Whole-Cell Fiber-Optic Biosensor for Real-Time, On-Site Sediment and Water Toxicity Assessment: Applications at Contaminated Sites Across Israel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Collection
2.3. Bacterial Toxicity Measurement
2.3.1. Strain Description
2.3.2. Culturing Conditions
2.3.3. Preparation of Bacterial Suspensions for Immobilization
2.3.4. Sample Collection and Preparation for Analysis
2.3.5. Bioluminescence Measurement Using Multimode Plate Reader
2.3.6. Immobilization of the Bioluminescent Bacteria onto the Optical Fiber
2.3.7. Fiber-Optic Instrument (Black Box) Setup
2.3.8. Fiber-Optic Bioluminescent Toxicity Acquisition
2.4. Conventional Chemical Analyses
2.4.1. Elemental Analysis by ICP-OES
2.4.2. LC-MS Analysis
2.5. Statistical Analysis
3. Results
3.1. Bioluminescent Toxicity Response
3.1.1. The Fiber-Optic-Based Bacterial Toxicity Measurement
3.1.2. The Laboratory-Based Toxicity Response and Calibration Curve
3.1.3. Viable Cell Quantification on the Fiber Probe
3.2. Conventional Analysis
3.2.1. ICP Analysis
3.2.2. LC-MS Results and Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Baat, M.L.; Wieringa, N.; Droge, S.T.; van Hall, B.G.; van der Meer, F.; Kraak, M.H. Smarter sediment screening: Effect-based quality assessment, chemical profiling, and risk identification. Environ. Sci. Technol. 2019, 53, 14479–14488. [Google Scholar] [CrossRef]
- Burton, G.A., Jr. Assessing sediment toxicity: Past, present, and future. Environ. Toxicol. Chem. 2013, 32, 1438–1440. [Google Scholar] [CrossRef] [PubMed]
- Massei, R.; Hollert, H.; Krauss, M.; Von Tümpling, W.; Weidauer, C.; Haglund, P.; Küster, E.; Gallampois, C.; Tysklind, M.; Brack, W.J. Toxicity and neurotoxicity profiling of contaminated sediments from Gulf of Bothnia (Sweden): A multi-endpoint assay with Zebrafish embryos. Environ. Sci. Eur. 2019, 31, 8. [Google Scholar] [CrossRef]
- Borja, A.; Valencia, V.; Franco, J.; Muxika, I.; Bald, J.; Belzunce, M.; Solaun, O. The water framework directive: Water alone, or in association with sediment and biota, in determining quality standards? Mar. Pollut. Bull. 2004, 49, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Besten, P.J.D.; de Deckere, E.; Babut, M.P.; Power, B.; DelValls, T.A.; Zago, C.; Oen, A.M.P.; Heise, S. Biological effects-based sediment quality in ecological risk assessment for European waters. J. Soils Sediments 2003, 3, 144–162. [Google Scholar] [CrossRef]
- Ivask, A.; Green, T.; Polyak, B.; Mor, A.; Kahru, A.; Virta, M.; Marks, R. Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens. Bioelectron. 2007, 22, 1396–1402. [Google Scholar] [CrossRef]
- Eltzov, E.; Marks, R.S. Whole-cell aquatic biosensors. Anal. Bioanal. Chem. 2011, 400, 895–913. [Google Scholar] [CrossRef]
- Anderson, B.S.; Hunt, J.W.; Phillips, B.M.; Fairey, R.; A Roberts, C.; Oakden, J.M.; Puckett, H.M.; Stephenson, M.; Tjeerdema, R.S.; Long, E.R.; et al. Sediment quality in Los Angeles Harbor, USA: A triad assessment. Environ. Toxicol. Chem. 2001, 20, 359–370. [Google Scholar] [CrossRef]
- Jonker, M.T.; Diepens, N.J. Improving sediment toxicity testing for very hydrophobic chemicals: Part 1—Spiking, equilibrating, and exposure quantification. Environ. Toxicol. Chem. 2024, 43, 1717–1727. [Google Scholar] [CrossRef]
- Daunert, S.; Barrett, G.; Feliciano, J.S.; Shetty, R.S.; Shrestha, S.; Smith-Spencer, W. Genetically Engineered Whole-Cell Sensing Systems: Coupling Biological Recognition with Reporter Genes. Chem. Rev. 2000, 100, 2705–2738. [Google Scholar] [CrossRef]
