A Biomimetic Basalt Fiber/Epoxy Helical Composite Spring with Hierarchical Triple-Helix Structures Inspired by the Collagen Fibers in Compact Bone
Abstract
:1. Introduction
1.1. Bionic Spiral Structure and Composite Spring
1.2. Tropocollagen-Inspired Basalt Fiber Reinforced HCS Model
2. Materials and Methods
2.1. Materials
2.2. Fabrication of an HCS
2.3. Performance Tests
3. Results and Discussion
3.1. Performance Test of an HCS Modified by NS
3.1.1. Stiffness Analysis
3.1.2. Fatigue Analysis
3.1.3. Micro-Interface Analysis
3.2. Performance Test of Tropocollagen-Inspired Basalt-Fiber-Reinforced HCS
3.2.1. Compression Properties Analysis
3.2.2. Failure Mode
3.2.3. Fracture Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsang, H.H.; Raza, S. Impact energy absorption of bio-inspired tubular sections with structural hierarchy. Compos. Struct. 2018, 195, 199–210. [Google Scholar] [CrossRef]
- Abo Sabah, S.H.; Kueh, A.B.H.; Al-Fasih, M.Y. Comparative low-velocity impact behavior of bio-inspired and conventional sandwich composite beams. Compos. Sci. Technol. 2017, 149, 64–74. [Google Scholar] [CrossRef]
- Xiang, J.; Du, J.; Li, D.; Scarpa, F. Numerical analysis of the impact resistance in aluminum alloy bi-tubular thin-walled structures designs inspired by beetle elytra. J. Mater. Sci. 2017, 52, 13247–13260. [Google Scholar] [CrossRef]
- Yin, H.; Huang, X.; Scarpa, F.; Wen, G.; Chen, Y.; Zhang, C. In-plane crashworthiness of bio-inspired hierarchical honeycombs. Compos. Struct. 2018, 192, 516–527. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, Y.; Liu, Z.; Zhang, S. Microscale finite element analysis for predicting effects of air voids on mechanical properties of single fiber bundle in composites. J. Mater. Sci. 2019, 54, 1363–1381. [Google Scholar] [CrossRef]
- Jopek, H.; Strek, T. Torsion of a Two-Phased Composite Bar With Helical Distribution of Constituents. Phys. Status Solidi B 2017, 254, 1700050. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Joshi, S.C. Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix. Compos. Struct. 2018, 203, 696–708. [Google Scholar] [CrossRef]
- Bennet-Clark, H. The Mechanical Properties of Biological Materials. BioScience 2012, 62, 692–693. [Google Scholar] [CrossRef]
- Huang, W.; Shishehbor, M.; Guarín-Zapata, N.; Kirchhofer, N.D.; Li, J.; Cruz, L.; Wang, T.; Bhowmick, S.; Stauffer, D.; Manimunda, P.; et al. A natural impact-resistant bicontinuous composite nanoparticle coating. Nat. Mater. 2020, 19, 1236–1243. [Google Scholar] [CrossRef]
- Han, Q.; Li, H.; Chen, X.; Shi, S.; Shao, R.; Li, B.; Han, Z. Impact resistant basalt fiber-reinforced aluminum laminate with Janus helical structures inspired by lobster and mantis shrimp. Compos. Struct. 2022, 291, 115551. [Google Scholar] [CrossRef]
- Cheng, L.; Thomas, A.; Glancey, J.L.; Karlsson, A.M. Mechanical behavior of bio-inspired laminated composites. Compos. Part. A Appl. Sci. Manuf. 2011, 42, 211–220. [Google Scholar] [CrossRef]
- Zimmermann, E.A.; Gludovatz, B.; Schaible, E.; Dave, N.K.N.; Yang, W.; Meyers, M.A.; Ritchie, R.O. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 2013, 4, 2634. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ren, Y.; Liu, Z.; Zhang, S.; Lin, Z. Low-velocity impact resistance behaviors of bio-inspired helicoidal composite laminates with non-linear rotation angle based layups. Compos. Struct. 2019, 214, 463–475. [Google Scholar] [CrossRef]
