Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = biogeographic ancestry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3055 KB  
Review
Past, Present and Future Perspectives of Forensic Genetics
by Itzae Adonai Gutiérrez-Hurtado, Mayra Elizabeth García-Acéves, Yolanda Puga-Carrillo, Mariano Guardado-Estrada, Denisse Stephania Becerra-Loaiza, Víctor Daniel Carrillo-Rodríguez, Reynaldo Plazola-Zamora, Juliana Marisol Godínez-Rubí, Héctor Rangel-Villalobos and José Alonso Aguilar-Velázquez
Biomolecules 2025, 15(5), 713; https://doi.org/10.3390/biom15050713 - 13 May 2025
Cited by 9 | Viewed by 8869
Abstract
Forensic genetics has experienced remarkable advancements over the past decades, evolving from the analysis of a limited number of DNA segments to comprehensive genome-wide investigations. This progression has significantly improved the ability to establish genetic profiles under diverse conditions and scenarios. Beyond individual [...] Read more.
Forensic genetics has experienced remarkable advancements over the past decades, evolving from the analysis of a limited number of DNA segments to comprehensive genome-wide investigations. This progression has significantly improved the ability to establish genetic profiles under diverse conditions and scenarios. Beyond individual identification, forensic genetics now enables the inference of physical traits (e.g., eye, hair, and skin color, as well as body composition), biogeographic ancestry, lifestyle habits such as alcohol and tobacco use, and even the transfer of genital microbiomes post-coitus, among other characteristics. Emerging trends point to a future shaped by the integration of cutting-edge technologies, including CRISPR-Cas systems, artificial intelligence, and machine learning, which promise to further revolutionize the field. This review provides a thorough exploration of forensic genetics, tracing its evolution from its foundational methods (past) to its diverse modern applications (present) and offering insights into its potential future directions. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics)
Show Figures

Figure 1

18 pages, 536 KB  
Article
Facing the Unknown: Integration of Skeletal Traits, Genetic Information and Forensic Facial Approximation
by Joe Adserias-Garriga, Francisco Medina-Paz, Jorge Molina and Sara C. Zapico
Genes 2025, 16(5), 511; https://doi.org/10.3390/genes16050511 - 28 Apr 2025
Cited by 1 | Viewed by 1531
Abstract
Background/Objectives: Identification of human remains is of utmost importance for criminal investigations and providing closure to the families. The reconstruction of a biological profile of the individual will narrow down the list of candidates for identification. From another perspective, facial approximations performed by [...] Read more.
Background/Objectives: Identification of human remains is of utmost importance for criminal investigations and providing closure to the families. The reconstruction of a biological profile of the individual will narrow down the list of candidates for identification. From another perspective, facial approximations performed by a forensic artist can provide investigative leads, with the identity being confirmed by primary or secondary methods of identification. In recent years, DNA analysis has evolved, trying to create a portrait of the perpetrator/victim based on External Visible Characteristics (EVCs), the color of the eyes, hair, and skin and Biogeographical ancestry (BGA), called DNA phenotyping. Despite these advances, currently, there are no studies integrating the biological profile performed by forensic anthropologists, the facial approximation created by forensic artists and EVCs determined by DNA. The goal of this work was to integrate these three investigative leads to enhance the possibility of human identification. Methods: Five donated remains from Mercyhurst were studied through these approaches: reconstruction of biological profile, facial approximation and estimation of EVCs based on previous studies. Results: Our results indicated the feasibility of integrating this biological profile and EVCs data into the facial approximation developed by the forensic artist, aiming to an enhance portrait of the remains. In a second phase of this project, the accuracy of the integrated facial approximation will be assessed. Conclusions: This study pointed out the importance of an interdisciplinary approach towards the identification of human remains, as well as the combination of current methods with new technologies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1907 KB  
Article
Biogeographical Ancestry Analyses Using the ForenSeqTM DNA Signature Prep Kit and Multiple Prediction Tools
by Nina Mjølsnes Salvo, Gunn-Hege Olsen, Thomas Berg and Kirstin Janssen
Genes 2024, 15(4), 510; https://doi.org/10.3390/genes15040510 - 18 Apr 2024
Cited by 3 | Viewed by 2545
Abstract
The inference of biogeographical ancestry (BGA) can assist in police investigations of serious crime cases and help to identify missing people and victims of mass disasters. In this study, we evaluated the typing performance of 56 ancestry-informative SNPs in 177 samples using the [...] Read more.
The inference of biogeographical ancestry (BGA) can assist in police investigations of serious crime cases and help to identify missing people and victims of mass disasters. In this study, we evaluated the typing performance of 56 ancestry-informative SNPs in 177 samples using the ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx system. Furthermore, we compared the prediction accuracy of the tools Universal Analysis Software v1.2 (UAS), the FROG-kb, and GenoGeographer when inferring the ancestry of 503 Europeans, 22 non-Europeans, and 5 individuals with co-ancestry. The kit was highly sensitive with complete aiSNP profiles in samples with as low as 250pg input DNA. However, in line with others, we observed low read depth and occasional drop-out in some SNPs. Therefore, we suggest not using less than the recommended 1ng of input DNA. FROG-kb and GenoGeographer accurately predicted both Europeans (99.6% and 91.8% correct, respectively) and non-Europeans (95.4% and 90.9% correct, respectively). The UAS was highly accurate when predicting Europeans (96.0% correct) but performed poorer when predicting non-Europeans (40.9% correct). None of the tools were able to correctly predict individuals with co-ancestry. Our study demonstrates that the use of multiple prediction tools will increase the prediction accuracy of BGA inference in forensic casework. Full article
(This article belongs to the Special Issue State-of-the-Art in Forensic Genetics Volume II)
Show Figures