- Trif, C.; Vunduk, J.; Parcharoen, Y.; Bualuang, A.; Marks, R.S. Bioluminescent Whole-Cell Bioreporter Bacterial Panel for Sustainable Screening and Discovery of Bioactive Compounds Derived from Mushrooms. Biosensors 2024, 14, 558. [Google Scholar] [CrossRef] [PubMed]
- Eltzov, E.; Marks, R.S. Parameters to consider in the construction of fiber-optic biosensors as alternative bioanalytical tools. IEEE Instrum. Meas. Mag. 2009, 12, 10–16. [Google Scholar] [CrossRef]
- Polyak, B.; Bassis, E.; Novodvorets, A.; Belkin, S.; Marks, R.S. Bioluminescent whole cell optical fiber sensor to genotoxicants: System optimization. Sens. Actuators B Chem. 2001, 74, 18–26. [Google Scholar] [CrossRef]
- Lior, E.; Axelrod, T.; Eltzov, E.; Kushmaro, A.; Marks, R.S. Lachish river event monitored for toxicity using bioluminescent reporter organisms. EuroBiotech J. 2018, 2, 47–58. [Google Scholar] [CrossRef]
- Meighen, E.A. Bacterial bioluminescence: Organization, regulation, and application of the lux genes. FASEB J. 1993, 7, 1016–1022. [Google Scholar] [CrossRef]
- Kronfeld, J.; Navrot, J. Aspects of trace metal contamination in the coastal rivers of Israel. Water Air Soil Pollut. 1975, 4, 127–134. [Google Scholar] [CrossRef]
- Gitsis, A. Ha-Yaʿad Ha-Mafṭīʾ Shel Ha-Kharishim: Naḥal Alexander. N12 (Mako). 16 April 2025. Available online: https://www.mako.co.il/news-channel12 (accessed on 18 April 2025).
- Asaf, L.; Negaoker, N.; Tal, A.; Laronne, J.; Khateeb, N.A. Transboundary stream restoration in Israel and the Palestinian Authority. In Integrated Water Resources Management and Security in the Middle East; Springer: Dordrecht, The Netherlands, 2007; pp. 285–295. [Google Scholar]
- Van Dyk, T.K.; Majarian, W.R.; Konstantinov, K.B.; Young, R.M.; Dhurjati, P.S.; LaRossa, R.A. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 1994, 60, 1414–1420. [Google Scholar] [CrossRef]
- Elsemore, D.A. Insertion of promoter region::luxCDABE fusions into the Escherichia coli chromosome. Methods Mol. Biol. 1998, 102, 97–104. [Google Scholar] [CrossRef]
- Arsène, F.; Tomoyasu, T.; Bukau, B. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 2000, 55, 3–9. [Google Scholar] [CrossRef]
- Bazhenov, S.; Novoyatlova, U.; Scheglova, E.; Prazdnova, E.; Mazanko, M.; Kessenikh, A.; Kononchuk, O.; Gnuchikh, E.; Liu, Y.; Al Ebrahim, R.; et al. Bacterial lux-biosensors: Constructing, applications, and prospects. Biosens. Bioelectron. X 2023, 13, 100323. [Google Scholar] [CrossRef]
- Eltzov, E.; Prilutsky, D.; Kushmaro, A.; Marks, R.; Geddes, C. Metal-enhanced bioluminescence: An approach for monitoring biological luminescent processes. Appl. Phys. Lett. 2009, 94, 083901. [Google Scholar] [CrossRef]
- Polyak, B.; Bassis, E.; Novodvorets, A.; Belkin, S.; Marks, R.S. Optical fiber bioluminescent whole-cell microbial biosensors to genotoxicants. Water Sci. Technol. 2000, 42, 305–311. [Google Scholar] [CrossRef]
- Paul, A.A.; Kadosh, Y.S.; Kushmaro, A.; Marks, R.S. Microbead-Encapsulated Luminescent Bioreporter Screening of P. aeruginosa via Its Secreted Quorum-Sensing Molecules. Biosensors 2024, 14, 383. [Google Scholar] [CrossRef]
- Wang, N.; Liu, W.; Liu, S.; Xu, L.; Wang, L.; He, M.; Fang, D. Methylene Blue Optical Fiber Sensor Filled with Calcium Alginate Hydrogel. Photonics 2023, 10, 1251. [Google Scholar] [CrossRef]
- Matsunaga, T.; Sudo, H.; Takemasa, H.; Wachi, Y.; Nakamura, N. Sulfated extracellular polysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia immobilized on light-diffusing optical fibers. Appl. Microbiol. Biotechnol. 1996, 45, 24–27. [Google Scholar] [CrossRef]
