Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = biologically enriched fertilizer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1065 KiB  
Review
Recovery of Nutrients from the Aqueous Phase of Hydrothermal Liquefaction—A Review
by Barbara Camila Bogarin Cantero, Yalin Li, Prasanta Kalita, Yuanhui Zhang and Paul Davidson
Water 2025, 17(14), 2099; https://doi.org/10.3390/w17142099 - 14 Jul 2025
Viewed by 574
Abstract
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the [...] Read more.
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the process, which has high concentrations of nitrogen and carbon and cannot be disposed of in the environment without treatment. The HTL-AP is enriched with organic compounds, particularly light polar organics and nitrogenous compounds, which are inhibitory to microbial treatment in wastewater treatment plants. For this reason, the valorization of the HTL-AP is significant for the circular economy of HTL. This review synthesizes published findings on different types of treatment of the HTL-AP for the recovery of valuable nutrients and the removal of toxic compounds. This work outlines the trade-offs of the treatments to serve as a guide for future research to address these weaknesses and improve the valorization of the HTL-AP. Furthermore, this work uniquely focuses on HTL-AP treatment for recovering plant-available nitrogen, targeting its potential use as a fertilizer. The literature highlights the importance of increasing nitrogen bioavailability in HTL-AP through two-step treatments and by selecting HTL-AP derived from protein-rich feedstocks, which offer higher initial nitrogen content. According to the current state of research, further work is needed to optimize chemical and biological treatments for nutrient recovery from HTL-AP, particularly regarding treatment scale and duration. Additionally, economic analyses across different treatment types are currently lacking, but are essential to evaluate their feasibility and practicality. Full article
(This article belongs to the Special Issue Emerging Technologies for Nutrient Recovery and Wastewater Treatment)
Show Figures

Figure 1

26 pages, 2941 KiB  
Article
A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns
by Fei Bian, Yonghui Wang, Haixia Ren, Luzhang Wan, Huidong Guo, Yuxue Jia, Xia Liu, Fanhua Ning, Guojun Shi and Pengfei Ren
Horticulturae 2025, 11(7), 730; https://doi.org/10.3390/horticulturae11070730 - 23 Jun 2025
Viewed by 434
Abstract
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom [...] Read more.
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom and two vegetable cycles annually). Crop straw was first used to cultivate Pleurotus eryngii, achieving 80% biological efficiency and reducing substrate costs by ~36.3%. The spent mushroom substrate (SMS) was then reused for Ganoderma lucidum and vegetable cultivation, maximizing the resource efficiency. SMS application significantly improved soil properties: organic matter increased 11-fold (from 14.8 to 162.78 g/kg) and pH decreased from 8.34 to ~6.75. The available phosphorus and potassium contents increased several-fold compared to untreated soil. Metagenomic analysis showed the enrichment of beneficial decomposer bacteria (Hyphomicrobiales, Burkholderiales, and Streptomyces) and functional genes involved in glyoxylate metabolism, nitrogen cycling, and lignocellulose degradation. These changes shifted the microbial community from a stress-tolerant to a nutrient-cycling profile. The vegetable yield and quality improved markedly: cabbage and cauliflower yields increased by 34–38%, and the tomato lycopene content rose by 179%. Economically, the system generated 1,695,000–1,962,881.4 CNY per hectare annually and reduced fertilizer costs by ~450,000 CNY per hectare. This mushroom–vegetable rotation addresses ecological bottlenecks in saline–alkaline lands through lignin-driven carbon release, organic acid-mediated pH reduction, and actinomycete-dominated decomposition, offering a sustainable agricultural strategy for coastal regions. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