Figure 1

12 pages, 439 KB  
Article
A Machine-Learning-Based Approach to Prediction of Biogeographic Ancestry within Europe
by Anna Kloska, Agata Giełczyk, Tomasz Grzybowski, Rafał Płoski, Sylwester M. Kloska, Tomasz Marciniak, Krzysztof Pałczyński, Urszula Rogalla-Ładniak, Boris A. Malyarchuk, Miroslava V. Derenko, Nataša Kovačević-Grujičić, Milena Stevanović, Danijela Drakulić, Slobodan Davidović, Magdalena Spólnicka, Magdalena Zubańska and Marcin Woźniak
Int. J. Mol. Sci. 2023, 24(20), 15095; https://doi.org/10.3390/ijms242015095 - 11 Oct 2023
Cited by 10 | Viewed by 3984
Abstract
Data obtained with the use of massive parallel sequencing (MPS) can be valuable in population genetics studies. In particular, such data harbor the potential for distinguishing samples from different populations, especially from those coming from adjacent populations of common origin. Machine learning (ML) [...] Read more.
Data obtained with the use of massive parallel sequencing (MPS) can be valuable in population genetics studies. In particular, such data harbor the potential for distinguishing samples from different populations, especially from those coming from adjacent populations of common origin. Machine learning (ML) techniques seem to be especially well suited for analyzing large datasets obtained using MPS. The Slavic populations constitute about a third of the population of Europe and inhabit a large area of the continent, while being relatively closely related in population genetics terms. In this proof-of-concept study, various ML techniques were used to classify DNA samples from Slavic and non-Slavic individuals. The primary objective of this study was to empirically evaluate the feasibility of discerning the genetic provenance of individuals of Slavic descent who exhibit genetic similarity, with the overarching goal of categorizing DNA specimens derived from diverse Slavic population representatives. Raw sequencing data were pre-processed, to obtain a 1200 character-long binary vector. A total of three classifiers were used—Random Forest, Support Vector Machine (SVM), and XGBoost. The most-promising results were obtained using SVM with a linear kernel, with 99.9% accuracy and F1-scores of 0.9846–1.000 for all classes. Full article
(This article belongs to the Special Issue Machine Learning Applications in Bioinformatics and Biomedicine)
Show Figures

