Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = biomimetic gripper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 12393 KiB  
Article
Exploring Water-Induced Helical Deformation Mechanism of 4D Printed Biomimetic Actuator for Narrow Lumen
by Che Zhao, Lei Duan, Hongliang Hua and Jifeng Zhang
Machines 2025, 13(1), 31; https://doi.org/10.3390/machines13010031 - 6 Jan 2025
Viewed by 620
Abstract
To address the issues of limited adaptability and low spatial utilization in traditional rigid actuators, a biomimetic actuator with water-induced helical deformation functionality was designed. This actuator is capable of adaptive gripping and retrieval of objects in a narrow lumen. A numerical model [...] Read more.
To address the issues of limited adaptability and low spatial utilization in traditional rigid actuators, a biomimetic actuator with water-induced helical deformation functionality was designed. This actuator is capable of adaptive gripping and retrieval of objects in a narrow lumen. A numerical model was established to analyze its helical deformation mechanism, and the helical deformation characteristics of the actuator were calculated under different structural parameters. Based on four-dimensional (4D) printing technology, which integrates three-dimensional printed structures with responsive materials, experimental samples of biomimetic actuators were fabricated by combining thermoplastic polyurethane fiber scaffolds with water-absorbing polyurethane rubbers. By comparing the simulation results with the experimental data, the numerical model was corrected, providing theoretical guidance for the structural optimization design of the actuator. The experiment shows that the biomimetic actuator can act as a gripper to capture a small target in a lumen less than 5 mm in diameter. This research provides a theoretical and technical foundation for the development of specialized actuators aimed at narrow spaces. Full article
(This article belongs to the Special Issue Advances in 4D Printing Technology)
Show Figures

Figure 1

27 pages, 76943 KiB  
Article
Design and Validation of a Biomimetic Leg-Claw Mechanism Capable of Perching and Grasping for Multirotor Drones
by Yan Zhao, Ruzhi Xiang, Hui Li, Chang Wang, Jianhua Zhang, Xuan Liu and Yufei Hao
Biomimetics 2025, 10(1), 10; https://doi.org/10.3390/biomimetics10010010 - 27 Dec 2024
Cited by 1 | Viewed by 1921
Abstract
Multirotor drones are widely used in fields such as environmental monitoring, agricultural inspection, and package delivery, but they still face numerous challenges in durability and aerial operation capabilities. To address these issues, this paper presents a biomimetic leg-claw mechanism (LCM) inspired by the [...] Read more.
Multirotor drones are widely used in fields such as environmental monitoring, agricultural inspection, and package delivery, but they still face numerous challenges in durability and aerial operation capabilities. To address these issues, this paper presents a biomimetic leg-claw mechanism (LCM) inspired by the biomechanics of birds. The claw of the LCM adopts a bistable gripper design that can rapidly close through external impact or actively close via the coordination of internal mechanisms. Additionally, its foldable, parallelogram-shaped legs bend under external forces, stretching the main tendon. A ratchet and pawl mechanism at the knee joint locks the leg in the bent position, thereby enhancing the gripping force of the claw. This paper calculates and experimentally verifies the degrees of freedom in different states, the forces required to open and close the gripper, the application scenarios of active and passive grasping, and the maximum load capacity of the mechanism. Furthermore, perching experiments demonstrate that the LCM enables the drone to perch stably on objects of varying diameters. Full article
(This article belongs to the Special Issue Learning from Nature—2nd Edition: Bionics in Design Practice)
Show Figures