16 pages, 1927 KiB  
Article
Optimizing Nitrogen Fixation in Vicia sativa: The Role of Host Genetic Diversity
by María Isabel López-Román, Cristina Castaño-Herrero, Lucía De la Rosa and Elena Ramírez-Parra
Agronomy 2025, 15(6), 1479; https://doi.org/10.3390/agronomy15061479 - 18 Jun 2025
Viewed by 499
Abstract
Common vetch (Vicia sativa L.) is a legume widely used both as a grain and as forage due to its high protein content, which provides considerable nutritional enrichment for livestock feed. As a cover crop, it has the potential to fix atmospheric [...] Read more.
Common vetch (Vicia sativa L.) is a legume widely used both as a grain and as forage due to its high protein content, which provides considerable nutritional enrichment for livestock feed. As a cover crop, it has the potential to fix atmospheric nitrogen through symbiosis with rhizobia, contributing to sustainable agricultural systems by enhancing soil fertility and reducing the dependence on chemical fertilizers. Although much research has been focused on optimizing Rhizobium inoculants to enhance biological nitrogen fixation (BNF) in leguminous crops, the role of host plant genetic diversity in BNF has been underexplored. This study analyses a collection of V. sativa genotypes to evaluate their BNF by assaying their nodulation capacity, nodule nitrogenase activity, nitrogen fixation potential, and impact on biomass development. Our results reveal large variability in these parameters among the different genotypes, emphasizing the relevance of host legume diversity in the Rhizobium symbiosis. These findings show a direct relationship between nodule biomass development, nitrogen fixation capacity, shoot biomass production, and nitrogen content. However, no correlation was observed for other parameters such as the number of nodules, nitrogenase activity, and shoot nitrogen content. Taken together, these results suggest that selecting genotypes with high BNF capacity could be a promising strategy to improve nitrogen fixation in legume-based agricultural systems. Full article
(This article belongs to the Special Issue Natural and Non-Conventional Sources of Nitrogen for Plants)
Show Figures

Figure 1

18 pages, 2447 KiB  
Article
lncRNA 1700009J07Rik Impaired Male Fertility by Interfering with Sexual Behaviors in Mice
by Hongyu Wang, Xiaojun Liu, Shijue Dong, Yang Zhou, Jingyan Yu, Meng Zou, Mengqian Ding, Aiwen Kang, Nanxi Ji, Xuhui Zeng and Xiaoning Zhang
Int. J. Mol. Sci. 2025, 26(12), 5801; https://doi.org/10.3390/ijms26125801 - 17 Jun 2025
Viewed by 375
Abstract
Long non-coding (lnc) RNAs exhibit tissue-specific expression characteristics and have been shown to be involved in the regulation of various biological processes. The testis is one of the organs with the most abundant lncRNAs. However, the functions of many testis-specific or -enriched lncRNAs [...] Read more.
Long non-coding (lnc) RNAs exhibit tissue-specific expression characteristics and have been shown to be involved in the regulation of various biological processes. The testis is one of the organs with the most abundant lncRNAs. However, the functions of many testis-specific or -enriched lncRNAs in male fertility remain undisclosed. In this study, we screened lncRNA 1700009J07Rik (07Rik) to investigate its roles in spermatogenesis and male fertility using knockout (KO) mice. We found that 07Rik mainly acted as an intact lncRNA rather than a small protein, being highly expressed in various spermatogenic cells, which suggests its potential involvement in spermatogenesis. Unexpectedly, the deletion of 07Rik did not impact spermatogenesis or sperm functions. Intriguingly, two-thirds of the male KO were infertile, which was ascribed to the lack of sexual behaviors rather than abnormalities in spermatogenesis or sperm functions. Further results reveal that, compared with wild-type mice, free testosterone content in serum was significantly reduced in the KO infertile (KO-I) mice, whereas it was remarkably elevated in the testes. Correspondingly, Hsd3b2, a key gene that promotes testosterone synthesis, was dramatically upregulated. Cyp19a1 and Cyp11b1, which are responsible for testosterone metabolism, were downregulated in the testes. In addition, the expression of sex hormone-binding globulin was observably elevated in the testes of 07Rik KO-I mice, which might partially explain the decrease in testosterone in the serum. These results suggest that disruptions in testosterone synthesis and metabolism might contribute to the loss of libido in 07Rik KO-I mice. Our findings expand the understanding of lncRNA function and provide novel insights into the role of lncRNAs in male fertility, particularly in relation to hormonal turnover disorders that mediate sexual behavior defects. Full article
(This article belongs to the Special Issue Reproductive Endocrinology Research)
Show Figures

