Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (380)

Search Parameters:
Keywords = bioluminescent cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2512 KiB  
Article
Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells
by Amir Damouni, Dániel J. Tóth, Aletta Schönek, Alexander Kasbary, Adél P. Boros and Péter Várnai
Cells 2025, 14(14), 1125; https://doi.org/10.3390/cells14141125 - 21 Jul 2025
Viewed by 366
Abstract
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor [...] Read more.
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor for phosphoinositides 1 (GRP1) that disrupt protein-mediated interactions while preserving lipid binding, in order to enhance biosensor specificity for PIP3, and evaluated their impact on plasma membrane (PM) localization and lipid-tracking ability. Using bioluminescence resonance energy transfer (BRET) and confocal microscopy, we assessed the localization of PH domains in HEK293A cells under different conditions. While Akt-PH mutants showed minimal deviations from the wild type, GRP1-PH mutants exhibited significantly reduced PM localization both at baseline and after stimulation with epidermal growth factor (EGF), insulin, or vanadate. We further developed tandem mutant GRP1-PH domain constructs to enhance PM PIP3 avidity. Additionally, our investigation into the influence of ADP ribosylation factor 6 (Arf6) activity on GRP1-PH-based biosensors revealed that while the wild-type sensors were Arf6- dependent, the mutants operated independently of Arf6 activity level. These optimized GRP1-PH constructs provide a refined biosensor system for accurate and selective detection of dynamic PIP3 signaling, expanding the toolkit for dissecting phosphoinositide-mediated pathways. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

22 pages, 2521 KiB  
Article
Assessment of Feasibility of the M2 Macrophage-Based Adoptive Gene Transfer Strategy for Osteoarthritis with a Mouse Model
by Matilda H.-C. Sheng, David J. Baylink, Charles H. Rundle and Kin-Hing William Lau
Cells 2025, 14(14), 1067; https://doi.org/10.3390/cells14141067 - 11 Jul 2025
Viewed by 389
Abstract
Current osteoarthritis (OA) therapies fail to yield long-term clinical benefits, due in part to the lack of a mechanism for the targeted and confined delivery of therapeutics to OA joints. This study evaluates if M2 macrophages are effective cell vehicles for the targeted [...] Read more.
Current osteoarthritis (OA) therapies fail to yield long-term clinical benefits, due in part to the lack of a mechanism for the targeted and confined delivery of therapeutics to OA joints. This study evaluates if M2 macrophages are effective cell vehicles for the targeted and confined delivery of therapeutic genes to OA joints. CT bioluminescence in vivo cell tracing and fluorescent microscopy reveal that intraarticularly injected M2 macrophages were recruited to and retained at inflamed synovia. The feasibility of an M2 macrophage-based adoptive gene transfer strategy for OA was assessed using IL-1Ra as the therapeutic gene in a mouse tibial plateau injury model. Mouse M2 macrophages were transduced with lentiviral vectors expressing IL-1Ra or GFP. The transduced macrophages were intraarticularly injected into injured joints at 7 days post-injury and OA progression was monitored with plasma COMP and histology at 4 weeks. The IL-1Ra-expressing M2 macrophage treatment reduced plasma COMP, increased the area and width of the articular cartilage layer, decreased synovium thickness, and reduced the OARSI OA score without affecting the osteophyte maturity and meniscus scores when compared to the GFP-expressing M2 macrophage-treated or PBS-treated controls. When the treatment was given at 5 weeks post-injury, at which time OA should have developed, the IL-1Ra-M2 macrophage treatment also reduced plasma COMP, had a greater articular cartilage area and width, decreased synovial thickness, and reduced the OARSI OA score without an effect on the meniscus and osteophyte maturity scores at 8 weeks post-injury. In conclusion, the IL-1Ra-M2 macrophage treatment, given before or after OA was developed, delayed OA progression, indicating that the M2 macrophage-based adoptive gene transfer strategy for OA is tenable. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

