Sexual Dimorphism of Cranial Morphological Traits in an Italian Sample: A Population-Specific Logistic Regression Model for Predicting Sex
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Assessment of Cranial Morphological Traits
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konigsberg, L.W.; Hens, S.M. Use of ordinal categorical variables in skeletal assessment of sex from the cranium. Am. J. Phys. Anthr. 1998, 107, 97–112. [Google Scholar] [CrossRef]
- Walker, P.L. Sexing skulls using discriminant function analysis of visually assessed traits. Am. J. Phys. Anthr. 2008, 136, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Steyn, M.; İşcan, M. Sexual dimorphism in the crania and mandibles of South African whites. Forensic Sci. Int. 1998, 98, 9–16. [Google Scholar] [CrossRef]
- Jantz, R.L.; Jantz, L.M. Secular change in craniofacial morphology. Am. J. Hum. Biol. 2000, 12, 327–338. [Google Scholar] [CrossRef]
- Jonke, E.; Prossinger, H.; Bookstein, F.L.; Schaefer, K.; Bernhard, M.; Freudenthaler, J.W. Secular trends in the facial skull from the 19th century to the present, analyzed with geometric morphometrics. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Rogers, T.L. Evaluating the Accuracy and Precision of Cranial Morphological Traits for Sex Determination. J. Forensic Sci. 2006, 51, 729–735. [Google Scholar] [CrossRef]
- Rogers, T.L. Determining the sex of human remains through cranial morphology. J. Forensic Sci. 2005, 50, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Cappella, A.; Cummaudo, M.; Arrigoni, E.; Collini, F.; Cattaneo, C. The Issue of Age Estimation in a Modern Skeletal Population: Are Even the More Modern Current Aging Methods Satisfactory for the Elderly? J. Forensic Sci. 2016, 62, 12–17. [Google Scholar] [CrossRef]
- Garvin, H.M.; Sholts, S.B.; Mosca, L.A. Sexual dimorphism in human cranial trait scores: Effects of population, age, and body size. Am. J. Phys. Anthr. 2014, 154, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Acsadi, G.; Nemeskeri, J. History of Human Life Span and Mortality; Akademiai Kiado: Budapest, Hungary, 1970. [Google Scholar]
- Corruccini, R.S. An examination of the meaning of cranial discrete traits for human skeletal biological studies. Am. J. Phys. Anthr. 1974, 40, 425–445. [Google Scholar] [CrossRef]
- Buikstra, J.E.; Ubelaker, D.H. Standards for Data Collection from Human Skeletal Remains; Arkansas Archaeological Survey Research Series No. 44; Arkansas Archaeological Survey: Fayetteville, Arkansas, 1994. [Google Scholar]
- Graw, M.; Czarnetzki, A.; Haffner, H.-T. The form of the supraorbital margin as a criterion in identification of sex from the skull: Investigations based on modern human skulls. Am. J. Phys. Anthr. 1999, 108, 91–96. [Google Scholar] [CrossRef]
- Graw, M. Significance of the classical morphological criteria for identifying gender using recent skulls. Forensic Sci. Commun. 2001, 3, 1–8. [Google Scholar]
- Albanese, J.; Dagdag, A.; Skalic, C.; Osley, S.; Cardoso, H. The Fall and Rise of Identified Reference Collection: It Is Possible and Necessary to Transition from a Typological Conceptualization of Variation to Effective Utilization of Collections. Forensic Sci. 2022, 2, 438–454. [Google Scholar] [CrossRef]