Figure 1

21 pages, 2648 KiB  
Article
Sustainable Soil Management: The Dynamic Impact of Combined Use of Crop Rotation and Fertilizers from Agri-Food and Sulfur Hydrocarbon Refining Processes Wastes
by Angela Maffia, Federica Marra, Mariateresa Oliva, Santo Battaglia, Carmelo Mallamaci and Adele Muscolo
Land 2025, 14(6), 1171; https://doi.org/10.3390/land14061171 - 29 May 2025
Viewed by 493
Abstract
Sustainable agriculture increasingly relies on strategies that improve soil fertility while reducing the environmental footprint of chemical inputs. The primary objective of this research was to disentangle the individual and combined effects of crop rotation and fertilization on soil quality. This study aimed [...] Read more.
Sustainable agriculture increasingly relies on strategies that improve soil fertility while reducing the environmental footprint of chemical inputs. The primary objective of this research was to disentangle the individual and combined effects of crop rotation and fertilization on soil quality. This study aimed to determine whether the effectiveness of fertilization was modified by rotational practices—exploring whether these interactions were additive, antagonistic, or synergistic. This study assessed the impact of two-year open-field crop rotations—broccoli–tomato and broccoli–pepper—combined with organic and mineral fertilization on soil chemical and biological properties. Treatments included sulfur bentonite enriched with orange waste (SBO), horse manure (HM), mineral fertilizer (NPK), and an unfertilized control (CTR). Soil samples were collected after each crop cycle and analyzed for enzymatic activities (fluorescein diacetate hydrolase, dehydrogenase, catalase), microbial biomass carbon (MBC), organic matter, total nitrogen, and macro- and micronutrient content. The results showed that organic amendments, particularly SBO and HM, significantly increased microbial activity, MBC, and nutrient availability compared to NPK and CTR. Organic treatments also led to a reduction in soil pH (−12%) and a more balanced ionic profile, enhancing soil biological fertility across both rotations. By contrast, the NPK treatments favored higher nitrate and chloride concentrations (3.5 and 4.6 mg * g−1 dw, respectively) but did not improve biological indicators. Improvements were more pronounced in the second crop cycle, suggesting the cumulative benefits of organic amendments over time. These findings highlight the potential of combining organic fertilization with crop rotation to enhance soil health and support long-term sustainability in horticultural systems. Full article
(This article belongs to the Special Issue Soil Ecological Risk Assessment Based on LULC)
Show Figures