- Noor, R.; Islam, Z.; Munshi, S.K.; Rahman, F. Influence of temperature on Escherichia coli growth in different culture media. J. Pure Appl. Microbiol. 2013, 7, 899–904. [Google Scholar]
- Carletti, M.; Sforza, E.; Batushansky, A.; Boussiba, S.; Bertucco, A.; Khozin-Goldberg, I.; Zorin, B. Enhanced cyanophycin accumulation in diazotrophic cyanobacterium through random mutagenesis and tailored selection under varying phosphorus availability. Bioresour. Technol. 2024, 419, 132018. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2010. [Google Scholar]
- Kolde, R.; Kolde, M.R. Package “Pheatmap”: Pretty Heatmaps; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Parchem. Material Safety Data Sheet: Di-(2-ethylhexyl)amine; Parchem: New Rochelle, NY, USA, 2009. [Google Scholar]
- Caldwell, J. Amphetamines and related stimulants: Some introductory remarks. In Amphetamines and Related Stimulants; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–12. [Google Scholar]
- Mitchell, S.C.; Waring, R.H.; Smith, R.L. Curiosities in drug metabolism. Xenobiotica 2014, 44, 666–676. [Google Scholar] [CrossRef]
- Xia, Z.; Ying, G.; Hansson, A.L.; Karlsson, H.; Xie, Y.; Bergstrand, A.; DePierre, J.W.; Nässberger, L. Antidepressant-induced lipidosis with special reference to tricyclic compounds. Prog. Neurobiol. 2000, 60, 501–512. [Google Scholar] [CrossRef]
- Brust, K. Toxicity of Aliphatic Amines on the Embryos of Zebrafish Danio Rerio-Experimental Studies and QSAR. Ph.D Thesis, der Technischen Universität Dresden, Dresden, Germany, 2001. [Google Scholar]
- Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017, 356, eaag2770. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Raychaudhuri, U.; Chakraborty, R. Artificial sweeteners—A review. J. Food Sci. Technol. 2014, 51, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Yurttas, L.; Kaya, B.; Yilmaz Cankilic, M.; Levent, S. New Cyclohexylamine-dithiocarbamate Derivatives as Potential Anti-microbial Agents. Lett. Drug Des. Discov. 2017, 14, 1308–1315. [Google Scholar] [CrossRef]
- Schlosser, P.M.; Bale, A.S.; Gibbons, C.F.; Wilkins, A.; Cooper, G.S. Human health effects of dichloromethane: Key findings and scientific issues. Environ. Health Perspect. 2015, 123, 114–119. [Google Scholar] [CrossRef]
- Obici, S.; Otobone, F.J.; da Silva Sela, V.R.; Ishida, K.; da Silva, J.C.; Nakamura, C.V.; Cortez, D.A.G.; Audi, E.A. Preliminary toxicity study of dichloromethane extract of Kielmeyera coriacea stems in mice and rats. J. Ethnopharmacol. 2008, 115, 131–139. [Google Scholar] [CrossRef]
- Dekant, W.; Jean, P.; Arts, J. Evaluation of the carcinogenicity of dichloromethane in rats, mice, hamsters and humans. Regul. Toxicol. Pharmacol. 2021, 120, 104858. [Google Scholar] [CrossRef]
- Westphal, G.A.; Müller, M.M.; Herting, C.; Bünger, J.; Hallier, E. Genotoxic effects of N-nitrosodicyclohexylamine in isolated human lymphocytes. Arch. Toxicol. 2001, 75, 118–122. [Google Scholar] [CrossRef]
- Stevanović, J.; Stanimirović, Z.; Pejin, I.I.; Lazarević, M. Monitoring of mitotic index and frequency of micronuclei in evaluation of genotoxic potential of fumagillin (dicyclohexylamine) in vivo. Acta Vet. Beogr. 2006, 56, 437–448. [Google Scholar]
- Casey, J.P. Amines, cycloaliphatic. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Libralato, G.; Ghirardini, A.V.; Avezzu, F. Seawater ecotoxicity of monoethanolamine, diethanolamine and triethanolamine. J. Hazard. Mater. 2010, 176, 535–539. [Google Scholar] [CrossRef]
- Abdl-Razzaq, H.T.; Al-Azzawi, M.N.A. Toxicology Study the Acute effects of Diethanolamine in Mice Blood and Liver (Oral study). J. Int. Environ. Appl. Sci. 2017, 12, 14–23. [Google Scholar]