Figure 1

16 pages, 8677 KiB  
Article
Seahorse-Tail-Inspired Soft Pneumatic Actuator: Development and Experimental Characterization
by Michele Gabrio Antonelli, Pierluigi Beomonte Zobel, Muhammad Aziz Sarwar and Nicola Stampone
Biomimetics 2024, 9(5), 264; https://doi.org/10.3390/biomimetics9050264 - 27 Apr 2024
Cited by 9 | Viewed by 3117
Abstract
The study of bio-inspired structures and their reproduction has always fascinated humans. The advent of soft robotics, thanks to soft materials, has enabled considerable progress in this field. Over the years, polyps, worms, cockroaches, jellyfish, and multiple anthropomorphic structures such as hands or [...] Read more.
The study of bio-inspired structures and their reproduction has always fascinated humans. The advent of soft robotics, thanks to soft materials, has enabled considerable progress in this field. Over the years, polyps, worms, cockroaches, jellyfish, and multiple anthropomorphic structures such as hands or limbs have been reproduced. These structures have often been used for gripping and handling delicate objects or those with complex unknown a priori shapes. Several studies have also been conducted on grippers inspired by the seahorse tail. In this paper, a novel biomimetic soft pneumatic actuator inspired by the tail of the seahorse Hippocampus reidi is presented. The actuator has been developed to make a leg to sustain a multi-legged robot. The prototyping of the actuator was possible by combining a 3D-printed reinforcement in thermoplastic polyurethane, mimicking the skeletal apparatus, within a silicone rubber structure, replicating the functions of the external epithelial tissue. The latter has an internal channel for pneumatic actuation that acts as the inner muscle. The study on the anatomy and kinematic behaviour of the seahorse tail suggested the mechanical design of the actuator. Through a test campaign, the actuator prototype was characterized by isotonic tests with an external null load, isometric tests, and activation/deactivation times. Specifically, the full actuator distension of 154.5 mm occurs at 1.8 bar, exerting a maximum force of 11.9 N, with an activation and deactivation time of 74.9 and 94.5 ms, respectively. Full article
(This article belongs to the Special Issue Bioinspired Structures for Soft Actuators)
Show Figures

Figure 1

18 pages, 11996 KiB  
Article
Ultrarobust Actuator Comprising High-Strength Carbon Fibers and Commercially Available Polycarbonate with Multi-Stimulus Responses and Programmable Deformation
by Jie Sheng, Shengkun Jiang, Tie Geng, Zhengqiang Huang, Jiquan Li and Lin Jiang
Polymers 2024, 16(8), 1144; https://doi.org/10.3390/polym16081144 - 19 Apr 2024
Cited by 1 | Viewed by 1435
Abstract
Polymer-based actuators have gained extensive attention owing to their potential applications in aerospace, soft robotics, etc. However, poor mechanical properties, the inability of multi-stimuli response and programmable deformation, and the costly fabrication procedure have significantly hindered their practical application. Herein, these issues are [...] Read more.
Polymer-based actuators have gained extensive attention owing to their potential applications in aerospace, soft robotics, etc. However, poor mechanical properties, the inability of multi-stimuli response and programmable deformation, and the costly fabrication procedure have significantly hindered their practical application. Herein, these issues are overcome via a simple and scalable one-step molding method. The actuator is fabricated by hot-pressing commercial unidirectional carbon fiber/epoxy prepregs with a commodity PC membrane. Notable CTE differences between the CF and PC layers endow the bilayer actuator with fast and reliable actuation deformation. Benefiting from the high strength of CF, the actuator exhibits excellent mechanical performance. Moreover, the anisotropy of CF endows the actuator with design flexibility. Furthermore, the multifunction of CF makes the actuator capable of responding to thermal, optical, and electrical stimulation simultaneously. Based on the bilayer actuator, we successfully fabricated intelligent devices such as light-driven biomimetic flowers, intelligent grippers, and gesture-simulating apparatuses, which further validate the programmability and multi-stimuli response characteristics of this actuator. Strikingly, the prepared gripper possesses a grasping capacity approximately 31.2 times its own weight. It is thus believed that the concept presented paves the way for building next-generation robust robotics. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