Figure 1

29 pages, 1701 KiB  
Review
Microbially Enhanced Biofertilizers: Technologies, Mechanisms of Action, and Agricultural Applications
by Sylwia Figiel, Piotr Rusek, Urszula Ryszko and Marzena Sylwia Brodowska
Agronomy 2025, 15(5), 1191; https://doi.org/10.3390/agronomy15051191 - 15 May 2025
Viewed by 1446
Abstract
Intensive research has been conducted for many years to develop environmentally friendly techniques for plant cultivation that optimize the fertilization process. One of the most promising areas within the fertilizer industry is using microbiologically enriched fertilizers, which incorporate beneficial bacteria or fungi. Biofertilizers [...] Read more.
Intensive research has been conducted for many years to develop environmentally friendly techniques for plant cultivation that optimize the fertilization process. One of the most promising areas within the fertilizer industry is using microbiologically enriched fertilizers, which incorporate beneficial bacteria or fungi. Biofertilizers are the focus of studies on both their production technologies and their effects on crop growth and yield, presenting a potential alternative to conventional mineral fertilizers. The prolonged and improper use of mineral fertilizers, along with inadequate plant protection, a lack of organic fertilization, and poor crop rotation practices, negatively impact soil health, disrupting microbial populations and ultimately diminishing yield quality and quantity. Microorganisms, particularly specific groups known as plant growth -promoting rhizobacteria (PGPR) and beneficial fungi, are estimated to make up 85% of the total soil biomass and play a crucial role in soil fertility by mineralizing organic matter, suppressing pests and pathogens, forming humus, and maintaining proper soil structure. They also provide optimal conditions for plant growth. Soil microorganisms can be categorized as either autochthonous, naturally present in the soil, or zymogenic, which develop when easily assimilable organic matter is added. Key microorganisms such as Micrococcus, Bacillus, Azotobacter, and nitrogen-fixing bacteria like Rhizobium and Bradyrhizobium significantly contribute to soil health and plant growth. Microbially enhanced fertilizers not only supply essential macro- and micronutrients but also improve soil quality, enhance nutrient use efficiency, protect plants against pathogens, and restore natural soil fertility, fostering a balanced biological environment for sustainable agriculture. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 2053 KiB  
Article
Impact of Phytoplankton Biomass on the Growth and Development of Agricultural Plants
by Jurga Jankauskienė, Kornelija Janušaitienė, Jūratė Karosienė, Ričardas Paškauskas, Sigita Jurkonienė and Rima Mockevičiūtė
Agronomy 2025, 15(5), 1120; https://doi.org/10.3390/agronomy15051120 - 30 Apr 2025
Viewed by 447
Abstract
The agricultural sector plays one of the pivotal roles in fulfilling the objectives set forth by the EU Green Deal. However, the extensive use of synthetic fertilizers has contributed to nutrient over-enrichment in aquatic ecosystems, promoting eutrophication due to excess nitrogen inputs from [...] Read more.
The agricultural sector plays one of the pivotal roles in fulfilling the objectives set forth by the EU Green Deal. However, the extensive use of synthetic fertilizers has contributed to nutrient over-enrichment in aquatic ecosystems, promoting eutrophication due to excess nitrogen inputs from fertilizers. This phenomenon is a key driver of rapid and excessive algal blooms in rivers, lakes, and seas. In this study, three globally cultivated crop species—oilseed rape (Brassica napus L.), common wheat (Triticum aestivum L.), and pea (Pisum sativum L.)—were selected for experimental analysis, including the assessment of biochemical parameters such as proline content, lipid peroxidation levels, hydrogen peroxide production, total phenol content, and antioxidant activity, which were evaluated to determine the potential of phytoplankton biomass as a substitute for synthetic fertilizers. Various quantities of lyophilized phytoplankton biomass, collected from the Curonian Lagoon, a biologically productive and ecologically sensitive brackish water body in the southeastern Baltic region, were incorporated into the growth substrates of the studied plants. The findings indicate that utilizing excess phytoplankton biomass can serve not only as a plant growth biostimulant but also as a sustainable alternative to synthetic fertilizers, thereby contributing to improved water quality and more environmentally responsible agricultural practices. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 3504 KiB  
Article
Comparative Proteome and Weighted Gene Co-Expression Network Analyses Uncover the Mechanism of Wheat Grain Protein Accumulation in Response to Nitrogen Fertilizer Application
by Beiming Xu, Yuku Jia, Jianchao Feng, Yang Yang, Geng Ma, Yanfei Zhang, Yingxin Xie and Dongyun Ma
Foods 2025, 14(9), 1481; https://doi.org/10.3390/foods14091481 - 24 Apr 2025
Viewed by 429
Abstract
This study uses proteomic technology to identify differentially expressed proteins (DEPs) under varying nitrogen fertilizer levels. Additionally, it utilizes weighted gene co-expression network analysis (WGCNA) based on expression data of DEP-coding genes to explore the mechanism by which nitrogen promotes grain protein accumulation. [...] Read more.
This study uses proteomic technology to identify differentially expressed proteins (DEPs) under varying nitrogen fertilizer levels. Additionally, it utilizes weighted gene co-expression network analysis (WGCNA) based on expression data of DEP-coding genes to explore the mechanism by which nitrogen promotes grain protein accumulation. The results indicate that high-nitrogen treatment leads to an increased grain protein content, wet gluten content, stability time, and energy area. In addition, the β-sheet content of the protein secondary structure increased, while the irregular curl content decreased. A total of 285 DEPs were identified under different nitrogen levels, with 172 upregulated proteins in grains under high-nitrogen treatment including storage proteins (8.14%) and proteins involved in nitrogen metabolism (8.72%), defense/stress (11.04%), regulation (26.16%), and transport (5.23%). This suggests that both storage proteins and certain metabolic proteins contribute to dough network formation. WGCNA revealed a strong correlation between the blue module and grain samples, and Gene Ontology analysis indicated that most genes were enriched in response to abscisic acid (ABA) in the “biological process” category. Furthermore, 18 core genes were identified, with most containing ABA response elements, light response elements, and motifs related to storage protein regulation in their promoter regions. Expression analysis of 10 genes and their predicted transcription factors during the grain-filling stage demonstrated higher expression levels under high-nitrogen conditions. This study provides valuable insights into the promotion of grain protein accumulation and dough quality by nitrogen fertilizer application. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