Figure 1

14 pages, 1369 KB  
Article
Comparing Genetic and Physical Anthropological Analyses for the Biological Profile of Unidentified and Identified Bodies in Milan
by Elena Pilli, Andrea Palamenghi, Alberto Marino, Nicola Staiti, Eugenio Alladio, Stefania Morelli, Anna Cherubini, Debora Mazzarelli, Giulia Caccia, Daniele Gibelli and Cristina Cattaneo
Genes 2023, 14(5), 1064; https://doi.org/10.3390/genes14051064 - 11 May 2023
Cited by 6 | Viewed by 2795
Abstract
When studying unknown human remains, the estimation of skeletal sex and ancestry is paramount to create the victim’s biological profile and attempt identification. In this paper, a multidisciplinary approach to infer the sex and biogeographical ancestry of different skeletons, using physical methods and [...] Read more.
When studying unknown human remains, the estimation of skeletal sex and ancestry is paramount to create the victim’s biological profile and attempt identification. In this paper, a multidisciplinary approach to infer the sex and biogeographical ancestry of different skeletons, using physical methods and routine forensic markers, is explored. Forensic investigators, thus, encounter two main issues: (1) the use of markers such as STRs that are not the best choice in terms of inferring biogeographical ancestry but are routine forensic markers to identify a person, and (2) the concordance of the physical and molecular results. In addition, a comparison of physical/molecular and then antemortem data (of a subset of individuals that are identified during our research) was evaluated. Antemortem data was particularly beneficial to evaluate the accuracy rates of the biological profiles produced by anthropologists and classification rates obtained by molecular experts using autosomal genetic profiles and multivariate statistical approaches. Our results highlight that physical and molecular analyses are in perfect agreement for sex estimation, but some discrepancies in ancestry estimation were observed in 5 out of 24 cases. Full article
Show Figures

Figure 1

12 pages, 2642 KB  
Article
Genetics Unveil the Genealogical Ancestry and Physical Appearance of an Unknown Historical Figure: Lady Leonor of Castile (Spain) (1256–1275)
by Sara Palomo-Díez, Cláudia Gomes, María Sonia Fondevila, Ángel Esparza-Arroyo, Ana María López-Parra, María Victoria Lareu, Eduardo Arroyo-Pardo and Juan Francisco Pastor
Genealogy 2023, 7(2), 28; https://doi.org/10.3390/genealogy7020028 - 20 Apr 2023
Cited by 1 | Viewed by 7339
Abstract
Through this study, it has been possible to establish an accurate prediction of the physical characteristics, biogeographical origin, and genealogical ancestry of a previously obscured historical figure: The Princess Lady Leonor of Castile (1256–1275), one of the legitimate daughters of the Spanish King [...] Read more.
Through this study, it has been possible to establish an accurate prediction of the physical characteristics, biogeographical origin, and genealogical ancestry of a previously obscured historical figure: The Princess Lady Leonor of Castile (1256–1275), one of the legitimate daughters of the Spanish King Alfonso X “The Wise”. The genetic analysis of External Visible Characteristics in the mummified remains attributed to this Princess has allowed determining her origin by mitochondrial and nuclear DNA analysis, and her physical appearance for hair, eyes, and skin color by autosomal SNPs. The results show that the mummified remains correspond to a young European woman with black hair, green-hazel eyes, and white skin. Her physical appearance has not been possible to be compared with any pictorial source, but the biogeographical analysis results are consistent with the historiographic genealogical information. Full article
Show Figures