- Bakalova, S.; Mincheva, V.; Doycheva, A.; Groudeva, V.; Dimkov, R. Microbial toxicity of ethanolamines. Biotechnol. Biotechnol. Equip. 2008, 22, 716–720. [Google Scholar] [CrossRef]
- Fiume, M.M.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks Jr, J.G.; Shank, R.C.; Slaga, T.J. Safety assessment of diethanolamine and its salts as used in cosmetics. Int. J. Toxicol. 2017, 36, 89S–110S. [Google Scholar] [CrossRef] [PubMed]
- Trakulsrichai, S.; Chuayaupakarn, K.; Tansuwannarat, P.; Rittilert, P.; Tongpoo, A.; Sriapha, C.; Wananukul, W. Ethephon Poisoning: Clinical Characteristics and Outcomes. Toxics 2025, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Authority, E.F.S.; Alvarez, F.; Arena, M.; Auteri, D.; Binaglia, M.; Castoldi, A.F.; Chiusolo, A.; Colagiorgi, A.; Colas, M.; Crivellente, F. Peer review of the pesticide risk assessment of the active substance ethephon. EFSA J. 2023, 21, e07742. [Google Scholar]
- Bhadoria, P.; Nagar, M.; Bharihoke, V.; Bhadoria, A.S. Ethephon, an organophosphorous, a fruit and vegetable ripener: Has potential hepatotoxic effects? J. Fam. Med. Prim. Care 2018, 7, 179–183. [Google Scholar] [CrossRef]
- Hall, A.; Henry, J. Acute toxic effects of ‘Ecstasy’(MDMA) and related compounds: Overview of pathophysiology and clinical management. BJA Br. J. Anaesth. 2006, 96, 678–685. [Google Scholar] [CrossRef]
- Greene, S.L.; Dargan, P.I.; O’connor, N.; Jones, A.L.; Kerins, M. Multiple toxicity from 3, 4-methylenedioxymethamphetamine (“ecstasy”). Am. J. Emerg. Med. 2003, 21, 121–124. [Google Scholar] [CrossRef]
- Quinton, M.S.; Yamamoto, B.K. Causes and consequences of methamphetamine and MDMA toxicity. AAPS J. 2006, 8, E337. [Google Scholar] [CrossRef]
- Okuda, H.; Takeuchi, T.; Senoh, H.; Arito, H.; Nagano, K.; Yamamoto, S.; Matsushima, T. Developmental toxicity induced by inhalation exposure of pregnant rats to N, N-dimethylacetamide. J. Occup. Health 2006, 48, 154–160. [Google Scholar] [CrossRef]
- Menegola, E.; Broccia, M.; Prati, M.; Giavini, E. In vitro embryotoxicity study of n, n-dimethylacetamide and its main metabolite N-monomethylacetamide. Toxicol. Vitr. 1999, 13, 409–415. [Google Scholar] [CrossRef]
- Nomiyama, T.; Tsukahara, T.; Hasegawa, K. Health risks of N, N-dimethylacetamide (DMAC) in humans. J. Occup. Health 2025, 67, uiaf010. [Google Scholar] [CrossRef]
- Chen, Y.; Go, Y.-M.; Pohl, J.; Reed, M.; Cai, J.; Jones, D.P. Increased mitochondrial thioredoxin 2 potentiates N-ethylmaleimide-induced cytotoxicity. Chem. Res. Toxicol. 2008, 21, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Bowes, T.J.; Gupta, R.S. Induction of mitochondrial fusion by cysteine-alkylators ethacrynic acid and N-ethylmaleimide. J. Cell. Physiol. 2005, 202, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.B.; Mitchell, R.J.; Kim, B.C. Whole-cell-based biosensors for environmental biomonitoring and application. Biomanufacturing 2004, 87, 269–305. [Google Scholar]
- Nos, C. o-Toluidine and o-Toluidine. Rep. Carcinog. Carcinog. Profiles 2002, 10, 242. [Google Scholar]
- Toyoda, T.; Kobayashi, T.; Miyoshi, N.; Matsushita, K.; Akane, H.; Morikawa, T.; Ogawa, K. Toxicological effects of two metabolites derived from o-toluidine and o-anisidine after 28-day oral administration to rats. J. Toxicol. Sci. 2022, 47, 457–466. [Google Scholar] [CrossRef]
- Ochsmann, E. o-Toluidine–Evaluation of a BAR. Assessment Values in Biological Material–Translation of the German version from 2010. Available online: https://books.publisso.de/sites/default/files/documents/series/mak/dam/Vol2021/Iss5/Doc927/bb9553eoj21_1or.pdf (accessed on 20 April 2025).