18 pages, 6424 KiB  
Article
Differences in Carbon and Nitrogen Cycling Strategies and Regional Variability in Biological Soil Crust Types
by Yue Tao, Yan Li, Yaojia Fu, Sijia She, Xinyue Wang, Lianghui Hou, Chaoqi Chen and Lanzhou Chen
Int. J. Mol. Sci. 2025, 26(9), 3989; https://doi.org/10.3390/ijms26093989 - 23 Apr 2025
Cited by 1 | Viewed by 567
Abstract
Biological soil crusts (BSCs) play a pivotal role in maintaining ecosystem stability and soil fertility in arid and semi-arid regions. However, the biogeographical differences in soil functional composition between cyanobacterial BSCs (C-BSCs) and moss BSCs (M-BSCs), particularly how environmental changes affect nutrient cycling [...] Read more.
Biological soil crusts (BSCs) play a pivotal role in maintaining ecosystem stability and soil fertility in arid and semi-arid regions. However, the biogeographical differences in soil functional composition between cyanobacterial BSCs (C-BSCs) and moss BSCs (M-BSCs), particularly how environmental changes affect nutrient cycling strategies and microbial community functions, remain poorly understood. In this study, we investigated BSCs across aridity gradients (semi-humid, semi-arid, and arid regions) in China, focusing on carbon and nitrogen cycling pathways, enzyme activities, and nutrient acquisition strategies. It was found that aridity and BSC type had significant effects on the functional characteristics of microorganisms. This was demonstrated by significant differences in various soil microbial activities including enzyme activities and carbon and nitrogen nutrient cycling. With increasing aridity, C-BSCs exhibited reduced carbon cycling activity but enhanced nitrogen cycling processes, whereas M-BSCs displayed diminished activity in both carbon and nitrogen cycling. These divergent strategies were linked to soil properties such as pH and organic carbon content, with C-BSCs adapting through nitrogen-related processes (e.g., nifH, amoA) and M-BSCs relying on C fixation and degradation. These findings provide novel insights into the functional gene diversity of BSCs across different regions, offering valuable references for ecological restoration in arid areas. Specifically, our study highlights the potential of BSC inoculation for carbon and nitrogen enrichment in arid regions, with implications for climate-resilient restoration practices. Full article
(This article belongs to the Special Issue The Molecular Research of Plant and Microbial Communities)
Show Figures

Figure 1

18 pages, 4220 KiB  
Article
Enhancing Micronutrient Availability Through Humic Substances and Vermicompost While Growing Artichoke Plants in Calcareous Soil: Insights from a Two-Year Field Study
by Mohamed Hafez, Zhao Zhang, Mahmoud Younis, Mahmoud A. Abdelhamid and Mohamed Rashad
Plants 2025, 14(8), 1224; https://doi.org/10.3390/plants14081224 - 16 Apr 2025
Viewed by 576
Abstract
Calcareous soil poses challenges for crop production due to the limited availability of micronutrients in insoluble forms. This study evaluated various organic and biological treatments for managing deficiencies in iron, zinc, and manganese in artichoke (Cynara scolymus L.) grown in calcareous soil [...] Read more.
Calcareous soil poses challenges for crop production due to the limited availability of micronutrients in insoluble forms. This study evaluated various organic and biological treatments for managing deficiencies in iron, zinc, and manganese in artichoke (Cynara scolymus L.) grown in calcareous soil over two seasons (2023 and 2024). A randomized complete block design (RCBD) was employed, with 24 plots (5 × 8 m2 each) receiving the following five treatments: mineral fertilizer, humic substances, ALCRI-anti chlorosis, ALCRI-vermicompost, and ALCRI-bio-help. Each treatment was replicated three times. In the 2023 season, significant increases in micronutrient levels were observed following the application of the organic and biological treatments, particularly ALCRI-vermicompost and humic substances. Compared to the control group, the iron content (Fe2+) increased by 57.1%, reaching 715.6%. Zinc (Zn2+) rose by 66.1% to 686.4%, while manganese (Mn2+) and copper (Cu2+) increased by 56.9% to 685.2% and 44.9% to 673.4%, respectively. These positive trends continued into the 2024 season, with Fe2+ showing even greater gains of 103.4%, peaking at 824.0% in the plots treated with the ALCRI-vermicompost and humic substances. Zn2+ and Mn2+ displayed more modest increases of 36.9% and 58.0%, while Cu2+ exhibited a remarkable rise of 50.7%, reaching 861.2%, particularly for the ALCRI-anti chlorosis treatments. The results indicate that the application of vermicompost fertilizer, alone or in combination with humic substances, significantly enhanced the soil structure, as confirmed by the SEM examination, which revealed increased porosity and improved aggregation. These consistent improvements over two seasons strongly support the effectiveness of organic and biological treatments in enriching soil with essential micronutrients. Full article
Show Figures