16 pages, 1965 KiB  
Article
Establishment of an Orthotopic and Metastatic Colorectal Cancer Mouse Model Using a Tissue Adhesive-Based Implantation Method
by Sang Bong Lee, Hui-Jeon Jeon, Hoon Hyun and Yong Hyun Jeon
Cancers 2025, 17(13), 2266; https://doi.org/10.3390/cancers17132266 - 7 Jul 2025
Viewed by 554
Abstract
Background: To overcome the limitations of conventional CRC (colorectal cancer) mouse models in replicating metastasis and enabling efficient therapeutic evaluation, we developed a novel implantation method using tissue adhesive to establish reproducible orthotopic and metastatic tumors. Conventional models using injection or suturing techniques [...] Read more.
Background: To overcome the limitations of conventional CRC (colorectal cancer) mouse models in replicating metastasis and enabling efficient therapeutic evaluation, we developed a novel implantation method using tissue adhesive to establish reproducible orthotopic and metastatic tumors. Conventional models using injection or suturing techniques often suffer from technical complexity, inconsistent tumor establishment, and limited metastatic reliability. Methods: We developed and validated a novel orthotopic and metastatic CRC model utilizing tissue adhesive for tumor transplantation. Uniform tumor fragments derived from bioluminescent HCT116/Luc xenografts were affixed to the cecum of nude mice. Tumor growth and metastasis were monitored through bioluminescence imaging and confirmed by the results of histological analysis of metastatic lesions. The model’s utility for therapeutic testing was evaluated using MK801, an NMDA receptor antagonist. Results: The biological-based model demonstrated rapid and reproducible tumor implantation (<5 min), consistent primary tumor growth, and robust metastasis to the liver and lungs. The biological-based approach achieved 80% tumor engraftment (4/5), with consistent metastasis to the liver and lungs in all mice, compared with lower and variable metastasis rates in injection (0%, 0/5) and suturing (20%, 1/5) methods. MK801 treatment significantly suppressed both primary tumor growth and metastasis, validating the model’s suitability for preclinical drug evaluation. Conclusions: By enabling rapid, reproducible, and spontaneous formation of metastatic lesions using a minimally invasive tissue adhesive technique, our model represents a significant methodological advancement that supports high-throughput therapeutic screening and bridges the gap between experimental modeling and clinical relevance in colorectal cancer research. Full article
(This article belongs to the Special Issue Colorectal Cancer Liver Metastases)
Show Figures

Figure 1

23 pages, 2366 KiB  
Article
Whole-Cell Fiber-Optic Biosensor for Real-Time, On-Site Sediment and Water Toxicity Assessment: Applications at Contaminated Sites Across Israel
by Gal Carmeli, Abraham Abbey Paul, Kathelina Kristollari, Evgeni Eltzov, Albert Batushansky and Robert S. Marks
Biosensors 2025, 15(7), 404; https://doi.org/10.3390/bios15070404 - 22 Jun 2025
Viewed by 1235
Abstract
Sediments are key players in the optimum functioning of ecosystems; however, they also represent the largest known repository of harmful contaminants. The vast variety of these sediment-associated contaminants may exert harmful effects on marine communities and can impair ecosystem functioning. Whole-cell biosensors are [...] Read more.
Sediments are key players in the optimum functioning of ecosystems; however, they also represent the largest known repository of harmful contaminants. The vast variety of these sediment-associated contaminants may exert harmful effects on marine communities and can impair ecosystem functioning. Whole-cell biosensors are a rapid and biologically relevant tool for assessing environmental toxicity. Therefore, in this study, we developed a bioassay-based toxicity measurement system using genetically modified bacteria to create a whole-cell optical biosensor. Briefly, reporter bacteria were integrated and immobilized using a calcium alginate matrix on fiber-optic tips connected to a photon counter placed inside a light-proof, portable case. The calcium alginate matrix acts as a semi-permeable membrane that protects the reporter-encapsulated optical fiber tips and allows the inward passage of toxicant(s) to induce a dose-dependent response in the bioreporter. The samples were tested by directly submerging the fiber tip with immobilized bacteria into vials containing either water or suspended sediment samples, and the subsequent bioluminescent responses were acquired. In addition to bioavailable sediment toxicity assessments, conventional chemical methods, such as liquid chromatography–mass spectroscopy (LC-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES), were used for comprehensive evaluation. The results demonstrated the efficacy of the biosensor in detecting various toxicity levels corresponding to identified contaminants, highlighting its potential integration into environmental monitoring frameworks for enhanced sediment and water quality assessments. Despite its utility, this study notes the system’s operational challenges in field conditions, recommending future enhancements for improved portability and usability in remote locations. Full article
(This article belongs to the Special Issue Optical Biosensors for Environmental Monitoring)
Show Figures