- English, J.C.; Bhat, V.S.; Ball, G.L.; McLellan, C.J. Establishing a total allowable concentration of o-toluidine in drinking water incorporating early lifestage exposure and susceptibility. Regul. Toxicol. Pharmacol. 2012, 64, 269–284. [Google Scholar] [CrossRef]
- Adegunsoye, A.; Akhter, R.; Rachshtut, M.; Green, E. 856: Pulmonary Infarction: An Unusual Complication of Phentermine/Phendimetrazine for Weight Loss. Crit. Care Med. 2011, 39, 241. [Google Scholar]
- Yen, M.; Ewald, M.B. Toxicity of Weight Loss Agents. J. Med. Toxicol. 2012, 8, 145–152. [Google Scholar] [CrossRef]
- Lim, S.; Rogers, L.K.; Tessler, O.; Mundinger, G.S.; Rogers, C.; Lau, F.H. Phentermine: A systematic review for plastic and reconstructive surgeons. Ann. Plast. Surg. 2018, 81, 503–507. [Google Scholar] [CrossRef]
- Steidl, K.E.; Darko, W.; Probst, L.A.; Noviasky, J.A.; Nasser, S. Rhabdomyolysis associated with phentermine. Am. J. Health-Syst. Pharm. 2010, 67, 1929–1932. [Google Scholar] [CrossRef]
- Yu-han, L.; Jing-jing, M.; Shou-xiang, W.; Lu-qing, P.; Yu-fei, L.; Jiang-yue, W. Acute toxicity and species sensitivity distribution of p-chloroaniline, 1, 2-dichloroethane, butyl benzyl phthalate and 1-phenylethyl alcohol on two marine bivalves. Chin. J. Mar. Environ. Sci. 2020, 39, 732–737. [Google Scholar]
- Politano, V.T.; Diener, R.M.; Christian, M.S.; Hoberman, A.M.; Palmer, A.; Ritacco, G.; Adams, T.B.; Api, A.M. Oral and dermal developmental toxicity studies of phenylethyl alcohol in rats. Int. J. Toxicol. 2013, 32, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, J.; Jones, L.; Letizia, C.; Api, A. Fragrance material review on phenylethyl alcohol. Food Chem. Toxicol. 2012, 50, S224–S239. [Google Scholar] [CrossRef] [PubMed]
- Gamer, A.O.; Rossbacher, R.; Kaufmann, W.; van Ravenzwaay, B. The Inhalation toxicity of di- and triethanolamine upon repeated exposure. Food Chem. Toxicol. 2008, 46, 2173–2183. [Google Scholar] [CrossRef]
- Service, P.H.; Services, H.; Program, N.T. NTP Toxicology and Carcinogenesis Studies of Triethanolamine (Cas No. 102-71-6) in B6C3F1 Mice (Dermal Studies). National Toxicology Program Technical Report Series. 2004, pp. 5–163. Available online: https://ntp.niehs.nih.gov/sites/default/files/ntp/htdocs/lt_rpts/tr518.pdf (accessed on 20 April 2025).