Figure 1

16 pages, 2378 KiB  
Article
Ontogenesis from Embryo to Juvenile in Threadsail Filefish, Stephanolepis cirrhifer
by Liming Liu, Xuanhan Liu, Yanqing Wu, Jun Zeng and Wengang Xu
Animals 2025, 15(8), 1124; https://doi.org/10.3390/ani15081124 - 13 Apr 2025
Viewed by 506
Abstract
The threadsail filefish, Stephanolepis cirrhifer, is an economically important marine species. However, wild catches have sharply decreased over the past 20 years, causing S. cirrhifer to be added to the IUCN Red List of Threatened Species. Accordingly, this study seeks to promote [...] Read more.
The threadsail filefish, Stephanolepis cirrhifer, is an economically important marine species. However, wild catches have sharply decreased over the past 20 years, causing S. cirrhifer to be added to the IUCN Red List of Threatened Species. Accordingly, this study seeks to promote technological development for artificial breeding and early life-stage farming by defining the morphological characteristics of ontogenesis. The fertilized eggs, with a diameter of 0.62 ± 0.01 mm, were spherical and sticky and contained multiple oil globules of varying sizes. The embryonic development was observed and divided into eight phases, which were cleavage, blastocyst, gastrula, neurula, organogenesis, muscular contraction, heart pulsation, and hatching. At 3 days post-hatching (dph), the yolk sac was completely absorbed. The eye developed rapidly, and the mouth fissure and anus initially formed. Some larvae were fed on S-rotifers (Brachionus plicatilis). At 6–8 dph, the upper and lower jaws of larvae were gradually covered by leathery skin, and the head-to-body proportion increased. At 14–16 dph, the fin differentiation occurred in the dorsal, anal, and pectoral fins, with widespread distribution of yellow and melanin on the body surface. Swim bladder was clear. The swimming ability of larva was enhanced, resulting in an obvious clustering phenomenon. At 22–25 dph, the end of the notochord continued to tilt upwards, forming a tail fin. The trunk was evenly distributed with protruding circular punctate scales. The snout was covered with leathery epidermis, and the mouth began to round. At 40–45 dph, the juvenile completed metamorphosis, with horizontal dark stripes appearing on the trunk. Pigmented spots appeared on the tail fins. The counts of dorsal and anal fin spines were 34–36 and 32–34 dph, respectively. During the development of larvae and juveniles, the growth parameters, such as total length, standard length, body height, and body weight, were made as growth curves. The slopes of growth curves were calculated. We found two inflexion points occurring in the growth curves, which may be associated with metamorphosis and transitions in feeding habits. These results enrich the biological understanding of filefish species while providing guidance for artificial propagation and fry production in S. cirrhifer. Full article
(This article belongs to the Special Issue Early Development and Growth of Fishes: 2nd Edition)
Show Figures