Figure 1

16 pages, 2755 KB  
Article
Maternal Lineages during the Roman Empire, in the Ancient City of Gadir (Cádiz, Spain): The Search for a Phoenician Identity
by Cláudia Gomes, Carlos González Wagner, Manuel Calero-Fresneda, Sara Palomo-Díez, César López-Matayoshi, Inês Nogueiro, Ana María López-Parra, Elena Labajo González, Bernardo Perea Pérez, José María Gener Basallote, Juan Miguel Pajuelo and Eduardo Arroyo Pardo
Genealogy 2023, 7(2), 27; https://doi.org/10.3390/genealogy7020027 - 17 Apr 2023
Cited by 2 | Viewed by 7180
Abstract
Phoenicians were probably the first eastern Mediterranean population to establish long-distance connections with the West, namely the Iberian Peninsula, from the final Bronze to the early Iron Age. For a long time, these colonies all over the Mediterranean Sea directly depended on an [...] Read more.
Phoenicians were probably the first eastern Mediterranean population to establish long-distance connections with the West, namely the Iberian Peninsula, from the final Bronze to the early Iron Age. For a long time, these colonies all over the Mediterranean Sea directly depended on an important city administration, Gadir, the most important metropolis in the Western Mediterranean. Modern archaeological excavations were discovered in Cadiz (Spain), the ancient city of Gadir, as well as possible Phoenician burial places. The purpose of the present work is the molecular study of 16 individuals, (V–IV millennium B.C, V A.D.) from several burial places found in Cadiz, attempting to disclose their maternal biogeographical ancestry. Furthermore, the determination of a possible biological link between two individuals found buried together was also an objective of this investigation. Of all the 16 analyzed individuals, eight of them produced positive results. Three main lineages were found: HV0, H and L3b. In general, the results support an Eastern origin for this set of individuals, reinforcing the theory of a Phoenician origin. Due to their historical period, in some cases, it was not possible to discard a Roman origin. Finally, the maternal kinship between two individuals found buried together was discarded. Full article
Show Figures

Figure 1

17 pages, 2073 KB  
Article
Phylogenetic History and Phylogeographic Patterns of the European Wildcat (Felis silvestris) Populations
by Edoardo Velli, Romolo Caniglia and Federica Mattucci
Animals 2023, 13(5), 953; https://doi.org/10.3390/ani13050953 - 6 Mar 2023
Cited by 8 | Viewed by 8800
Abstract
Disentangling phylogenetic and phylogeographic patterns is fundamental to reconstruct the evolutionary histories of taxa and assess their actual conservation status. Therefore, in this study, for the first time, the most exhaustive biogeographic history of European wildcat (Felis silvestris) populations was reconstructed [...] Read more.
Disentangling phylogenetic and phylogeographic patterns is fundamental to reconstruct the evolutionary histories of taxa and assess their actual conservation status. Therefore, in this study, for the first time, the most exhaustive biogeographic history of European wildcat (Felis silvestris) populations was reconstructed by typing 430 European wildcats, 213 domestic cats, and 72 putative admixed individuals, collected across the entire species’ distribution range, at a highly diagnostic portion of the mitochondrial ND5 gene. Phylogenetic and phylogeographic analyses identified two main ND5 lineages (D and W) roughly associated with domestic and wild polymorphisms. Lineage D included all domestic cats, 83.3% of putative admixed individuals, and also 41.4% of wildcats; these latter mostly showed haplotypes belonging to sub-clade Ia, that diverged about 37,700 years ago, long pre-dating any evidence for cat domestication. Lineage W included all the remaining wildcats and putative admixed individuals, spatially clustered into four main geographic groups, which started to diverge about 64,200 years ago, corresponding to (i) the isolated Scottish population, (ii) the Iberian population, (iii) a South-Eastern European cluster, and (iv) a Central European cluster. Our results suggest that the last Pleistocene glacial isolation and subsequent re-expansion from Mediterranean and extra-Mediterranean glacial refugia were pivotal drivers in shaping the extant European wildcat phylogenetic and phylogeographic patterns, which were further modeled by both historical natural gene flow among wild lineages and more recent wild x domestic anthropogenic hybridization, as confirmed by the finding of F. catus/lybica shared haplotypes. The reconstructed evolutionary histories and the wild ancestry contents detected in this study could be used to identify adequate Conservation Units within European wildcat populations and help to design appropriate long-term management actions. Full article
(This article belongs to the Special Issue Seeking Efficiency in the Conservation of Wild Mammals)
Show Figures