- Hoppa, R.D. Population variation in osteological aging criteria: An example from the pubic symphysis. Am. J. Phys. Anthr. 2000, 111, 185–191. [Google Scholar] [CrossRef]
- Walrath, D.E.; Turner, P.; Bruzek, J. Reliability test of the visual assessment of cranial traits for sex determination. Am. J. Phys. Anthr. 2004, 125, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.J.; Garvin, H.M. Reliability of the Walker Cranial Nonmetric Method and Implications for Sex Estimation. J. Forensic Sci. 2016, 61, 743–751. [Google Scholar] [CrossRef]
- Garvin, H.M.; Ruff, C.B. Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative method. Am. J. Phys. Anthr. 2012, 147, 661–670. [Google Scholar] [CrossRef]
- Stevenson, J.C.; Mahoney, E.R.; Walker, P.L.; Everson, P.M. Technical note: Prediction of sex based on five skull traits using decision analysis (CHAID). Am. J. Phys. Anthr. 2009, 139, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Krüger, G.C.; L’Abbe, E.N.; Stull, K.E.; Kenyhercz, M.W. Sexual dimorphism in cranial morphology among modern South Africans. Int. J. Legal Med. 2014, 129, 869–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klales, A.R.; Cole, S.J. Improving Nonmetric Sex Classification for Hispanic Individuals. J. Forensic Sci. 2017, 62, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Soficaru, A.; Constantinescu, M.; Culea, M.; Ionică, C. Evaluation of discriminant functions for sexing skulls from visually assessed traits applied in the Rainer Osteological Collection (Bucharest, Romania). HOMO 2014, 65, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Langley, N.; Dudzik, B.; Cloutier, A. A Decision Tree for Nonmetric Sex Assessment from the Skull. J. Forensic Sci. 2017, 63, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Oikonomopoulou, E.-K.; Valakos, E.; Nikita, E. Population-specificity of sexual dimorphism in cranial and pelvic traits: Evaluation of existing and proposal of new functions for sex assessment in a Greek assemblage. Int. J. Legal Med. 2017, 131, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C.; Mazzarelli, D.; Cappella, A.; Castoldi, E.; Mattia, M.; Poppa, P.; De Angelis, D.; Vitello, A.; Biehler-Gomez, L. A modern documented Italian identified skeletal collection of 2127 skeletons: The CAL Milano Cemetery Skeletal Collection. Forensic Sci. Int. 2018, 287, 219.e1–219.e5. [Google Scholar] [CrossRef]
- Castoldi, E.; Cappella, A.; Gibelli, D.; Sforza, C.; Cattaneo, C. The Difficult Task of Diagnosing Prostate Cancer Metastases on Dry Bone. J. Forensic Sci. 2017, 63, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Cappella, A.; Castoldi, E.; Sforza, C.; Cattaneo, C. An osteological revisitation of autopsies: Comparing anthropological findings on exhumed skeletons to their respective autopsy reports in seven cases. Forensic Sci. Int. 2014, 244, 315.e1–315.e10. [Google Scholar] [CrossRef] [PubMed]
- Manthey, L.; Jantz, R.L.; Vitale, A.; Cattaneo, C. Population specific data improves Fordisc®’s performance in Italians. Forensic Sci. Int. 2018, 292, 263.e1–263.e7. [Google Scholar] [CrossRef] [PubMed]
- Cappella, A.; Gibelli, D.; Vitale, A.; Zago, M.; Dolci, C.; Sforza, C.; Cattaneo, C. Preliminary study on sexual dimorphism of metric traits of cranium and mandible in a modern Italian skeletal population and review of population literature. Leg. Med. 2020, 44, 101695. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 1968, 70, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons, Inc: New York, NY, USA, 2000. [Google Scholar]