Figure 1

33 pages, 2180 KiB  
Article
The Small RNA Landscape in Azoospermia: Implications for Male Infertility and Sperm Retrieval—A Preliminary Study
by Maria-Anna Kyrgiafini, Aris Kaltsas, Alexia Chatziparasidou and Zissis Mamuris
Int. J. Mol. Sci. 2025, 26(8), 3537; https://doi.org/10.3390/ijms26083537 - 9 Apr 2025
Cited by 2 | Viewed by 602
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNAs, play a crucial role in spermatogenesis. However, their specific expression patterns in azoospermic patients, particularly in relation to sperm presence and pregnancy outcomes, remain underexplored. We performed small RNA sequencing on forty testicular tissue samples [...] Read more.
MicroRNAs (miRNAs), a class of small noncoding RNAs, play a crucial role in spermatogenesis. However, their specific expression patterns in azoospermic patients, particularly in relation to sperm presence and pregnancy outcomes, remain underexplored. We performed small RNA sequencing on forty testicular tissue samples from idiopathic azoospermic and cryptozoospermic patients who underwent testicular sperm extraction (TESE). Differentially expressed (DE) miRNAs were identified across groups with high, rare, or no spermatozoa presence, as well as between individuals with successful and unsuccessful pregnancies following assisted reproduction. Functional enrichment analyses were conducted to assess the biological relevance of miRNA alterations. Our findings revealed distinct miRNA expression patterns linked to sperm presence and pregnancy outcomes. Samples with high sperm presence exhibited reduced miRNA expression, while those with impaired spermatogenesis demonstrated upregulated miRNAs associated with cell survival and differentiation pathways. Several regulatory pathways were also disrupted in samples leading to unsuccessful pregnancies, including the estrogen signaling receptor (ESR) pathway, interleukin-4 and interleukin-13 signaling, and transcription networks. This study highlights miRNA-mediated regulatory differences in azoospermic patients, identifying potential biomarkers for sperm retrieval success and fertility outcomes. Future validation and multi-omics approaches are needed to confirm these findings and enhance male infertility diagnostics. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 38533 KiB  
Article
Integration of Microarray and Single-Cell RNA-Seq Data and Machine Learning Allows the Identification of Key Histone Modification Gene Changes in Spermatogonial Stem Cells
by Ali Shakeri Abroudi, Hossein Azizi, Melika Djamali, Ali Qorbanee and Thomas Skutella
Biology 2025, 14(4), 387; https://doi.org/10.3390/biology14040387 - 8 Apr 2025
Viewed by 979
Abstract
Histone modifications play a critical role in regulating gene expression and maintaining the functionality of spermatogonial stem cells (SSCs), which are essential for male fertility and spermatogenesis. In this study, we integrated microarray and single-cell RNA-sequencing (scRNA-seq) data to identify key histone modification [...] Read more.
Histone modifications play a critical role in regulating gene expression and maintaining the functionality of spermatogonial stem cells (SSCs), which are essential for male fertility and spermatogenesis. In this study, we integrated microarray and single-cell RNA-sequencing (scRNA-seq) data to identify key histone modification gene changes associated with SSC function and aging. Through differential expression analysis, we identified 2509 differentially expressed genes (DEGs) in SSCs compared to fibroblasts. Among these, genes involved in histone modification, such as KDM5B, SCML2, SIN3A, and ASXL3, were highlighted for their significant roles in chromatin remodeling and gene regulation. Protein–protein interaction (PPI) networks and gene ontology (GO) enrichment analysis revealed critical biological processes such as chromatin organization, histone demethylation, and chromosome structure maintenance. Weighted gene co-expression network analysis (WGCNA) further revealed three key modules of co-expressed genes related to spermatogonial aging. Additionally, ligand–receptor interaction scoring based on tumor microenvironment analysis suggested potential signaling pathways that could influence the stemness and differentiation of SSCs. Our findings provide new insights into the molecular mechanisms underlying SSC aging, highlighting histone modification genes as potential therapeutic targets for preserving male fertility and improving SSC-culturing techniques. This study advances our understanding of histone modification in SSC biology and will serve as a valuable resource for future investigations into male fertility preservation. Full article
(This article belongs to the Special Issue Feature Papers on Developmental and Reproductive Biology)
Show Figures