Figure 1

15 pages, 1159 KB  
Article
Sexual Dimorphism of Cranial Morphological Traits in an Italian Sample: A Population-Specific Logistic Regression Model for Predicting Sex
by Annalisa Cappella, Barbara Bertoglio, Matteo Di Maso, Debora Mazzarelli, Luciana Affatato, Alessandra Stacchiotti, Chiarella Sforza and Cristina Cattaneo
Biology 2022, 11(8), 1202; https://doi.org/10.3390/biology11081202 - 10 Aug 2022
Cited by 24 | Viewed by 5041
Abstract
Although not without subjectivity, the cranial trait scoring method is an easy visual method routinely used by forensic anthropologists in sex estimation. The revision presented by Walker in 2008 has introduced predictive models with good accuracies in the original populations. However, such models [...] Read more.
Although not without subjectivity, the cranial trait scoring method is an easy visual method routinely used by forensic anthropologists in sex estimation. The revision presented by Walker in 2008 has introduced predictive models with good accuracies in the original populations. However, such models may lead to unsatisfactory performances when applied to populations that are different from the original. Therefore, this study aimed to test the sex predictive equations reported by Walker on a contemporary Italian population (177 individuals) in order to evaluate the reliability of the method and to identify potential sexual dimorphic differences between American and Italian individuals. In order to provide new reference data to be used by forensic experts dealing with human remains of modern/contemporary individuals from this geographical area, we designed logistic regression models specific to our population, whose accuracy was evaluated on a validation sample from the same population. In particular, we fitted logistic regression models for all possible combinations of the five cranial morphological traits (i.e., nuchal crest, mastoid process, orbital margin, glabella, and mental eminence). This approach provided a comprehensive set of population-specific equations that can be used in forensic contexts where crania might be retrieved with severe taphonomic damages, thus limiting the application of the method only to a few morphological features. The results proved once again that the effects of secular changes and biogeographic ancestry on sexual dimorphism of cranial morphological traits are remarkable, as highlighted by the low accuracy (from 56% to 78%) of the six Walker’s equations when applied to our female sample. Among our fitted models, the one including the glabella and mastoid process was the most accurate since these features are more sexually dimorphic in our population. Finally, our models proved to have high predictive performances in both training and validation samples, with accuracy percentages up to 91.7% for Italian females, which represents a significant success in minimizing the potential misclassifications in real forensic scenarios. Full article
Show Figures

Figure 1

18 pages, 686 KB  
Article
Decomposition of Individual SNP Patterns from Mixed DNA Samples
by Gabriel Azhari, Shamam Waldman, Netanel Ofer, Yosi Keller, Shai Carmi and Gur Yaari
Forensic Sci. 2022, 2(3), 455-472; https://doi.org/10.3390/forensicsci2030034 - 5 Jul 2022
Cited by 1 | Viewed by 5161
Abstract
Single-nucleotide polymorphism (SNP) markers have great potential to identify individuals, family relations, biogeographical ancestry, and phenotypic traits. In many forensic situations, DNA mixtures of a victim and an unknown suspect exist. Extracting SNP profiles from suspect’s samples can be used to assist investigation [...] Read more.
Single-nucleotide polymorphism (SNP) markers have great potential to identify individuals, family relations, biogeographical ancestry, and phenotypic traits. In many forensic situations, DNA mixtures of a victim and an unknown suspect exist. Extracting SNP profiles from suspect’s samples can be used to assist investigation or gather intelligence. Computational tools to determine inclusion/exclusion of a known individual from a mixture exist, but no algorithm for extraction of an unknown SNP profile without a list of suspects is available. Here, we present an advanced haplotype-based HMM algorithm (AH-HA), a novel computational approach for extracting an unknown SNP profile from whole genome sequencing (WGS) of a two-person mixture. AH-HA utilizes techniques similar to the ones used in haplotype phasing. It constructs the inferred genotype as an imperfect mosaic of haplotypes from a reference panel of the target population. It outperforms more simplistic approaches, maintaining high performance through a wide range of sequencing depths (500×–5×). AH-HA can be applied in cases of victim–suspect mixtures and improves the capabilities of the investigating forces. This approach can be extended to more complex mixtures with more donors and less prior information, further motivating the development of SNP-based forensics technologies. Full article
Show Figures