- Franklin, D.; Blau, S. Physical and virtual sources of biological data in forensic anthropology: Considerations relative to practitioner and/or judicial requirements. In Statistics and Probability in Forensic Anthropology; Stewart, A., Cattaneo, C., Obertová, Z., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2020; pp. 17–45. [Google Scholar]
- Ubelaker, D.H.; DeGaglia, C.M. Population variation in skeletal sexual dimorphism. Forensic Sci. Int. 2017, 278, 407.e1–407.e7. [Google Scholar] [CrossRef]
- Milella, M.; Franklin, D.; Belcastro, M.G.; Cardini, A. Sexual differences in human cranial morphology: Is one sex more variable or one region more dimorphic? Anat. Rec. 2021, 304, 2789–2810. [Google Scholar] [CrossRef] [PubMed]
- Profico, A.; Piras, P.; Buzi, C.; Di Vincenzo, F.; Lattarini, F.; Melchionna, M.; Veneziano, A.; Raia, P.; Manzi, G. The evolution of cranial base and face in Cercopithecoidea and Hominoidea: Modularity and morphological integration. Am. J. Primatol. 2017, 79, e22721. [Google Scholar] [CrossRef] [PubMed]
- Ousley, S.; Jantz, R.; Freid, D. Understanding race and human variation: Why forensic anthropologists are good at identifying race. Am. J. Phys. Anthr. 2009, 139, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Ousley, S.D.; Jantz, R.L.; Freid, D. Exploring Human Craniometric Variation: Statistical, Mensural, Biological, and Historical considerations. Am. J. Physi. Anthropol. Supplemental. 2007, 44, 182. [Google Scholar]
- Bass, W.M.; Driscoll, P.A. Summary of skeletal identification in Tennessee: 1971–1981. J. Forensic Sci. 1983, 28, 159–168. [Google Scholar] [CrossRef]
- Indra, L.; Lösch, S. Forensic anthropology casework from Switzerland (Bern): Taphonomic implications for the future. Forensic Sci. Int. Rep. 2021, 4, 100222. [Google Scholar] [CrossRef]
- Rösing, F.; Graw, M.; Marré, B.; Ritz-Timme, S.; Rothschild, M.; Rötzscher, K.; Schmeling, A.; Schröder, I.; Geserick, G. Recommendations for the forensic diagnosis of sex and age from skeletons. HOMO 2007, 58, 75–89. [Google Scholar] [CrossRef]
- Komar, D.A.; Grivas, C. Manufactured populations: What do contemporary reference skeletal collections represent? A comparative study using the Maxwell Museum documented collection. Am. J. Phys. Anthr. 2008, 137, 224–233. [Google Scholar] [CrossRef]
- Petaros, A.; Caplova, Z.; Verna, E.; Adalian, P.; Baccino, E.; de Boer, H.H.; Cunha, E.; Ekizoglu, O.; Ferreira, M.T.; Fracasso, T.; et al. Technical Note: The Forensic Anthropology Society of Europe (FASE) Map of Identified Osteological Collections. Forensic Sci. Int. 2021, 328, 110995. [Google Scholar] [CrossRef]
- Martin, D.C.; Danforth, M.E. An analysis of secular change in the human mandible over the last century. Am. J. Hum. Biol. 2009, 21, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.L. Problems of preservation and sexism in sexing: Some lessons from historical collections for paleodemographers. In Grave Reflections: Portraying the Past Through Skeletal Studies; Saunders, S., Herring, A., Eds.; Canadian Scholars’ Press: Toronto, ON, USA, 1995; pp. 31–47. [Google Scholar]