Figure 1

18 pages, 11218 KiB  
Article
Straw-Enhanced Soil Bacterial Robustness via Resource-Driven Niche Dynamics in Tea Plantations, South Henan, China
by Xiangchao Cui, Dongmeng Xu, Yu Zhang, Shuping Huang, Wei Wei, Ge Ma, Mengdi Li and Junhui Yan
Microorganisms 2025, 13(4), 832; https://doi.org/10.3390/microorganisms13040832 - 6 Apr 2025
Viewed by 509
Abstract
Straw application (SP) is a promising strategy for the improvement of soil fertility, but the biological effects and the mechanisms of its effects on microorganisms remain unclear. The investigation into the tea plantations (CK/S) in southern Henan, China, without/with straw amendment was carried [...] Read more.
Straw application (SP) is a promising strategy for the improvement of soil fertility, but the biological effects and the mechanisms of its effects on microorganisms remain unclear. The investigation into the tea plantations (CK/S) in southern Henan, China, without/with straw amendment was carried out to assess the effects of SP on the soil bacterial communities using high-throughput sequencing. SP induced the community restructuring of the dominant phyla, e.g., Acidobacteriota, Pseudomonadota, Chloroflexota, with significantly increasing Nitrospirota, Vicinamibacterales and Anaerolineaceae (p < 0.05), while reducing Terriglobales (p < 0.05). These transitions correlated with significantly enhanced α-diversity and β-diversity divergence (p < 0.05). The linear discriminant analysis effect size (LEfSe) results confirmed the significant selective enrichment of nitrogen-cycling taxa (Nitrospira), copiotrophs (Chryseotalea), and anaerobic degraders (Anaerolineaceae), along with the suppression of the oligotrophic lineage (Ellin6067) by SP (p < 0.05). The co-occurrence networks of S had lower topological properties and negative cohesion (p < 0.05), which exhibited intensified simplified complexity and competition. The soil water content (WC) and pH were the main drivers of β-diversity variation and the keystone taxa assembly, as calculated out by distance-based redundancy analysis (dbRDA). This study demonstrates that SP can enhance bacterial network stability and functional redundancy by resource-driven niche partitioning between copiotrophic taxa and nitrogen-cycling guilds through a competition–cooperation equilibrium. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

35 pages, 4372 KiB  
Review
Selenium and Selenoproteins: Mechanisms, Health Functions, and Emerging Applications
by Shahidin, Yan Wang, Yilong Wu, Taixia Chen, Xiaoyun Wu, Wenjuan Yuan, Qiangqiang Zhu, Xuanjun Wang and Chengting Zi
Molecules 2025, 30(3), 437; https://doi.org/10.3390/molecules30030437 - 21 Jan 2025
Cited by 7 | Viewed by 5290
Abstract
Selenium (Se) is an essential trace element crucial for human health that primarily functions as an immunonutrient. It is incorporated into polypeptides such as selenocysteine (SeC) and selenomethionine (SeMet), two key amino acids involved in various biochemical processes. All living organisms can convert [...] Read more.
Selenium (Se) is an essential trace element crucial for human health that primarily functions as an immunonutrient. It is incorporated into polypeptides such as selenocysteine (SeC) and selenomethionine (SeMet), two key amino acids involved in various biochemical processes. All living organisms can convert inorganic Se into biologically active organic forms, with SeMet being the predominant form and a precursor for SeC production in humans and animals. The human genome encodes 25 selenoprotein genes, which incorporate low-molecular-weight Se compounds in the form of SeC. Organic Se, especially in the form of selenoproteins, is more efficiently absorbed than inorganic Se, driving the demand for selenoprotein-based health products, such as functional foods. Se-enriched functional foods offer a practical means of delivering bioavailable Se and are associated with enhanced antioxidant properties and various health benefits. Recent advancements in selenoprotein synthesis have improved our understanding of their roles in antioxidant defense, cancer prevention, immune regulation, anti-inflammation, hypoglycemia, cardiovascular health, Alzheimer’s disease, fertility, and COVID-19. This review highlights key selenoproteins and their biological functions, biosynthetic pathways, and emerging applications while highlighting the need for further research. Full article
Show Figures

Figure 1

Back to TopTop