Figure 1

16 pages, 317 KB  
Article
The Effects of DNA Test Results on Biological and Family Identities
by Catherine Agnes Theunissen
Genealogy 2022, 6(1), 17; https://doi.org/10.3390/genealogy6010017 - 17 Feb 2022
Cited by 9 | Viewed by 17776
Abstract
Direct-to-consumer DNA testing is increasingly affordable and accessible, and the potential implications from these tests are becoming more important. As additional people partake in DNA testing, larger population groups and information will cause further refinement of results and more extensive databases, resulting in [...] Read more.
Direct-to-consumer DNA testing is increasingly affordable and accessible, and the potential implications from these tests are becoming more important. As additional people partake in DNA testing, larger population groups and information will cause further refinement of results and more extensive databases, resulting in further potential opportunities to connect biological relatives and increased chances of testers potentially having their identities re-aligned, reinforced or solidified. The effects of DNA testing were explored through 16 semi-structured in-depth interviews conducted with participants who had received their DNA test results. These participants came from diverse groups, genders and ethnic backgrounds. A thematic analysis found that notions of family were frequently challenged with unexpected DNA test results causing shifts in personal and social identities, especially in their family and biological identities. Discrepancies in DNA test results prompted re-negotiation of these identities and affected their feelings of belonging to their perceived social groups. Participants’ identities were important to them in varying degrees, with some feeling stronger connections with specific identities, thus having significant re-alignment of these identities and feelings of belonging. This article discusses the thematic analysis’s findings and explores how identities of the participants, many of whom took the test for genealogical purposes, were affected by DNA test results. As more people undertake DNA testing, it is important to explore how it may change the notions of family in the future and how their biological and family identities are affected. Full article
19 pages, 2561 KB  
Article
Development and Evaluation of the Ancestry Informative Marker Panel of the VISAGE Basic Tool
by María de la Puente, Jorge Ruiz-Ramírez, Adrián Ambroa-Conde, Catarina Xavier, Jacobo Pardo-Seco, Jose Álvarez-Dios, Ana Freire-Aradas, Ana Mosquera-Miguel, Theresa E. Gross, Elaine Y. Y. Cheung, Wojciech Branicki, Michael Nothnagel, Walther Parson, Peter M. Schneider, Manfred Kayser, Ángel Carracedo, Maria Victoria Lareu, Christopher Phillips and on behalf of the VISAGE Consortium
Genes 2021, 12(8), 1284; https://doi.org/10.3390/genes12081284 - 22 Aug 2021
Cited by 27 | Viewed by 7394
Abstract
We detail the development of the ancestry informative single nucleotide polymorphisms (SNPs) panel forming part of the VISAGE Basic Tool (BT), which combines 41 appearance predictive SNPs and 112 ancestry predictive SNPs (three SNPs shared between sets) in one massively parallel sequencing (MPS) [...] Read more.
We detail the development of the ancestry informative single nucleotide polymorphisms (SNPs) panel forming part of the VISAGE Basic Tool (BT), which combines 41 appearance predictive SNPs and 112 ancestry predictive SNPs (three SNPs shared between sets) in one massively parallel sequencing (MPS) multiplex, whereas blood-based age analysis using methylation markers is run in a parallel MPS analysis pipeline. The selection of SNPs for the BT ancestry panel focused on established forensic markers that already have a proven track record of good sequencing performance in MPS, and the overall SNP multiplex scale closely matched that of existing forensic MPS assays. SNPs were chosen to differentiate individuals from the five main continental population groups of Africa, Europe, East Asia, America, and Oceania, extended to include differentiation of individuals from South Asia. From analysis of 1000 Genomes and HGDP-CEPH samples from these six population groups, the BT ancestry panel was shown to have no classification error using the Bayes likelihood calculators of the Snipper online analysis portal. The differentiation power of the component ancestry SNPs of BT was balanced as far as possible to avoid bias in the estimation of co-ancestry proportions in individuals with admixed backgrounds. The balancing process led to very similar cumulative population-specific divergence values for Africa, Europe, America, and Oceania, with East Asia being slightly below average, and South Asia an outlier from the other groups. Comparisons were made of the African, European, and Native American estimated co-ancestry proportions in the six admixed 1000 Genomes populations, using the BT ancestry panel SNPs and 572,000 Affymetrix Human Origins array SNPs. Very similar co-ancestry proportions were observed down to a minimum value of 10%, below which, low-level co-ancestry was not always reliably detected by BT SNPs. The Snipper analysis portal provides a comprehensive population dataset for the BT ancestry panel SNPs, comprising a 520-sample standardised reference dataset; 3445 additional samples from 1000 Genomes, HGDP-CEPH, Simons Foundation and Estonian Biocentre genome diversity projects; and 167 samples of six populations from in-house genotyping of individuals from Middle East, North and East African regions complementing those of the sampling regimes of the other diversity projects. Full article
(This article belongs to the Special Issue Advances in Forensic Genetics)
Show Figures