14 pages, 4933 KiB  
Article
Quasi-Static Modeling Framework for Soft Bellow-Based Biomimetic Actuators
by Kelvin HoLam Heung, Ting Lei, Kaixin Liang, Jiye Xu, Joonoh Seo and Heng Li
Biomimetics 2024, 9(3), 160; https://doi.org/10.3390/biomimetics9030160 - 4 Mar 2024
Cited by 5 | Viewed by 2502
Abstract
Soft robots that incorporate elastomeric matrices and flexible materials have gained attention for their unique capabilities, surpassing those of rigid robots, with increased degrees of freedom and movement. Research has highlighted the adaptability, agility, and sensitivity of soft robotic actuators in various applications, [...] Read more.
Soft robots that incorporate elastomeric matrices and flexible materials have gained attention for their unique capabilities, surpassing those of rigid robots, with increased degrees of freedom and movement. Research has highlighted the adaptability, agility, and sensitivity of soft robotic actuators in various applications, including industrial grippers, locomotive robots, wearable assistive devices, and more. It has been demonstrated that bellow-shaped actuators exhibit greater efficiency compared to uniformly shaped fiber-reinforced actuators as they require less input pressure to achieve a comparable range of motion (ROM). Nevertheless, the mathematical quantification of the performance of bellow-based soft fluidic actuators is not well established due to their inherent non-uniform and complex structure, particularly when compared to fiber-reinforced actuators. Furthermore, the design of bellow dimensions is mostly based on intuition without standardized guidance and criteria. This article presents a comprehensive description of the quasi-static analytical modeling process used to analyze bellow-based soft actuators with linear extension. The results of the models are validated through finite element method (FEM) simulations and experimental testing, considering elongation in free space under fluidic pressurization. This study facilitates the determination of optimal geometrical parameters for bellow-based actuators, allowing for effective biomimetic robot design optimization and performance prediction. Full article
(This article belongs to the Special Issue Bioinspired Structures for Soft Actuators)
Show Figures

Figure 1

26 pages, 20509 KiB  
Review
Biomimetic Structure and Surface for Grasping Tasks
by Jingyang Li, Fujie Yin and Yu Tian
Biomimetics 2024, 9(3), 144; https://doi.org/10.3390/biomimetics9030144 - 27 Feb 2024
Cited by 6 | Viewed by 4022
Abstract
Under water, on land, or in the air, creatures use a variety of grasping methods to hunt, avoid predators, or carry food. Numerous studies have been conducted to construct a bionic surface for grasping tasks. This paper reviews the typical biomimetic structures and [...] Read more.
Under water, on land, or in the air, creatures use a variety of grasping methods to hunt, avoid predators, or carry food. Numerous studies have been conducted to construct a bionic surface for grasping tasks. This paper reviews the typical biomimetic structures and surfaces (wedge-shaped surface, suction cup surface and thorn claw surface) for grasping scenarios. Initially, progress in gecko-inspired wedge-shaped adhesive surfaces is reviewed, encompassing the underlying mechanisms that involve tuning the contact area and peeling behavior. The applications of grippers utilizing this adhesive technology are also discussed. Subsequently, the suction force mechanisms and applications of surfaces inspired by octopus and remora suction cups are outlined. Moreover, this paper introduces the applications of robots incorporating the principles of beetle-inspired and bird-inspired thorn claw structures. Lastly, inspired by remoras’ adhesive discs, a composite biomimetic adhesive surface is proposed. It integrates features from wedge-shaped, suction cup, and claw thorn surfaces, potentially surpassing the adaptability of basic bioinspired surfaces. This surface construction method offers a potential avenue to enhance adhesion capabilities with superior adaptability to surface roughness and curvature. Full article
Show Figures