Figure 1

16 pages, 4376 KiB  
Article
Enhanced Biogas Production from Glucose and Glycerol by Artificial Consortia of Anaerobic Sludge with Immobilized Yeast
by Nikolay Stepanov, Olga Senko, Aysel Aslanli, Olga Maslova and Elena Efremenko
Fermentation 2025, 11(6), 352; https://doi.org/10.3390/fermentation11060352 - 17 Jun 2025
Viewed by 637
Abstract
Today, there is considerable interest in creating artificial microbial consortia to solve various biotechnological problems. The use of such consortia allows for the improvement of process indicators, namely, increasing the rate of accumulation of target products and enhancing the conversion efficiency of the [...] Read more.
Today, there is considerable interest in creating artificial microbial consortia to solve various biotechnological problems. The use of such consortia allows for the improvement of process indicators, namely, increasing the rate of accumulation of target products and enhancing the conversion efficiency of the original substrates. In this work, the prospects for creating artificial consortia based on anaerobic sludge (AS) with cells of different yeasts were confirmed to increase the efficiency of methanogenesis in glucose- and glycerol-containing media and obtain biogas with an increased methane content. Yeasts of the genera Saccharomyces, Candida, Kluyveromyces, and Pachysolen were used to create the artificial consortia. Their concentration in the biomass of consortium cells was 1.5%. Yeast cells were used in an immobilized form, which was obtained by incorporating cells into a cryogel of polyvinyl alcohol. The possibility of increasing the efficiency of methanogenesis by 1.5 times in relation to the control (AS without the addition of yeast cells) was demonstrated. Using a consortium composed of methanogenic sludge and yeast cells of the genus Pachysolen, known for their ability to convert glycerol into ethanol under aerobic conditions, the possibility of highly efficient anaerobic conversion of glycerol into biogas was shown for the first time. Analysis of the metabolic activity of the consortia not only for the main components of the gas phase (CH4, CO2, and H2) and metabolites in the cell culture medium, but also for the concentration of intracellular adenosine triphosphate (ATP), controlled by the method of bioluminescent ATP-metry, showed a high level of functionality and thus, prospects for using such consortia in methanogenesis processes. The advantages and the prospect of using the developed consortia instead of individual AS for the treatment of methanogenic wastewater were confirmed during static tests conducted with several samples of real and model waste. Full article
Show Figures