Figure 1

22 pages, 2695 KB  
Article
Ancestral Sperm Ecotypes Reveal Multiple Invasions of a Non-Native Fish in Northern Europe
by Leon Green, Apostolos Apostolou, Ellika Faust, Kajsa Palmqvist, Jane W. Behrens, Jonathan N. Havenhand, Erica H. Leder and Charlotta Kvarnemo
Cells 2021, 10(7), 1743; https://doi.org/10.3390/cells10071743 - 9 Jul 2021
Cited by 11 | Viewed by 5526
Abstract
For externally fertilising organisms in the aquatic environment, the abiotic fertilisation medium can be a strong selecting force. Among bony fishes, sperm are adapted to function in a narrow salinity range. A notable exception is the family Gobiidae, where several species reproduce across [...] Read more.
For externally fertilising organisms in the aquatic environment, the abiotic fertilisation medium can be a strong selecting force. Among bony fishes, sperm are adapted to function in a narrow salinity range. A notable exception is the family Gobiidae, where several species reproduce across a wide salinity range. The family also contains several wide-spread invasive species. To better understand how these fishes tolerate such varying conditions, we measured sperm performance in relation to salinity from a freshwater and a brackish population within their ancestral Ponto-Caspian region of the round goby, Neogobius melanostomus. These two ancestral populations were then compared to nine additional invaded sites across northern Europe, both in terms of their sperm traits and by using genomic SNP markers. Our results show clear patterns of ancestral adaptations to freshwater and brackish salinities in their sperm performance. Population genomic analyses show that the ancestral ecotypes have generally established themselves in environments that fit their sperm adaptations. Sites close to ports with intense shipping show that both outbreeding and admixture can affect the sperm performance of a population in a given salinity. Rapid adaptation to local conditions is also supported at some sites. Historical and contemporary evolution in the traits of the round goby sperm cells is tightly linked to the population and seascape genomics as well as biogeographic processes in these invasive fishes. Since the risk of a population establishing in an area is related to the genotype by environment match, port connectivity and the ancestry of the round goby population can likely be useful for predicting the species spread. Full article
Show Figures