Figure 1

13 pages, 3630 KiB  
Article
TriTrap: A Robotic Gripper Inspired by Insect Tarsal Chains
by Julian Winand, Thies H. Büscher and Stanislav N. Gorb
Biomimetics 2024, 9(3), 142; https://doi.org/10.3390/biomimetics9030142 - 26 Feb 2024
Cited by 6 | Viewed by 2483
Abstract
Gripping, holding, and moving objects are among the main functional purposes of robots. Ever since automation first took hold in society, optimizing these functions has been of high priority, and a multitude of approaches has been taken to enable cheaper, more reliable, and [...] Read more.
Gripping, holding, and moving objects are among the main functional purposes of robots. Ever since automation first took hold in society, optimizing these functions has been of high priority, and a multitude of approaches has been taken to enable cheaper, more reliable, and more versatile gripping. Attempts are ongoing to reduce grippers’ weight, energy consumption, and production and maintenance costs while simultaneously improving their reliability, the range of eligible objects, working loads, and environmental independence. While the upper bounds of precision and flexibility have been pushed to an impressive level, the corresponding solutions are often dependent on support systems (e.g., sophisticated sensors and complex actuation machinery), advanced control paradigms (e.g., artificial intelligence and machine learning), and typically require more maintenance owed to their complexity, also increasing their cost. These factors make them unsuited for more modest applications, where moderate to semi-high performance is desired, but simplicity is required. In this paper, we attempt to highlight the potential of the tarsal chain principle on the example of a prototype biomimetic gripping device called the TriTrap gripper, inspired by the eponymous tarsal chain of insects. Insects possess a rigid exoskeleton that receives mobility due to several joints and internally attaching muscles. The tarsus (foot) itself does not contain any major intrinsic muscles but is moved by an extrinsically pulled tendon. Just like its biological counterpart, the TriTrap gripping device utilizes strongly underactuated digits that perform their function using morphological encoding and passive conformation, resulting in a gripper that is versatile, robust, and low cost. Its gripping performance was tested on a variety of everyday objects, each of which represented different size, weight, and shape categories. The TriTrap gripper was able to securely hold most of the tested objects in place while they were lifted, rotated, and transported without further optimization. These results show that the insect tarsus selected approach is viable and warrants further development, particularly in the direction of interface optimization. As such, the main goal of the TriTrap gripper, which was to showcase the tarsal chain principle as a viable approach to gripping in general, was achieved. Full article
(This article belongs to the Special Issue Advances in Biomimetics: The Power of Diversity)
Show Figures

Figure 1

34 pages, 14155 KiB  
Review
Bioinspiration and Biomimetic Art in Robotic Grippers
by Van Pho Nguyen, Sunil Bohra Dhyan, Vu Mai, Boon Siew Han and Wai Tuck Chow
Micromachines 2023, 14(9), 1772; https://doi.org/10.3390/mi14091772 - 15 Sep 2023
Cited by 30 | Viewed by 8086
Abstract
The autonomous manipulation of objects by robotic grippers has made significant strides in enhancing both human daily life and various industries. Within a brief span, a multitude of research endeavours and gripper designs have emerged, drawing inspiration primarily from biological mechanisms. It is [...] Read more.
The autonomous manipulation of objects by robotic grippers has made significant strides in enhancing both human daily life and various industries. Within a brief span, a multitude of research endeavours and gripper designs have emerged, drawing inspiration primarily from biological mechanisms. It is within this context that our study takes centre stage, with the aim of conducting a meticulous review of bioinspired grippers. This exploration involved a nuanced classification framework encompassing a range of parameters, including operating principles, material compositions, actuation methods, design intricacies, fabrication techniques, and the multifaceted applications into which these grippers seamlessly integrate. Our comprehensive investigation unveiled gripper designs that brim with a depth of intricacy, rendering them indispensable across a spectrum of real-world scenarios. These bioinspired grippers with a predominant emphasis on animal-inspired solutions have become pivotal tools that not only mirror nature’s genius but also significantly enrich various domains through their versatility. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications)
Show Figures

Figure 1

19 pages, 2256 KiB  
Review
Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction
by Luc M. van den Boogaart, Julian K. A. Langowski and Guillermo J. Amador
Biomimetics 2022, 7(3), 134; https://doi.org/10.3390/biomimetics7030134 - 15 Sep 2022
Cited by 11 | Viewed by 4020
Abstract
Controlled, reversible attachment is widely spread throughout the animal kingdom: from ticks to tree frogs, whose weights span from 2 mg to 200 g, and from geckos to mosquitoes, who stick under vastly different situations, such as quickly climbing trees and stealthily landing [...] Read more.
Controlled, reversible attachment is widely spread throughout the animal kingdom: from ticks to tree frogs, whose weights span from 2 mg to 200 g, and from geckos to mosquitoes, who stick under vastly different situations, such as quickly climbing trees and stealthily landing on human hosts. A fascinating and complex interplay of adhesive and frictional forces forms the foundation of attachment of these highly diverse systems to various substrates. In this review, we present an overview of the techniques used to quantify the adhesion and friction of terrestrial animals, with the aim of informing future studies on the fundamentals of bioadhesion, and motivating the development and adoption of new or alternative measurement techniques. We classify existing methods with respect to the forces they measure, including magnitude and source, i.e., generated by the whole body, single limbs, or by sub-structures. Additionally, we compare their versatility, specifically what parameters can be measured, controlled, and varied. This approach reveals critical trade-offs of bioadhesion measurement techniques. Beyond stimulating future studies on evolutionary and physicochemical aspects of bioadhesion, understanding the fundamentals of biological attachment is key to the development of biomimetic technologies, from soft robotic grippers to gentle surgical tools. Full article
(This article belongs to the Special Issue Biological Attachment Systems and Biomimetics)
Show Figures

Figure 1

25 pages, 5499 KiB  
Review
Recent Progress in Development and Applications of Ionic Polymer–Metal Composite
by Si Won Park, Sang Jun Kim, Seong Hyun Park, Juyeon Lee, Hyungjun Kim and Min Ku Kim
Micromachines 2022, 13(8), 1290; https://doi.org/10.3390/mi13081290 - 11 Aug 2022
Cited by 23 | Viewed by 6790
Abstract
Electroactive polymer (EAP) is a polymer that reacts to electrical stimuli, such as voltage, and can be divided into electronic and ionic EAP by an electrical energy transfer mechanism within the polymer. The mechanism of ionic EAP is the movement of the positive [...] Read more.
Electroactive polymer (EAP) is a polymer that reacts to electrical stimuli, such as voltage, and can be divided into electronic and ionic EAP by an electrical energy transfer mechanism within the polymer. The mechanism of ionic EAP is the movement of the positive ions inducing voltage change in the polymer membrane. Among the ionic EAPs, an ionic polymer–metal composite (IPMC) is composed of a metal electrode on the surface of the polymer membrane. A common material for the polymer membrane of IPMC is Nafion containing hydrogen ions, and platinum, gold, and silver are commonly used for the electrode. As a result, IPMC has advantages, such as low voltage requirements, large bending displacement, and bidirectional actuation. Manufacturing of IPMC is composed of preparing the polymer membrane and plating electrode. Preparation methods for the membrane include solution casting, hot pressing, and 3D printing. Meanwhile, electrode formation methods include electroless plating, electroplating, direct assembly process, and sputtering deposition. The manufactured IPMC is widely demonstrated in applications such as grippers, micro-pumps, biomedical, biomimetics, bending sensors, flow sensors, energy harvesters, biosensors, and humidity sensors. This paper will review the overall field of IPMC by demonstrating the categorization, principle, materials, and manufacturing method of IPMC and its applications. Full article
(This article belongs to the Special Issue Hybrid Organic Electronics: Material, Structure and Application)
Show Figures

Figure 1

17 pages, 6289 KiB  
Article
Design and Development of a Multi-Functional Bioinspired Soft Robotic Actuator via Additive Manufacturing
by Nikolaos Kladovasilakis, Paschalis Sideridis, Dimitrios Tzetzis, Konstantinos Piliounis, Ioannis Kostavelis and Dimitrios Tzovaras
Biomimetics 2022, 7(3), 105; https://doi.org/10.3390/biomimetics7030105 - 3 Aug 2022
Cited by 10 | Viewed by 4097
Abstract
The industrial revolution 4.0 has led to a burst in the development of robotic automation and platforms to increase productivity in the industrial and health domains. Hence, there is a necessity for the design and production of smart and multi-functional tools, which combine [...] Read more.
The industrial revolution 4.0 has led to a burst in the development of robotic automation and platforms to increase productivity in the industrial and health domains. Hence, there is a necessity for the design and production of smart and multi-functional tools, which combine several cutting-edge technologies, including additive manufacturing and smart control systems. In the current article, a novel multi-functional biomimetic soft actuator with a pneumatic motion system was designed and fabricated by combining different additive manufacturing techniques. The developed actuator was bioinspired by the natural kinematics, namely the motion mechanism of worms, and was designed to imitate the movement of a human finger. Furthermore, due to its modular design and the ability to adapt the actuator’s external covers depending on the requested task, this actuator is suitable for a wide range of applications, from soft (i.e., fruit grasping) or industrial grippers to medical exoskeletons for patients with mobility difficulties and neurological disorders. In detail, the motion system operates with two pneumatic chambers bonded to each other and fabricated from silicone rubber compounds molded with additively manufactured dies made of polymers. Moreover, the pneumatic system offers multiple-degrees-of-freedom motion and it is capable of bending in the range of −180° to 180°. The overall pneumatic system is protected by external covers made of 3D printed components whose material could be changed from rigid polymer for industrial applications to thermoplastic elastomer for complete soft robotic applications. In addition, these 3D printed parts control the angular range of the actuator in order to avoid the reaching of extreme configurations. Finally, the bio-robotic actuator is electronically controlled by PID controllers and its real-time position is monitored by a one-axis soft flex sensor which is embedded in the actuator’s configuration. Full article
(This article belongs to the Special Issue Biorobotics)
Show Figures

Figure 1

31 pages, 3538 KiB  
Review
Bio-Inspired Robots and Structures toward Fostering the Modernization of Agriculture
by Maria Kondoyanni, Dimitrios Loukatos, Chrysanthos Maraveas, Christos Drosos and Konstantinos G. Arvanitis
Biomimetics 2022, 7(2), 69; https://doi.org/10.3390/biomimetics7020069 - 29 May 2022
Cited by 55 | Viewed by 13871
Abstract
Biomimetics is the interdisciplinary cooperation of biology and technology that offers solutions to practical problems by analyzing biological systems and transferring their principles into applications. This review article focused on biomimetic innovations, including bio-inspired soft robots and swarm robots that could serve multiple [...] Read more.
Biomimetics is the interdisciplinary cooperation of biology and technology that offers solutions to practical problems by analyzing biological systems and transferring their principles into applications. This review article focused on biomimetic innovations, including bio-inspired soft robots and swarm robots that could serve multiple functions, including the harvesting of fruits, pest control, and crop management. The research demonstrated commercially available biomimetic innovations, including robot bees by Arugga AI Farming and the Robotriks Traction Unit (RTU) precision farming equipment. Additionally, soft robotic systems have made it possible to mitigate the risk of surface bruises, rupture, the crushing destruction of plant tissue, and plastic deformation in the harvesting of fruits with a soft rind such as apples, cherries, pears, stone fruits, kiwifruit, mandarins, cucumbers, peaches, and pome. Even though the smart farming technologies, which were developed to mimic nature, could help prevent climate change and enhance the intensification of agriculture, there are concerns about long-term ecological impact, cost, and their inability to complement natural processes such as pollination. Despite the problems, the market for bio-inspired technologies with potential agricultural applications to modernize farming and solve the abovementioned challenges has increased exponentially. Future research and development should lead to low-cost FEA robotic grippers and FEA-tendon-driven grippers for crop harvesting. In brief, soft robots and swarm robotics have immense potential in agriculture. Full article
Show Figures