Graphical abstract

15 pages, 27538 KiB  
Article
A Near-Infrared Fluorescent Probe for Specific Imaging of Lymph Node Metastases in Ovarian Cancer via Active Targeting of the Gonadotropin-Releasing Hormone Receptor
by Qiyu Liu, Jiaan Sun, Xiaobo Zhou, Mingxing Zhang, Tao Pu, Xiaolan Gao, Meng Zhang, Congjian Xu and Xiaoyan Zhang
Biomolecules 2025, 15(6), 868; https://doi.org/10.3390/biom15060868 - 14 Jun 2025
Viewed by 619
Abstract
Lymph node metastases are common in advanced ovarian cancer and are associated with poor prognosis. Accurate intraoperative identification of lymph node metastases remains a challenge in ovarian cancer surgery due to the lack of tumor-specific intraoperative imaging tools. Here, we developed a gonadotropin-releasing [...] Read more.
Lymph node metastases are common in advanced ovarian cancer and are associated with poor prognosis. Accurate intraoperative identification of lymph node metastases remains a challenge in ovarian cancer surgery due to the lack of tumor-specific intraoperative imaging tools. Here, we developed a gonadotropin-releasing hormone receptor (GnRHR)-targeted near-infrared (NIR) fluorescent probe, GnRHa-PEG-Rh760, through conjugation of a GnRH analog peptide with the Rh760 fluorophore and polyethylene glycol (PEG). A non-targeted probe (PEG-Rh760) served as control. In mouse models of subcutaneous xenografts, peritoneal and lymph node metastases derived from ovarian cancer cells, GnRHa-PEG-Rh760 showed superior tumor-specific accumulation. NIR fluorescence imaging revealed strong fluorescence signals localized to primary tumors, peritoneal lesions, and metastatic lymph nodes with no off-target signals in normal lymph nodes. The spatial co-localization between the NIR fluorescence of GnRHa-PEG-Rh760 and tumor-derived bioluminescence clearly confirmed the probe’s target specificity. GnRHa-PEG-Rh760 mainly accumulated in the tumor and liver and was gradually cleared at 96 h post-injection. The retention of fluorescence signals in normal ovary tissue further validated GnRHR-mediated binding of the probe. Notably, GnRHa-PEG-Rh760 exhibited excellent biocompatibility with no observed systemic toxicity as evidenced by hematologic and histopathologic analyses. These data demonstrate the potential of GnRHa-PEG-Rh760 as an intraoperative imaging agent, providing real-time fluorescence imaging guidance to optimize surgical precision. This study highlights the value of receptor-targeted molecular imaging probes in precision cancer surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 2642 KiB  
Article
Optimizing Whole-Cell Biosensors for the Early Detection of Crop Infections: A Proof-of-Concept Study
by Nadav Zanger and Evgeni Eltzov
Biosensors 2025, 15(5), 300; https://doi.org/10.3390/bios15050300 - 8 May 2025
Cited by 1 | Viewed by 491
Abstract
This study presents a proof-of-concept evaluation of optimized whole-cell biosensors designed for the real-time detection of crop infections. Genetically engineered luminescent bacterial strains were used to detect volatile organic compounds (VOCs) emitted by crops during spoilage. Key factors investigated include bacterial uniformity, nutrient [...] Read more.
This study presents a proof-of-concept evaluation of optimized whole-cell biosensors designed for the real-time detection of crop infections. Genetically engineered luminescent bacterial strains were used to detect volatile organic compounds (VOCs) emitted by crops during spoilage. Key factors investigated include bacterial uniformity, nutrient supply, and temperature effects. The results demonstrated that lower temperatures (+4 °C) yielded higher sensor sensitivity and prolonged bacterial viability. A proof-of-concept evaluation was conducted in storage-like conditions, showing effective infection detection in potatoes. These findings underscore the potential of whole-cell-based biosensors for monitoring postharvest production in cold storage environments. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

17 pages, 13507 KiB  
Article
Molecular Association Assay Systems for Imaging Protein–Protein Interactions in Mammalian Cells
by Sung-Bae Kim, Tadaomi Furuta, Suresh Thangudu, Arutselvan Natarajan and Ramasamy Paulmurugan
Biosensors 2025, 15(5), 299; https://doi.org/10.3390/bios15050299 - 8 May 2025
Viewed by 510
Abstract
Molecular imaging probes play a pivotal role in assaying molecular events in various physiological systems. In this study, we demonstrate a new genre of bioluminescent probes for imaging protein–protein interactions (PPIs) in mammalian cells, named the molecular association assay (MAA) probe. The MAA [...] Read more.
Molecular imaging probes play a pivotal role in assaying molecular events in various physiological systems. In this study, we demonstrate a new genre of bioluminescent probes for imaging protein–protein interactions (PPIs) in mammalian cells, named the molecular association assay (MAA) probe. The MAA probe is designed to be as simple as a full-length marine luciferase fused to a protein of interest with a flexible linker. This simple fusion protein alone surprisingly works by recognizing a specific ligand, interacting with a counterpart protein of the PPI, and developing bioluminescence (BL) in mammalian cells. We made use of an artificial intelligence (AI) tool to simulate the binding modes and working mechanisms. Our AlphaFold-based analysis on the binding mode suggests that the hinge region of the MAA probe is flexible before ligand binding but becomes stiff after ligand binding and protein association. The sensorial properties of representative MAA probes, FRB-ALuc23 and FRB-R86SG, are characterized with respect to the quantitative feature, BL spectrum, and in vivo tumor imaging using xenografted mice. Our AI-based simulation of the working mechanisms reveals that the association of MAA probes with the other proteins works in a way to facilitate the substrate’s access to the active sites of the luciferase (ALuc23 or R86SG). We prove that the concept of MAA is generally applicable to other examples, such as the ALuc16- or R86SG-fused estrogen receptor ligand-binding domain (ER LBD). Considering the versatility of this conceptionally unique and distinctive molecular imaging probe compared to conventional ones, we are expecting the widespread application of these probes as a new imaging repertoire to determine PPIs in living organisms. Full article
(This article belongs to the Special Issue AI-Enabled Biosensor Technologies for Boosting Medical Applications)
Show Figures

Graphical abstract

17 pages, 2564 KiB  
Article
Protective Action of 3,5-Diiodo-L-Thyronine on Cigarette Smoke-Induced Mitochondrial Dysfunction in Human Alveolar Epithelial Cells
by Francesca Panico, Davida Mirra, Giuseppe Petito, Giuseppe Spaziano, Vitale Del Vecchio, Renata Esposito, Rosalba Senese, Vincenzo Desiderio, Antonia Lanni and Bruno D’Agostino
Biomedicines 2025, 13(5), 1014; https://doi.org/10.3390/biomedicines13051014 - 22 Apr 2025
Viewed by 546
Abstract
Background: Cigarette smoke (CS) is a major risk factor for chronic lung conditions. Oxidative stress and mitochondrial dysfunction play a crucial role in CS-induced pulmonary injury. 3,5-Diiodothyronine (T2) affects energy metabolism, having mitochondria as a major target. However, the underlying mechanisms of [...] Read more.
Background: Cigarette smoke (CS) is a major risk factor for chronic lung conditions. Oxidative stress and mitochondrial dysfunction play a crucial role in CS-induced pulmonary injury. 3,5-Diiodothyronine (T2) affects energy metabolism, having mitochondria as a major target. However, the underlying mechanisms of T2 related to lung diseases are poorly understood. Aims: To investigate the protective action of T2 on CS-induced mitochondrial dysfunction in an in vitro model of human epithelial alveolar cells. Methods: ATP synthesis and cytochrome c oxidase (COX) activity, as a marker of mitochondrial function, was assessed in A549 cells pretreated with T2 and exposed to CS using a bioluminescence assay and an Oroboros 2k-Oxygraph system, respectively. An evaluation of the oxidative status was conducted by assessing superoxide radical production, superoxide dismutase (SOD) activity, and H2O2 levels. Moreover, we investigated the mitochondrial mass via Mito-Tracker Green (MTG) staining and flow cytometry analysis. Results: CS significantly reduced ATP production. T2 pretreatment was found to prevent CS-induced impairments in ATP synthesis, enhancing COX activity. Additionally, the 2 h T2 pretreatment of CS-exposed cells mitigated CS-induced oxidative stress, thereby enhancing SOD activity and reducing the superoxide anion and H2O2 levels. Finally, MTG labeling was correlated with CS-induced mitochondrial mass gain, which is associated with cell senescence. Unexpectedly, T2 was not able to significantly prevent this mass increment, probably due to its rapid mode of action. Conclusions: Our results provide new insights into the protective effects of T2 against CS-induced mitochondrial damage. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

16 pages, 4048 KiB  
Review
Challenges of Using Whole-Cell Bioreporter for Assessment of Heavy Metal Bioavailability in Soil/Sediment
by Shanshan Bai, Zhipeng Liu, Jiazhi Xu, Yongshuo Li, Zirun Zhang, Zefeng Huang, Williamson Gustave, Boling Li, Xiaokai Zhang and Feng He
Biosensors 2025, 15(4), 260; https://doi.org/10.3390/bios15040260 - 18 Apr 2025
Viewed by 665
Abstract
Soil and sediment contamination with heavy metals (HMs) is a critical environmental issue, posing significant risks to both ecosystems and human health. Whole-cell bioreporter (WCB) technology offers a promising alternative to traditional detection techniques due to its ability to rapidly assess the bioavailability [...] Read more.
Soil and sediment contamination with heavy metals (HMs) is a critical environmental issue, posing significant risks to both ecosystems and human health. Whole-cell bioreporter (WCB) technology offers a promising alternative to traditional detection techniques due to its ability to rapidly assess the bioavailability of pollutants. Specifically, lights-on WCBs quantify pollutant bioavailability by measuring bioluminescence or fluorescence in response to pollutant exposure, demonstrating comparable accuracy to traditional methods for quantitative pollutant detection. However, when applied to soil and sediment, the signal intensity directly measured by WCBs is often attenuated due to interference from solid particles, leading to the underestimation of bioavailability. Currently, no standardized method exists to correct for this signal attenuation. This review provides a critical analysis of the benefits and limitations of traditional detection methods and WCB technology in assessing HM bioavailability in soil and sediment. Based on the approaches used to address WCB signal attenuation, correction methods are categorized into four types: the assumed negligible method, the non-inducible luminescent control method, the addition of a standard to a reference soil, and a pre-exposure bioreporter. We provide a comprehensive analysis of each method’s applicability, benefits, and limitations. Lastly, potential future directions for advancing WCB technology are proposed. This review seeks to establish a theoretical foundation for researchers and environmental professionals utilizing WCB technology for pollutant bioavailability assessment in soil and sediment. Full article
(This article belongs to the Special Issue Application of Biosensors in Environmental Monitoring)
Show Figures

Figure 1

21 pages, 1040 KiB  
Review
Neuroplasticity and Nervous System Recovery: Cellular Mechanisms, Therapeutic Advances, and Future Prospects
by Ligia Gabriela Tataranu and Radu Eugen Rizea
Brain Sci. 2025, 15(4), 400; https://doi.org/10.3390/brainsci15040400 - 15 Apr 2025
Cited by 1 | Viewed by 4805
Abstract
Neuroplasticity, the ability of the nervous system to adapt structurally and functionally in response to environmental interactions and injuries, is a cornerstone of recovery in the central (CNS) and peripheral nervous systems (PNS). This review explores the mechanisms underlying neuroplasticity, focusing on the [...] Read more.
Neuroplasticity, the ability of the nervous system to adapt structurally and functionally in response to environmental interactions and injuries, is a cornerstone of recovery in the central (CNS) and peripheral nervous systems (PNS). This review explores the mechanisms underlying neuroplasticity, focusing on the dynamic roles of cellular and molecular processes in recovery from nervous system injuries. Key cellular players, including Schwann cells, oligodendrocytes, and neural stem cells, are highlighted for their contributions to nerve repair, myelination, and regeneration. Advances in therapeutic interventions, such as electrical stimulation, bioluminescent optogenetics, and innovative nerve grafting techniques, are discussed alongside their potential to enhance recovery and functional outcomes. The molecular underpinnings of plasticity, involving synaptic remodeling, homeostatic mechanisms, and activity-dependent regulation of gene expression, are elucidated to illustrate their role in learning, memory, and injury repair. Integrating emerging technologies and therapeutic approaches with a foundational understanding of neuroplasticity offers a pathway toward more effective strategies for restoring nervous system functionality after injury. Full article
(This article belongs to the Special Issue How to Rewire the Brain—Neuroplasticity)
Show Figures

Figure 1

13 pages, 4672 KiB  
Communication
A Novel Fluorescent Sensor for Fe3+ Based on a Quinoline Derivative
by Xinru Zhang, Bo Sun, Huan Zhang, Chen Zhou, Qingqing Pan, Yining Wang, Chenyang Zou, Juan Hou and Jing Sun
Molecules 2025, 30(7), 1579; https://doi.org/10.3390/molecules30071579 - 1 Apr 2025
Viewed by 709
Abstract
A new fluorescent sensor for detecting Fe3+ was developed based on chemical modification of the quinoline group. Titration experiments showed that the sensor exhibits high selectivity and sensitivity toward Fe3+, even in complex systems. The recognition mechanism was verified through [...] Read more.
A new fluorescent sensor for detecting Fe3+ was developed based on chemical modification of the quinoline group. Titration experiments showed that the sensor exhibits high selectivity and sensitivity toward Fe3+, even in complex systems. The recognition mechanism was verified through theoretical calculations, demonstrating that the sensor can perform qualitative and quantitative analysis on Fe3+. The cell imaging and zebrafish imaging experiments further prove the potential application of the sensor in the field of bioluminescence imaging. Full article
Show Figures

Figure 1

10 pages, 4114 KiB  
Protocol
CadmiLume: A Novel Smartphone-Based Bioluminescence Color-Tuning Assay and Biosensor for Cadmium and Heavy Metal Detection in Water Samples
by Vadim R. Viviani, Murilo S. Teixeira and Gabriel F. Pelentir
Methods Protoc. 2025, 8(2), 33; https://doi.org/10.3390/mps8020033 - 19 Mar 2025
Viewed by 892
Abstract
Heavy metal contamination of soil and water is a growing environmental concern, especially mercury, lead, and cadmium. Therefore, fast and reliable methodologies to assess contamination in the field are in demand. However, many methodologies require laborious, expensive, and cumbersome equipment that is not [...] Read more.
Heavy metal contamination of soil and water is a growing environmental concern, especially mercury, lead, and cadmium. Therefore, fast and reliable methodologies to assess contamination in the field are in demand. However, many methodologies require laborious, expensive, and cumbersome equipment that is not convenient for rapid field analysis. Mobile phone technology coupled with bioluminescent assays provides accessible hands-on alternatives that has already been shown to be feasible. Previously, we demonstrated that firefly luciferases can be harnessed as luminescence color-tuning sensors for toxic metals. An assay based on such a principle was already successfully applied for teaching biochemistry laboratory lessons, which demonstrates the effect of cadmium on enzyme function based on bioluminescence color change. For analytical detection of cadmium in water, here, we developed a novel bioluminescence assay using the cadmium-sensitive Amydetes vivianii firefly luciferase coupled with a cell phone provided with a program to quantify cadmium concentration based on luminescence color discrimination. The application has proven to be efficient with high precision between 0.10 and 2 mM of cadmium, being appliable to diluted water samples (0.1–2 µM) upon concentration and relying on reference cadmium standards values. The light emitted by the reference standards and samples in a dark box is captured by the smartphone’s camera, which, using computer vision, automatically quantifies cadmium according to the RGB color. CadmiLume is a simple and easy luminescent enzymatic biosensor for cadmium contamination in water samples, which instantaneously can provide results with the convenience of a smartphone in the palm of one’s hands. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

25 pages, 5077 KiB  
Review
Advances in Optical Contrast Agents for Medical Imaging: Fluorescent Probes and Molecular Imaging
by Divya Tripathi, Mayurakshi Hardaniya, Suchita Pande and Dipak Maity
J. Imaging 2025, 11(3), 87; https://doi.org/10.3390/jimaging11030087 - 18 Mar 2025
Viewed by 1074
Abstract
Optical imaging is an excellent non-invasive method for viewing visceral organs. Most importantly, it is safer as compared to ionizing radiation-based methods like X-rays. By making use of the properties of photons, this technique generates high-resolution images of cells, molecules, organs, and tissues [...] Read more.
Optical imaging is an excellent non-invasive method for viewing visceral organs. Most importantly, it is safer as compared to ionizing radiation-based methods like X-rays. By making use of the properties of photons, this technique generates high-resolution images of cells, molecules, organs, and tissues using visible, ultraviolet, and infrared light. Moreover, optical imaging enables real-time evaluation of soft tissue properties, metabolic alterations, and early disease markers in real time by utilizing a variety of techniques, including fluorescence and bioluminescence. Innovative biocompatible fluorescent probes that may provide disease-specific optical signals are being used to improve diagnostic capabilities in a variety of clinical applications. However, despite these promising advancements, several challenges remain unresolved. The primary obstacle includes the difficulty of developing efficient fluorescent probes, and the tissue autofluorescence, which complicates signal detection. Furthermore, the depth penetration restrictions of several imaging modalities limit their use in imaging of deeper tissues. Additionally, enhancing biocompatibility, boosting fluorescent probe signal-to-noise ratios, and utilizing cutting-edge imaging technologies like machine learning for better image processing should be the main goals of future research. Overcoming these challenges and establishing optical imaging as a fundamental component of modern medical diagnoses and therapeutic treatments would require cooperation between scientists, physicians, and regulatory bodies. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

13 pages, 3304 KiB  
Article
Using Nano-Luciferase Binary (NanoBiT) Technology to Assess the Interaction Between Viral Spike Protein and Angiotensin-Converting Enzyme II by Aptamers
by Meng-Wei Lin, Cheng-Han Lin, Hua-Hsin Chiang, Irwin A. Quintela, Vivian C. H. Wu and Chih-Sheng Lin
BioTech 2025, 14(1), 20; https://doi.org/10.3390/biotech14010020 - 15 Mar 2025
Viewed by 1350
Abstract
Nano-luciferase binary technology (NanoBiT)-based pseudoviral sensors are innovative tools for monitoring viral infection dynamics. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells via its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme II (hACE2) receptor. This interaction is [...] Read more.
Nano-luciferase binary technology (NanoBiT)-based pseudoviral sensors are innovative tools for monitoring viral infection dynamics. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells via its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme II (hACE2) receptor. This interaction is crucial for viral entry and serves as a key target for therapeutic interventions against coronavirus disease 2019 (COVID-19). Aptamers, short single-stranded DNA (ssDNA) or RNA molecules, are highly specific, high-affinity biorecognition elements for detecting infective pathogens. Despite their potential, optimizing viral infection assays using traditional protein–protein interaction (PPI) methods often face challenges in optimizing viral infection assays. In this study, we selected and evaluated aptamers for their ability to interact with viral proteins, enabling the dynamic visualization of infection progression. The NanoBiT-based pseudoviral sensor demonstrated a rapid increase in luminescence within 3 h, offering a real-time measure of viral infection. A comparison of detection technologies, including green fluorescent protein (GFP), luciferase, and NanoBiT technologies for detecting PPI between the pseudoviral spike protein and hACE2, highlighted NanoBiT’s superior sensitivity and performance, particularly in aptamer selection. This bioluminescent system provides a robust, sensitive, and early-stage quantitative approach to studying viral infection dynamics. Full article
Show Figures

Figure 1

Back to TopTop