- Stott, W.; Radtke, B.; Linscombe, V.; Mar, M.-H.; Zeisel, S. Evaluation of the potential of triethanolamine to alter hepatic choline levels in female B6C3F1 mice. Toxicol. Sci. 2004, 79, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Leppanen, M.T.; Sourisseau, S.; Burgess, R.M.; Simpson, S.L.; Sibley, P.; Jonker, M.T. Sediment Toxicity Tests: A Critical Review of Their use in Environmental Regulations. Environ. Toxicol. Chem. 2024, 43, 1697–1716. [Google Scholar] [CrossRef]
- Eltzov, E.; Yehuda, A.; Marks, R.S. Creation of a new portable biosensor for water toxicity determination. Sens. Actuators B Chem. 2015, 221, 1044–1054. [Google Scholar] [CrossRef]
Element | HD1 | AX2 | YA1 | YA2 |
---|---|---|---|---|
Ag | − | − | − | − |
Al | − | − | − | − |
B | − | + | − | − |
Ba | − | − | − | − |
Bi | − | − | − | − |
Ca | + | − | + | − |
Cd | − | − | − | − |
Co | − | − | − | − |
Cr | − | − | − | − |
Cu | − | − | − | − |
Fe | − | − | − | − |
Ga | − | − | − | − |
K | + | + | + | + |
Li | − | − | − | − |
Mg | + | + | + | − |
Mn | − | − | − | − |
Na | + | + | + | + |
Ni | − | − | − | − |
Pb | − | − | − | − |
Sr | − | − | − | − |
Zn | − | − | − | − |
S | + | + | + | + |
P | − | − | − | − |
Number | Name | References |
---|---|---|
1 | Bis(2-ethylhexyl) amine | [32] |
2 | Chlorphentermine | [33,34,35] |
3 | Cyclohexylamine | [36,37,38,39] |
4 | Dichloromethane | [40,41,42] |
5 | Dicyclohexylamine | [43,44,45] |
6 | Diethanolamine | [46,47,48,49] |
7 | Ethephon | [50,51,52] |
8 | MDMA | [53,54,55] |
9 | N,N-Dimethylacetamide | [56,57,58] |
10 | N-ethylmaleimide | [59,60,61] |
11 | o-Toluidine | [62,63,64,65] |
12 | Phentermine | [66,67,68,69] |
13 | Phenylethyl alcohol | [70,71,72] |
14 | Triethanolamine | [46,48,73,74,75] |
Element | Compounds in Water | Proportion in Water (%) | Compounds in Sediment | Proportion in Sediment (%) |
---|---|---|---|---|
Sulfur | 299 | 40.13 | 154 | 14.41 |
Chlorine | 279 | 37.45 | 35 | 3.27 |
Bromine | 110 | 14.77 | 7 | 0.65 |
Fluorine | 3 | 0.4 | 6 | 0.56 |
Iodine | 2 | 0.27 | 1 | 0.09 |
Selenium | 1 | 0.13 | 1 | 0.09 |
Indium | 1 | 0.13 | 0 | 0 |
Phosphorus | 422 | 56.64 | 198 | 18.52 |
Nitrogen | 497 | 66.71 | 862 | 80.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmeli, G.; Paul, A.A.; Kristollari, K.; Eltzov, E.; Batushansky, A.; Marks, R.S. Whole-Cell Fiber-Optic Biosensor for Real-Time, On-Site Sediment and Water Toxicity Assessment: Applications at Contaminated Sites Across Israel. Biosensors 2025, 15, 404. https://doi.org/10.3390/bios15070404
Carmeli G, Paul AA, Kristollari K, Eltzov E, Batushansky A, Marks RS. Whole-Cell Fiber-Optic Biosensor for Real-Time, On-Site Sediment and Water Toxicity Assessment: Applications at Contaminated Sites Across Israel. Biosensors. 2025; 15(7):404. https://doi.org/10.3390/bios15070404
Chicago/Turabian StyleCarmeli, Gal, Abraham Abbey Paul, Kathelina Kristollari, Evgeni Eltzov, Albert Batushansky, and Robert S. Marks. 2025. "Whole-Cell Fiber-Optic Biosensor for Real-Time, On-Site Sediment and Water Toxicity Assessment: Applications at Contaminated Sites Across Israel" Biosensors 15, no. 7: 404. https://doi.org/10.3390/bios15070404
APA StyleCarmeli, G., Paul, A. A., Kristollari, K., Eltzov, E., Batushansky, A., & Marks, R. S. (2025). Whole-Cell Fiber-Optic Biosensor for Real-Time, On-Site Sediment and Water Toxicity Assessment: Applications at Contaminated Sites Across Israel. Biosensors, 15(7), 404. https://doi.org/10.3390/bios15070404