Platform Design and Preliminary Test Result of an Insect-like Flapping MAV with Direct Motor-Driven Resonant Wings Utilizing Extension Springs
Abstract
:1. Introduction
2. Flapping Wing System
2.1. Design of the Flapping Wing System with Extension Spring
2.2. Dynamics of the Flapping Wing System
3. Prototype Flapping Winged Robot
3.1. Control Torque Generation of the Flapping Winged Robot
3.2. Experimental Results for Control Torque Generation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, D.E. Nature’s Flyers: Birds, Insects, and the Biomechanics of Flight; Johns Hopkins University Press: Baltimore, MD, USA, 2002. [Google Scholar]
- Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Lehmann, F.O.; Dickinson, M.H. The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J. Exp. Biol. 1998, 201, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.V.; Park, H.C. Insect-Inspired, Tailless, Hover-Capable Flapping-Wing Robots: Recent Progress, Challenges, and Future Directions. Prog. Aerosp. Sci. 2019, 111, 100573. [Google Scholar] [CrossRef]
- Ansari, S.A.; Zbikowski, R.; Knowles, K. Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog. Aerosp. Sci. 2006, 42, 129–172. [Google Scholar] [CrossRef]
- Keennon, M.; Klingebiel, K.; Won, H. Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012; p. 588. [Google Scholar]
- Zhang, J.; Fei, F.; Tu, Z.; Deng, X. Design optimization and system integration of robotic hummingbird. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar]
- Roshanbin, A.; Altartouri, H.; Karásek, M.; Preumont, A. Colibri: A hovering flapping twin-wing robot. Int. J. Micro Air Veh. 2017, 9, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.V.; Kang, T.; Park, H.C. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. Bioinspiration Biomim. 2017, 12, 036006. [Google Scholar] [CrossRef]
- Phan, H.V.; Aurecianus, S.; Kang, T.; Park, H.C. KUBeetle-S: An Insect-like, Tailless, Hover-Capable Robot That Can Fly with a Low-Torque Control Mechanism. Int. J. Micro Air Veh. 2019, 11, 175682931986137. [Google Scholar] [CrossRef] [Green Version]
- Aurecianus, S.; Ha, G.H.; Park, H.C.; Kang, T.S. Longitudinal Mode System Identification of an Insect-like Tailless Flapping-Wing Micro Air Vehicle Using Onboard Sensors. Appl. Sci. 2022, 12, 2486. [Google Scholar] [CrossRef]
- Karásek, M.; Muijres, F.T.; De Wagter, C.; Remes, B.D.W.; de Croon, G.C.H.E. A Tailless Aerial Robotic Flapper Reveals That Flies Use Torque Coupling in Rapid Banked Turns. Science 2018, 361, 1089–1094. [Google Scholar] [CrossRef] [Green Version]
- Kajak, K.M.; Karásek, M.; Chu, Q.P.; de Croon, G.C.H.E. A Minimal Longitudinal Dynamic Model of a Tailless Flapping Wing Robot for Control Design. Bioinspir. Biominm. 2019, 14, 046008. [Google Scholar] [CrossRef]
- Nijboer, J.; Armanini, S.F.; Karasek, M.; de Visser, C.C. Longitudinal Grey-Box Model Identification of a Tailless Flapping-Wing MAV Based on Free-Flight Data. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6 January 2020; American Institute of Aeronautics and Astronautics: Orlando, FL, USA, 2020. [Google Scholar]
- Wang, S.; Olejnik, D.; Wagter, C.; Oudheusden, B.; Crron, G.; Hamaza, S. Battle the Wind: Improving Flight Stability of a Flapping Wing Micro Air Vehicle Under Wind Disturbance With Onboard Thermistor-Based Airflow Sensing. IEEE Robot. Autom. Lett. 2022, 7, 9605–9612. [Google Scholar] [CrossRef]
- Arabagi, V.; Hines, L.; Sitti, M. Design and manufacturing of a controllable miniature flapping wing robotic platform. Int. J. Robot. Res. 2012, 31, 785–800. [Google Scholar] [CrossRef]
- Ma, K.Y.; Chirarattananon, P.; Fuller, S.B.; Wood, R.J. Controlled flight of a biologically inspired, insect-scale robot. Science 2013, 340, 603–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, S.B. Four wings: An insect-sized aerial robot with steering ability and payload capacity for autonomy. IEEE Robot. Autom. Lett. 2019, 4, 570–577. [Google Scholar] [CrossRef]
- Jafferis, N.T.; Helbling, E.F.; Karpelson, M.; Wood, R.J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 2019, 570, 491. [Google Scholar] [CrossRef] [PubMed]
- Chirarattananon, P.; Ma, K.Y.; Wood, R.J. Perching with a robotic insect using adaptive tracking control and iterative learning control. Int. J. Robot. Res. 2016, 35, 1185–1206. [Google Scholar] [CrossRef]
- James, J.; Iyer, V.; Chukewad, Y.; Gollakota, S.; Fuller, S.B. Liftoff of a 190 mg laser-powered aerial vehicle: The lightest wireless robot to fly. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 1–8. [Google Scholar]
- Doman, D.B.; Oppenheimer, M.W.; Sigthorsson, D.O. Wing beat shape modulation for flapping-wing micro-air-vehicle control during hover. J. Guid. Control. Dyn. 2010, 33, 724–739. [Google Scholar] [CrossRef] [Green Version]
- Bolsman, C.T.; Goosen, J.F.L.; Keulen, F. Design Overview of a Resonant Wing Actuation Mechanism for Application in Flapping Wing MAVs. Int. J. Micro Air Veh. 2009, 1, 263–272. [Google Scholar] [CrossRef]
- Campolo, D.; Azhar, M.; Lau, G.K.; Sitti, M. Can dc motors directly drive flapping wings at high frequency and large wing strokes? IEEE ASME Trans. Mechatron. 2012, 19, 109–120. [Google Scholar] [CrossRef]
- Lau, G.K.; Chin, Y.W.; Goh, T.W.; Wood, R.J. Dipteran-insect-inspired thoracic mechanism with nonlinear stiffness to save inertial power of flapping-wing flight. IEEE Trans. Robot. 2014, 30, 1187–1197. [Google Scholar] [CrossRef]
- Hines, L.; Colmenares, D.; Sitti, M. Platform design and tethered flight of a motor-driven flapping-wing system. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5838–5845. [Google Scholar]
- Zhang, J.; Deng, X. Resonance principle for the design of flapping wing micro air vehicles. IEEE Trans. Robot. 2017, 33, 183–197. [Google Scholar] [CrossRef]
- Zhang, J.; Tu, Z.; Fei, F.; Deng, X. Geometric flight control of a hovering robotic hummingbird. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5415–5421. [Google Scholar]
- Fei, F.; Tu, Z.; Zhang, J.; Deng, X. Learning extreme maneuvers of flapping wing robot like real hummingbird. In Proceedings of the 2019 IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Tu, Z.; Fei, F.; Zhang, J.; Deng, X. Acting is seeing: Navigating tight space using flapping wings. In Proceedings of the 2019 IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Tu, Z.; Fei, F.; Deng, X. Untethered Flight of an At-Scale Dual-motor Hummingbird Robot with Bio-inspired Decoupled Wings. IEEE Robot. Autom. Lett. 2020, 5, 4194–4201. [Google Scholar] [CrossRef]
- Tu, Z.; Fei, F.; Deng, X. An at-scale tailless flapping-wing hummingbird robot. I. Design, optimization, and experimental validation. IEEE Trans. Robot. 2022, 36, 1511–1525. [Google Scholar] [CrossRef]
- Lynch, J.; Gau, J.; Sponberg, S.; Gravish, N. Dimensional analysis of spring-wing systems reveals performance metrics for resonant flapping-wing flight. arXiv 2020, arXiv:2012.05428. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Kang, T.S.; Park, J.K. Development of a Motor-Direct-Driven Bidirectional Actuation Flapping Wing System Using Extension Spring. J. Inst. Control. Robot. Syst. 2022, 28, 483–491. [Google Scholar] [CrossRef]
- Park, J.S. Design and Implementation of Motor-Direct Driven Bi-Directional Flapping Wing System Using Extension Spring. Master’s Thesis, Konkuk University, Seoul, Republic of Korea, 2022. [Google Scholar]
Component | Unit Weight (g) | Quantity | Sum (g) |
---|---|---|---|
DC Motor | 3.50 | 2 | 7.00 |
Pinion gear | 0.05 | 2 | 0.10 |
Spur gear | 0.37 | 2 | 0.74 |
Wing | 0.21 | 2 | 0.42 |
Wing shaft | 0.59 | 2 | 1.18 |
Frame | 2.32 | 1 | 2.32 |
Extension spring | 0.22 | 2 | 0.44 |
Adhesive and wire | 0.82 | 1 | 0.82 |
Control board * | 1.50 | 1 | 1.50 |
Dual motor driver * | 1.20 | 1 | 1.20 |
Battery | 1.10 | 2 | 2.20 |
Total weight (g) | 17.92 |
Throttle (%) | Offset (%) | Frequency (Hz) | |
---|---|---|---|
Thrust | (80 ± 20) | 0 | 22 |
Roll | (80 ± 10), (80 ± 5) | 0 | 22 |
Pitch | 80 | ±20, ±10 | 22 |
Yaw | 80 | 0 | (22 ± 8), (22 ± 5) |
Torque (Tx) | Torque (Ty) | Torque (Tz) | |
---|---|---|---|
Roll input (+10%) | |||
Pitch input (+20%) | |||
Yaw input (+8 Hz) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-h.; Kim, J.-h.; Choi, S.-i.; Park, J.-k.; Kang, T.-s. Platform Design and Preliminary Test Result of an Insect-like Flapping MAV with Direct Motor-Driven Resonant Wings Utilizing Extension Springs. Biomimetics 2023, 8, 6. https://doi.org/10.3390/biomimetics8010006
Jeong S-h, Kim J-h, Choi S-i, Park J-k, Kang T-s. Platform Design and Preliminary Test Result of an Insect-like Flapping MAV with Direct Motor-Driven Resonant Wings Utilizing Extension Springs. Biomimetics. 2023; 8(1):6. https://doi.org/10.3390/biomimetics8010006
Chicago/Turabian StyleJeong, Seung-hee, Jeong-hwan Kim, Seung-ik Choi, Jung-keun Park, and Tae-sam Kang. 2023. "Platform Design and Preliminary Test Result of an Insect-like Flapping MAV with Direct Motor-Driven Resonant Wings Utilizing Extension Springs" Biomimetics 8, no. 1: 6. https://doi.org/10.3390/biomimetics8010006
APA StyleJeong, S. -h., Kim, J. -h., Choi, S. -i., Park, J. -k., & Kang, T. -s. (2023). Platform Design and Preliminary Test Result of an Insect-like Flapping MAV with Direct Motor-Driven Resonant Wings Utilizing Extension Springs. Biomimetics, 8(1), 6. https://doi.org/10.3390/biomimetics8010006