- Al-Qureshi, H.A. Automobile leaf springs from composite materials. J. Mater. Process. Tech. 2001, 118, 58–61. [Google Scholar] [CrossRef]
- Mahdi, E.; Alkoles, O.M.S.; Hamouda, A.M.S.; Sahari, B.B.; Yonus, R.; Goudah, G. Light composite elliptic springs for vehicle suspension. Compos. Struct. 2006, 75, 24–28. [Google Scholar] [CrossRef]
- Scowen, G.D. Transport applications for fibre reinforced composites. In Institution of Mechanical Engineers; Elsevier: Amsterdam, The Netherlands, 1986; pp. 245–255. [Google Scholar]
- Therén, K.; Lundin, A. Advanced composite materials for road vehicles. Mater. Des. 1990, 11, 71–75. [Google Scholar] [CrossRef]
- Jarek, B.; Kubik, A. The examination of the Glass Fiber Reinforced Polymer composite rods in terms of the application for concrete reinforcement. In Procedia Engineering; Hager, T.T., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 394–401. [Google Scholar]
- Silva, L.V.d.; Silva, F.W.d.; Tarpani, J.R.; Forte, M.M.d.C.; Amico, S.C. Ageing effect on the tensile behavior of pultruded CFRP rods. Mater. Des. 2016, 110, 245–254. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Iwashita, K.; Sasaki, T.; Hamaguchi, Y. Tensile fatigue behaviour of FRP and hybrid FRP sheets. Compos. Part. B Eng. 2010, 41, 396–402. [Google Scholar] [CrossRef]
- Wang, X.; Wu, G.; Wu, Z.; Dong, Z.; Xie, Q. Evaluation of prestressed basalt fiber and hybrid fiber reinforced polymer tendons under marine environment. Mater. Des. 2014, 64, 721–728. [Google Scholar] [CrossRef]
- Monaldo, E.; Nerilli, F.; Vairo, G. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos. Struct. 2019, 214, 246–263. [Google Scholar] [CrossRef]
- Vieira, P.R.; Carvalho, E.M.L.; Vieira, J.D.; Toledo Filho, R.D. Experimental fatigue behavior of pultruded glass fibre reinforced polymer composite materials. Compos. Part. B Eng. 2018, 146, 69–75. [Google Scholar] [CrossRef]
- Pothnis, J.R.; Sridevi, M.; Supreeth, M.K.; Anilchandra, A.R.; Hegde, G.; Gururaja, S. Enhanced tensile properties of novel bio-waste synthesized carbon particle reinforced composites. Mater. Lett. 2019, 251, 110–113. [Google Scholar] [CrossRef]
- Mirzapour, A.; Asadollahi, M.H.; Baghshaei, S.; Akbari, M. Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite. Compos. Part. A Appl. Sci. Manuf. 2014, 63, 159–167. [Google Scholar] [CrossRef]
- Çalım, F.F. Dynamic analysis of composite coil springs of arbitrary shape. Compos. Part. B Eng. 2009, 40, 741–757. [Google Scholar] [CrossRef]
- Zebdi, O.; Boukhili, R.; Trochu, F. Optimum Design of a Composite Helical Spring by Multi-criteria Optimization. J. Reinf. Plast. Compos. 2008, 28, 1713–1732. [Google Scholar] [CrossRef]
- Ekanthappa, J.; Shankar, G.S.S.; Amith, B.M.; Gagan, M. Fabrication and experimentation of FRP helical spring. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012098. [Google Scholar] [CrossRef]
- Choi, B.-L.; Choi, B.-H. Numerical method for optimizing design variables of carbon-fiber-reinforced epoxy composite coil springs. Compos. Part. B Eng. 2015, 82, 42–49. [Google Scholar] [CrossRef]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [Google Scholar] [CrossRef]
- Ji, B.; Gao, H. Mechanical Principles of Biological Nanocomposites. Annu. Rev. Mater. Res. 2010, 40, 77–100. [Google Scholar] [CrossRef]