Figure 1

13 pages, 1491 KB  
Article
Analysis of Skin Pigmentation and Genetic Ancestry in Three Subpopulations from Pakistan: Punjabi, Pashtun, and Baloch
by Muhammad Adnan Shan, Olivia Strunge Meyer, Mie Refn, Niels Morling, Jeppe Dyrberg Andersen and Claus Børsting
Genes 2021, 12(5), 733; https://doi.org/10.3390/genes12050733 - 13 May 2021
Cited by 8 | Viewed by 9351
Abstract
Skin pigmentation is one of the most prominent and variable phenotypes in humans. We compared the alleles of 163 SNPs and indels from the Human Pigmentation (HuPi) AmpliSeq™ Custom panel, and biogeographic ancestry with the quantitative skin pigmentation levels on the upper arm, [...] Read more.
Skin pigmentation is one of the most prominent and variable phenotypes in humans. We compared the alleles of 163 SNPs and indels from the Human Pigmentation (HuPi) AmpliSeq™ Custom panel, and biogeographic ancestry with the quantitative skin pigmentation levels on the upper arm, lower arm, and forehead of 299 Pakistani individuals from three subpopulations: Baloch, Pashtun, and Punjabi. The biogeographic ancestry of each individual was estimated using the Precision ID Ancestry Panel. All individuals were mainly of mixed South-Central Asian and European ancestry. However, the Baloch individuals also had an average proportion of Sub-Saharan African ancestry of approximately 10%, whereas it was <1% in the Punjabi and Pashtun individuals. The pairwise genetic distances between the Pashtun, Punjabi, and Baloch subpopulations based on the ancestry markers were statistically significantly different. Individuals from the Pashtun subpopulation had statistically significantly lower skin pigmentation than individuals from the Punjabi and Baloch subpopulations (p < 0.05). The proportions of European and Sub-Saharan African ancestry and five SNPs (rs1042602, rs10831496, rs1426654, rs16891982, and rs12913832) were statistically significantly associated with skin pigmentation at either the upper arm, lower arm or forehead in the Pakistani population after correction for multiple testing (p < 10−3). A model based on four of these SNPs (rs1426654, rs1042602, rs16891982, and rs12913832) explained 33% of the upper arm skin pigmentation. The four SNPs and the proportions of European and Sub-Saharan African ancestry explained 37% of the upper arm skin pigmentation. Our results indicate that the four likely causative SNPs, rs1426654, rs1042602, rs16891982, and rs12913832 located in SLC24A5, TYR, SLC45A2, and HERC2, respectively, are essential for skin color variation in the admixed Pakistani subpopulations. Full article
(This article belongs to the Special Issue Advances in Forensic Genetics)
Show Figures

Figure 1

24 pages, 7489 KB  
Article
Evaluation of the Ion AmpliSeq™ PhenoTrivium Panel: MPS-Based Assay for Ancestry and Phenotype Predictions Challenged by Casework Samples
by Marta Diepenbroek, Birgit Bayer, Kristina Schwender, Roberta Schiller, Jessica Lim, Robert Lagacé and Katja Anslinger
Genes 2020, 11(12), 1398; https://doi.org/10.3390/genes11121398 - 25 Nov 2020
Cited by 33 | Viewed by 7455
Abstract
As the field of forensic DNA analysis has started to transition from genetics to genomics, new methods to aid in crime scene investigations have arisen. The development of informative single nucleotide polymorphism (SNP) markers has led the forensic community to question if DNA [...] Read more.
As the field of forensic DNA analysis has started to transition from genetics to genomics, new methods to aid in crime scene investigations have arisen. The development of informative single nucleotide polymorphism (SNP) markers has led the forensic community to question if DNA can be a reliable “eye-witness” and whether the data it provides can shed light on unknown perpetrators. We have developed an assay called the Ion AmpliSeq™ PhenoTrivium Panel, which combines three groups of markers: 41 phenotype- and 163 ancestry-informative autosomal SNPs together with 120 lineage-specific Y-SNPs. Here, we report the results of testing the assay’s sensitivity and the predictions obtained for known reference samples. Moreover, we present the outcome of a blind study performed on real casework samples in order to understand the value and reliability of the information that would be provided to police investigators. Furthermore, we evaluated the accuracy of admixture prediction in Converge™ Software. The results show the panel to be a robust and sensitive assay which can be used to analyze casework samples. We conclude that the combination of the obtained predictions of phenotype, biogeographical ancestry, and male lineage can serve as a potential lead in challenging police investigations such as cold cases or cases with no suspect. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop