pitching bow foil in head waves is realized by ISIS-CFD solver and preliminarily realizes drag reduction and thrust increase effect of the bow foil. At the same time, it is found that the effect of bow foil on hull drag reduction is reflected in two aspects, one is the additional thrust generated by the bow foil and the other is that suppression of the bow foil on hull motion also reduces hull resistance in waves. Then, in order to optimize the working characteristics of elastic bow foil, the influence of spring stiffness and span length of the bow foil on drag reduction and thrust increase effect is discussed. A preliminary spring optimization result is obtained, as well as the influence of the span length of the bow foil on the system. Full article
(This article belongs to the Special Issue CFD Analysis in Ocean Engineering)
Show Figures

Figure 1

14 pages, 4568 KiB  
Article
Platform Design and Preliminary Test Result of an Insect-like Flapping MAV with Direct Motor-Driven Resonant Wings Utilizing Extension Springs
by Seung-hee Jeong, Jeong-hwan Kim, Seung-ik Choi, Jung-keun Park and Tae-sam Kang
Biomimetics 2023, 8(1), 6; https://doi.org/10.3390/biomimetics8010006 - 23 Dec 2022
Cited by 5 | Viewed by 2625
Abstract
In this paper, we propose a platform for an insect-like flapping winged micro aerial vehicle with a resonant wing-driving system using extension springs (FMAVRES). The resonant wing-driving system is constructed using an extension spring instead of the conventional helical or torsion spring. The [...] Read more.
In this paper, we propose a platform for an insect-like flapping winged micro aerial vehicle with a resonant wing-driving system using extension springs (FMAVRES). The resonant wing-driving system is constructed using an extension spring instead of the conventional helical or torsion spring. The extension spring can be mounted more easily, compared with a torsion spring. Furthermore, the proposed resonant driving system has better endurance compared with systems with torsion springs. Using a prototype FMAVRES, it was found that torques generated for roll, pitch, and yaw control are linear to control input signals. Considering transient responses, each torque response as an actuator is modelled as a simple first-order system. Roll, pitch, and yaw control commands affect each other. They should be compensated in a closed loop controller design. Total weight of the prototype FMAVRES is 17.92 g while the lift force of it is 21.3 gf with 80% throttle input. Thus, it is expected that the new platform of FMAVRES could be used effectively to develop simple and robust flapping MAVs. Full article
(This article belongs to the Special Issue Bio-Inspired Flight Systems and Bionic Aerodynamics)
Show Figures

Figure 1

10 pages, 6579 KiB  
Article
Design and Application of a Twisted and Coiled Polymer Driven Artificial Musculoskeletal Actuation Module
by Chunbing Wu, Wen Zheng, Zhiyi Wang, Biao Yan, Jia Ma and Guangqiang Fang
Materials 2022, 15(22), 8261; https://doi.org/10.3390/ma15228261 - 21 Nov 2022
Viewed by 2068
Abstract
Twisted and coiled polymer (TCP) artificial muscles can exhibit unidirectional actuation similar to skeletal muscles. This paper presents a TCP driven artificial musculoskeletal actuation module that can be used in soft robots. This module can contract in the axis direction, and the contraction [...] Read more.
Twisted and coiled polymer (TCP) artificial muscles can exhibit unidirectional actuation similar to skeletal muscles. This paper presents a TCP driven artificial musculoskeletal actuation module that can be used in soft robots. This module can contract in the axis direction, and the contraction displacement and force can be controlled easily. The main body of the actuation module consists of TCP muscles and leaf springs, and the deformation of the module is actuated by the TCP muscles. A prototype was made to test the performance of the module. The design and experimental results of the module are presented. The module can provide contraction motion. Results show that the module can provide a contraction force of 0.7 N with displacement of approximately 6.8 mm at 120 °C when exposed to electrical power of 24 V. The proposed artificial musculoskeletal actuation module can potentially be applied in biomimetic robots and the aerospace field. Full article
Show Figures

Figure 1

18 pages, 4806 KiB  
Article
Design of the Jump Mechanism for a Biomimetic Robotic Frog
by Jizhuang Fan, Qilong Du, Zhihui Dong, Jie Zhao and Tian Xu
Biomimetics 2022, 7(4), 142; https://doi.org/10.3390/biomimetics7040142 - 24 Sep 2022
Cited by 18 | Viewed by 8438
Abstract
Frogs are vertebrate amphibians with both efficient swimming and jumping abilities due to their well-developed hind legs. They can jump over obstacles that are many or even tens of times their size on land. However, most of the current jumping mechanisms of biomimetic [...] Read more.
Frogs are vertebrate amphibians with both efficient swimming and jumping abilities due to their well-developed hind legs. They can jump over obstacles that are many or even tens of times their size on land. However, most of the current jumping mechanisms of biomimetic robotic frogs use simple four-bar linkage mechanisms, which has an unsatisfactory biomimetic effect on the appearance and movement characteristics of frogs. At the same time, multi-joint jumping robots with biomimetic characteristics are subject to high drive power requirements for jumping action. In this paper, a novel jumping mechanism of a biomimetic robotic frog is proposed. Firstly, the structural design of the forelimb and hindlimb of the frog is given, and the hindlimb of the robotic frog is optimized based on the design of a single-degree-of-freedom six-bar linkage. A simplified model is established to simulate the jumping motion. Secondly, a spring energy storage and trigger mechanism is designed, including incomplete gear, one-way bearing, torsion spring, and so on, to realize the complete jumping function of the robot, that is, elastic energy storage and regulation, elastic energy release, and rapid leg retraction. Thirdly, the experimental prototype of the biomimetic robotic frog is fabricated. Finally, the rationality and feasibility of the jumping mechanism are verified by a jumping experiment. This work provides a technical and theoretical basis for the design and development of a high-performance amphibious biomimetic robotic frog. Full article
(This article belongs to the Special Issue Bioinspired Functional Structures)
Show Figures

Figure 1

13 pages, 3196 KiB  
Article
A Biomimetic Basalt Fiber/Epoxy Helical Composite Spring with Hierarchical Triple-Helix Structures Inspired by the Collagen Fibers in Compact Bone
by Jiahui Wang, Zhongyuan Shi, Qigang Han, Yanbiao Sun, Mingdi Shi, Rui Li, Rubin Wei, Bin Dong, Wen Zhai, Wenfang Zheng, Yueying Li and Nuo Chen
Biomimetics 2022, 7(3), 135; https://doi.org/10.3390/biomimetics7030135 - 16 Sep 2022
Cited by 3 | Viewed by 2934
Abstract
The lightweight property of helical composite spring (HCS) applied in the transportation field has attracted more and more attention recently. However, it is difficult to maintain stiffness and fatigue resistance at the same time. Herein, inspired by collagen fibers in bone, a bionic [...] Read more.
The lightweight property of helical composite spring (HCS) applied in the transportation field has attracted more and more attention recently. However, it is difficult to maintain stiffness and fatigue resistance at the same time. Herein, inspired by collagen fibers in bone, a bionic basalt fiber/epoxy resin helical composite spring is manufactured. The collagen fibers consist of nanoscale hydroxyapatite (increases stiffness) and collagen molecules composed of helical amino acid chains (can increase fatigue resistance). Such a helical structure of intercalated crystals ensures that bone has good resistance to fracture. Specifically, we first investigated the effect of adding different contents of NS to basalt fibers on the stiffness and fatigue properties of an HCS. The results show that the optimal NS content of 0.4 wt% resulted in 52.1% and 43.5% higher stiffness and fatigue properties of an HCS than those without NS, respectively. Then, two braided fiber bundles (TS-BFB) and four braided fiber bundles (FS-BFB) were designed based on the helical structure of amino acid chains, and the compression tests revealed that the maximum load resistance of TS-BFB and FS-BFB was increased by 29.2% and 44%, respectively, compared with the conventional single fiber bundle (U-BFB). The superior mechanical performance of TS-BFB and FS-BFB is attributed to the more adequate bonding of 0.4 wt% NS to the epoxy resin and the multi-fiber bundles that increase the transverse fiber content of the spring. The findings in this work introduce the bionic collagen fiber structure into the design for an HCS and provide a new idea to improve the spring performance. Full article
Show Figures

Graphical abstract

13 pages, 5265 KiB  
Article
Buffering Performance Analysis of an Ostrich-like Leg Based on a Seven-Link Parallel Mechanism
by Daming Nie, Ruilong Du, Jiangren Tian, Pu Zhang, Fangyan Shen, Jason Gu and Yili Fu
Machines 2022, 10(5), 306; https://doi.org/10.3390/machines10050306 - 25 Apr 2022
Cited by 4 | Viewed by 6143
Abstract
As one of the fastest running animals on land, the ostrich’s excellent athletic ability benefits from its unique leg structure. Based on the idea of bionics, this paper intends to obtain a kind of robotic leg structure with a similar buffering capacity to [...] Read more.
As one of the fastest running animals on land, the ostrich’s excellent athletic ability benefits from its unique leg structure. Based on the idea of bionics, this paper intends to obtain a kind of robotic leg structure with a similar buffering capacity to that of the ostrich. For this purpose, the structural characteristics of a seven-link parallel mechanism are analyzed firstly, having some specific features similar to ostrich legs, such as the center of mass (COM) located at the root of the leg, a large folding/unfolding ratio, and so on. Then, the kinematic model of the bionic leg is established, and the energy storage of the flexible parts of the leg is investigated. Finally, an impact experiment of the structure onto the ground is carried out to verify the accuracy of the established kinematic model. This paper systematically reveals the nonlinear law of the elasticity of an ostrich-like leg and provides the buffering performance characteristics of the leg in the process of hitting the ground, based on its elastic properties by the kinematic model and the experiment. Full article
(This article belongs to the Collection Machines, Mechanisms and Robots: Theory and Applications)
Show Figures

Figure 1

16 pages, 5921 KiB  
Article
Pipeline Inspection Tests Using a Biomimetic Robot
by Elizabeth Islas-García, Marco Ceccarelli, Ricardo Tapia-Herrera and Christopher R. Torres-SanMiguel
Biomimetics 2021, 6(1), 17; https://doi.org/10.3390/biomimetics6010017 - 9 Mar 2021
Cited by 17 | Viewed by 6109
Abstract
This paper presents a biomimetic prototype of a mobile robot that can be used to inspect the subdrainage conditions of pipelines located along different highways in Mexico. Computer-aided design tools have been used to size each of the prototype components as inspired by [...] Read more.
This paper presents a biomimetic prototype of a mobile robot that can be used to inspect the subdrainage conditions of pipelines located along different highways in Mexico. Computer-aided design tools have been used to size each of the prototype components as inspired by anatomical spider structure. Springs are integrated to generate proper contact pressure against the pipe walls. The robot locomotion system is implemented with adaptable behaviour for the irregularities of pipelines along its journey. The robot prototype is manufactured in 3D printing with the advantage of having its spare parts easily replaceable. Reported results show internal pipe status through a mini video camera on the top of the robot. Full article
Show Figures

Figure 1

11 pages, 1950 KiB  
Proceeding Paper
Biomimetic Design of a Planar Torsional Spring to an Active Knee Prosthesis Actuator Using FEM Analysis
by Guilherme Gomes Fiorezi, Jhonata dos Santos de Moraes, Pedro Henrique Fabriz Ulhoa and Rafhael Milanezi de Andrade
Proceedings 2020, 64(1), 30; https://doi.org/10.3390/IeCAT2020-08505 - 21 Nov 2020
Cited by 5 | Viewed by 2046
Abstract
Lower-limb prostheses have an important function to partially recover the leg movement after amputation. In order to improve the mechanical joint behavior towards a healthy human knee, compliant elements have been introduced to the active prostheses, comprised of the well-known Series Elastic Actuators [...] Read more.
Lower-limb prostheses have an important function to partially recover the leg movement after amputation. In order to improve the mechanical joint behavior towards a healthy human knee, compliant elements have been introduced to the active prostheses, comprised of the well-known Series Elastic Actuators (SEAs). SEAs are used in lower-limb assistive devices due to their ability to tolerate impacts and passive store mechanical energy during ground-walking. Based on the healthy human knee in the stance phase of walking, this paper brings the design, prototyping, and analysis of a customized planar torsional spring. To enhance the compliance of a rigid active knee prosthesis, the proposed spring will substitute a torque flange between the transmission and the output of the actuator, and this carries a series of constraints to the design. The finite element method (FEM) is applied to the development and exploration of the three initially proposed geometries and the material selection along with its heat treatment is based on the maximum stress obtained in the simulations. The proposed geometry, chosen by comparison of the three, is made of austempered AISI 4340 steel and using two springs in parallel and it has a torsional stiffness of 250 N.m/rad with maximum angular displacement of ± 2.5° and 0.153 kg. In future work, we intend to compare the results of the rigid actuator against the SEA one during walking over the ground. Full article
Show Figures

Figure 1

20 pages, 5998 KiB  
Article
FludoJelly: Experimental Study on Jellyfish-Like Soft Robot Enabled by Soft Pneumatic Composite (SPC)
by Aniket Joshi, Adwait Kulkarni and Yonas Tadesse
Robotics 2019, 8(3), 56; https://doi.org/10.3390/robotics8030056 - 15 Jul 2019
Cited by 66 | Viewed by 14298
Abstract
Several bio-inspired underwater robots have been demonstrated in the last few years that can horizontally swim using different smart actuators. However, very few works have been presented on robots which can swim vertically, have a payload and resemble a jellyfish-like creature. In this [...] Read more.
Several bio-inspired underwater robots have been demonstrated in the last few years that can horizontally swim using different smart actuators. However, very few works have been presented on robots which can swim vertically, have a payload and resemble a jellyfish-like creature. In this work, we present the design, fabrication, and performance characterization of a new tethered robotic jellyfish, which is based on inflatable soft pneumatic composite (SPC) actuators. These soft actuators use compressed air to expand and contract, which help the robot to swim vertically in water. The soft actuators consist of elastomeric air chambers and very thin steel springs, which contribute to gaining faster motion of the biomimetic robot. A prototype of 220 mm in diameter and consisting of eight actuating units was fabricated and tested underwater in a fish tank. It reached a height of 400 mm within 2.5 s while carrying a dead weight of 100 g when tested at 70 psi (483 kPa) pressure. This high performance (160 mm/s on average speed) suggests that faster motion with a payload can be achieved by using SPC actuators. The inflatable structures help to flap the bell segments as well as in buoyancy effect for rapid vertical motion. The major achievement of this work is the ability to demonstrate a novel use of inflatable structures and biomimetic flapping wings for fast motion in water. The experimental and deduced data from this work can be used for the design of future small unmanned underwater vehicles (UUVs). This work adds a new robot to the design space of biomimetic jellyfish-like soft robots. Such kind of vehicle design might also be useful for transporting objects underwater effectively. Full article
(This article belongs to the Special Issue Advances in Underwater Robotics)
Show Figures

Graphical abstract

17 pages, 6081 KiB  
Article
Bio-Inspired Soft Proboscis Actuator Driven by Dielectric Elastomer Fluid Transducers
by Po-Wen Lin and Chien-Hao Liu
Polymers 2019, 11(1), 142; https://doi.org/10.3390/polym11010142 - 15 Jan 2019
Cited by 20 | Viewed by 7112
Abstract
In recent years, dielectric elastomer actuators (DEAs) have attracted lots of attention for providing multiple degree-of-freedom motions, such as axial extensions, torsion, bending, and their combinations. The wide applications include soft robots, artificial muscles, and biomimetic animals. In general, DEAs are composed of [...] Read more.
In recent years, dielectric elastomer actuators (DEAs) have attracted lots of attention for providing multiple degree-of-freedom motions, such as axial extensions, torsion, bending, and their combinations. The wide applications include soft robots, artificial muscles, and biomimetic animals. In general, DEAs are composed of stretchable elastomers sandwiched by two compliant electrodes and actuated by applying external electric stimuli. Since most DEAs are limited by the breakdown thresholds and low strain-to-volume ratios, dielectric fluid transducers (DFTs) have been developed by substituting dielectric elastomers with dielectric fluids for high breakdown threshold voltages. In addition, DFTs have large rate of lateral extensions, due to their fluid contents, and are beneficial for soft actuators and pumping applications. In this research, we exploited DFTs to develop a soft spiral proboscis actuator inspired by the proboscises of butterflies for achieving uncoiling and coiling motions under external voltages. The bio-inspired spiral proboscis actuator (BSPA) was composed of a coil-shaped tube, a DFT-based pouch, and a spiral spring for mimicking the tubular part, a mechanism to uncoil the tube, and a mechanism to coil the tube, respectively. When applying external voltages to the pouch, the high dielectric fluid was injected into the empty coiled tube for uncoiling where the tube elongated from a compact volume to a stiff and flexible shape. When removing the exciting voltages, the tube retracted to its original coiled shape via the elastic spring. A prototype was designed, fabricated, and examined with high stimulating voltages. It was demonstrated that the proboscis actuator could achieve uncoiling and coiling motions consistently for several cycles. Compared to convection DEA-based pumps with fixed shapes, the proposed actuator is soft and beneficial for portable applications and coiling/uncoiling motions. Full article
Show Figures

Graphical abstract

Back to TopTop