- Glimcher, M.J. Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in Their Formation. Rev. Mineral. Geochem. 2006, 64, 223–282. [Google Scholar] [CrossRef]
- Bauer, F.; Kempf, M.; Weiland, F.; Middendorf, P. Structure-property relationships of basalt fibers for high performance applications. Compos. Part. B Eng. 2018, 145, 121–128. [Google Scholar] [CrossRef]
- Rasol, H.A.; Ismail, M.R.; Najam, A.A. Study the Possibility of using Fiber and Polymer Composite Materials in Helical Spring Manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012002. [Google Scholar] [CrossRef]
- Mahato, K.K.; Dutta, K.; Chandra Ray, B. Assessment of mechanical, thermal and morphological behavior of nano-Al2O3 embedded glass fiber/epoxy composites at in-situ elevated temperatures. Compos. Part. B Eng. 2019, 166, 688–700. [Google Scholar] [CrossRef]
- Shia, D.; Hui, C.Y.; Burnside, S.D.; Giannelis, E.P. An interface model for the prediction of Young’s modulus of layered silicate-elastomer nanocomposites. Polym. Compos. 1998, 19, 608–617. [Google Scholar] [CrossRef]
- He, P.; Huang, M.; Yu, B.; Sprenger, S.; Yang, J. Effects of nano-silica contents on the properties of epoxy nanocomposites and Ti-epoxy assembles. Compos. Sci. Technol. 2016, 129, 46–52. [Google Scholar] [CrossRef]
- Li, X.; Li, G.; Su, X. NanoSiO2 strengthens and toughens epoxy resin/basalt fiber composites by acting as a nano-mediator. J. Polym. Eng. 2019, 39, 10–15. [Google Scholar] [CrossRef]
- Chiu, C.-H.; Hwan, C.-L.; Tsai, H.-S.; Lee, W.-P. An experimental investigation into the mechanical behaviors of helical composite springs. Compos. Struct. 2007, 77, 331–340. [Google Scholar] [CrossRef]
NS content (wt%) | 0 | 0.2 | 0.4 | 0.6 |
Compression (mm) | 61.62 | 62.28 | 61.09 | 61.22 |
Stiffness (N/mm) | 4.8 | 5.6 | 7.3 | 6.5 |
Spring Wire Structures | Maximum Compression Load (N) | Maximum Compression Displacement (mm) | Stiffness (N/mm) |
---|---|---|---|
U-FB | 233 | 47.5 | 4.57 |
TS-BFB | 264.5 | 41.0 | 5.51 |
FS-BFB | 301 | 37.5 | 6.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Shi, Z.; Han, Q.; Sun, Y.; Shi, M.; Li, R.; Wei, R.; Dong, B.; Zhai, W.; Zheng, W.; et al. A Biomimetic Basalt Fiber/Epoxy Helical Composite Spring with Hierarchical Triple-Helix Structures Inspired by the Collagen Fibers in Compact Bone. Biomimetics 2022, 7, 135. https://doi.org/10.3390/biomimetics7030135
Wang J, Shi Z, Han Q, Sun Y, Shi M, Li R, Wei R, Dong B, Zhai W, Zheng W, et al. A Biomimetic Basalt Fiber/Epoxy Helical Composite Spring with Hierarchical Triple-Helix Structures Inspired by the Collagen Fibers in Compact Bone. Biomimetics. 2022; 7(3):135. https://doi.org/10.3390/biomimetics7030135
Chicago/Turabian StyleWang, Jiahui, Zhongyuan Shi, Qigang Han, Yanbiao Sun, Mingdi Shi, Rui Li, Rubin Wei, Bin Dong, Wen Zhai, Wenfang Zheng, and et al. 2022. "A Biomimetic Basalt Fiber/Epoxy Helical Composite Spring with Hierarchical Triple-Helix Structures Inspired by the Collagen Fibers in Compact Bone" Biomimetics 7, no. 3: 135. https://doi.org/10.3390/biomimetics7030135
APA StyleWang, J., Shi, Z., Han, Q., Sun, Y., Shi, M., Li, R., Wei, R., Dong, B., Zhai, W., Zheng, W., Li, Y., & Chen, N. (2022). A Biomimetic Basalt Fiber/Epoxy Helical Composite Spring with Hierarchical Triple-Helix Structures Inspired by the Collagen Fibers in Compact Bone. Biomimetics, 7(3), 135. https://doi.org/10.3390/biomimetics7030135