Figure 1

26 pages, 11606 KiB  
Article
PUT-Hand—Hybrid Industrial and Biomimetic Gripper for Elastic Object Manipulation
by Tomasz Mańkowski, Jakub Tomczyński, Krzysztof Walas and Dominik Belter
Electronics 2020, 9(7), 1147; https://doi.org/10.3390/electronics9071147 - 16 Jul 2020
Cited by 20 | Viewed by 8324
Abstract
In this article, the design of a five-fingered anthropomorphic gripper is presented specifically designed for the manipulation of elastic objects. The manipulator features a hybrid design, being equipped with three fully actuated fingers for precise manipulation, and two underactuated, tendon-driven digits for secure [...] Read more.
In this article, the design of a five-fingered anthropomorphic gripper is presented specifically designed for the manipulation of elastic objects. The manipulator features a hybrid design, being equipped with three fully actuated fingers for precise manipulation, and two underactuated, tendon-driven digits for secure power grasping. For ease of reproducibility, the design uses as many off-the-shelf and 3D-printed components as possible. The on-board controller circuit and firmware are also presented. The design includes resistive position and angle sensors in each joint, resulting in full joint observability. The controller has a position-based controller integrated, along with USB communication protocol, enabling gripper state reporting and direct motor control from a PC. A high-level driver operating as a Robot Operating System node is also provided. All drives and circuitry of the PUT-Hand are integrated within the hand itself. The sensory system of the hand includes tri-axial optical force sensors placed on fully actuated fingers’ fingertips for reaction force measurement. A set of experiments is provided to present the motion and perception capabilities of the gripper. All design files and source codes are available online under CC BY-NC 4.0 and MIT licenses. Full article
(This article belongs to the Special Issue Artificial Intelligence and Ambient Intelligence)
Show Figures

Figure 1

17 pages, 7104 KiB  
Article
Self-Healing and High Interfacial Strength in Multi-Material Soft Pneumatic Robots via Reversible Diels–Alder Bonds
by Seppe Terryn, Ellen Roels, Joost Brancart, Guy Van Assche and Bram Vanderborght
Actuators 2020, 9(2), 34; https://doi.org/10.3390/act9020034 - 30 Apr 2020
Cited by 51 | Viewed by 9394
Abstract
In new-generation soft robots, the actuation performance can be increased by using multiple materials in the actuator designs. However, the lifetime of these actuators is often limited due to failure that occurs at the weak multi-material interfaces that rely almost entirely on physical [...] Read more.
In new-generation soft robots, the actuation performance can be increased by using multiple materials in the actuator designs. However, the lifetime of these actuators is often limited due to failure that occurs at the weak multi-material interfaces that rely almost entirely on physical interactions and where stress concentration appears during actuation. This paper proposes to develop soft pneumatic actuators out of multiple Diels–Alder polymers that can generate strong covalent bonds at the multi-material interface by means of a heat–cool cycle. Through tensile testing it is proven that high interfacial strength can be obtained between two merged Diels–Alder polymers. This merging principle is exploited in the manufacturing of multi-material bending soft pneumatic actuators in which interfaces are no longer the weakest links. The applicability of the actuators is illustrated by their operation in a soft hand and a soft gripper demonstrator. In addition, the use of Diels–Alder polymers incorporates healability in bending actuators. It is experimentally illustrated that full recovery of severe damage can be obtained by subjecting the multi-material actuators to a healing cycle. Full article
(This article belongs to the Special Issue Pneumatic Soft Actuators)
Show Figures

Graphical abstract

Back to TopTop