- Garvin, H.M.; Klales, A.R.; Garvin, H.M. A Validation Study of the Langley et al. (2017) Decision Tree Model for Sex Estimation. J. Forensic Sci. 2017, 63, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Albanese, J. Approaches for constructing and using reference samples to maximize the utility of new forensic methods. Eur. J. Anat. 2021, 25, 63–82. [Google Scholar]
Cranial Morphological Trait | Sample | ||
---|---|---|---|
Whole (Females = 84; Males = 93) | Training (Females = 60; Males = 64) | Validation (Females = 24; Males = 29) | |
χ2 Test (p-Value) | χ2 Test (p-Value) | χ2 Test (p-Value) | |
Nuchal crest | 85.1 (p < 0.01) | 59.6 (p < 0.01) | 26.0 (p < 0.01) |
Mastoid process | 84.6 (p < 0.01) | 50.5 (p < 0.01) | 36.5 (p < 0.01) |
Orbital margin | 90.9 (p < 0.01) | 58.6 (p < 0.01) | 32.7 (p < 0.01) |
Glabella | 115.5 (p < 0.01) | 77.5 (p < 0.01) | 39.1 (p < 0.01) |
Mental eminence | 76.7 (p < 0.01) | 47.5 (p < 0.01) | 31.8 (p < 0.01) |
Cranial Morphological Trait | Cranial Morphological Trait | ||||
---|---|---|---|---|---|
Nuchal Crest | Mastoid Process | Orbital MARGIN | Glabella | Mental Eminence | |
Whole sample | |||||
Nuchal crest | - | 0.43 (p < 0.01) | 0.36 (p < 0.01) | 0.35 (p < 0.01) | <0.01 (p = 0.99) |
Mastoid process | 0.41 (p < 0.01) | - | 0.41 (p < 0.01) | 0.40 (p < 0.01) | 0.36 (p < 0.01) |
Orbital margin | 0.39 (p < 0.01) | 0.36 (p < 0.01) | - | 0.44 (p < 0.01) | 0.27 (p < 0.01) |
Glabella | 0.48 (p < 0.01) | 0.38 (p < 0.01) | 0.60 (p < 0.01) | - | 0.39 (p < 0.01) |
Mental eminence | 0.50 (p < 0.01) | 0.33 (p < 0.01) | 0.38 (p < 0.01) | 0.49 (p < 0.01) | - |
Training sample | |||||
Nuchal crest | - | 0.47 (p < 0.01) | 0.39 (p < 0.01) | 0.44 (p < 0.01) | −0.03 (p = 0.81) |
Mastoid process | 0.49 (p < 0.01) | - | 0.45 (p < 0.01) | 0.37 (p < 0.01) | 0.39 (p < 0.01) |
Orbital margin | 0.44 (p < 0.01) | 0.41 (p < 0.01) | - | 0.40 (p < 0.01) | 0.28 (p = 0.02) |
Glabella | 0.55 (p < 0.01) | 0.44 (p < 0.01) | 0.69 (p < 0.01) | - | 0.32 (p < 0.01) |
Mental eminence | 0.45 (p < 0.01) | 0.40 (p < 0.01) | 0.40 (p < 0.01) | 0.47 (p < 0.01) | - |
Validation sample | |||||
Nuchal crest | - | 0.33 (p = 0.08) | 0.27 (p = 0.16) | 0.13 (p = 0.52) | 0.10 (p = 0.60) |
Mastoid process | 0.16 (p = 0.45) | - | 0.32 (p = 0.09) | 0.46 (p = 0.01) | 0.27 (p = 0.11) |
Orbital margin | 0.25 (p = 0.23) | 0.18 (p = 0.40) | - | 0.59 (p < 0.01) | 0.21 (p = 0.27) |
Glabella | 0.35 (p = 0.10) | 0.20 (p = 0.34) | 0.39 (p = 0.06) | - | 0.56 (p < 0.01) |
Mental eminence | 0.62 (p < 0.01) | 0.07 (p = 0.74) | 0.33 (p = 0.12) | 0.60 (p < 0.01) | - |
Cranial Morphological Trait | |||||
---|---|---|---|---|---|
Nuchal Crest | Mastoid Process | Orbital Margin | Glabella | Mental Eminence | |
Inter-observer agreement | |||||
Agreement (%) | 55.4 | 60.7 | 58.3 | 65.5 | 61.7 |
Weighted Cohen’s kappa | 0.74 (p < 0.01) | 0.86 (p < 0.01) | 0.75 (p < 0.01) | 0.81 (p < 0.01) | 0.73 (p < 0.01) |
Agreement with a tolerance of ± 1 (%) | 90.5 | 96.4 | 94.0 | 93.4 | 92.2 |
Intra-observer agreement for analyst 1 | |||||
Agreement (%) | 55.4 | 60.7 | 50.0 | 67.9 | 67.9 |
Weighted Cohen’s kappa | 0.70 (p < 0.01) | 0.88 (p < 0.01) | 0.76 (p < 0.01) | 0.92 (p < 0.01) | 0.81 (p < 0.01) |
Agreement with a tolerance of ± 1 (%) | 92.9 | 98.2 | 94.6 | 98.2 | 96.4 |
Intra-observer agreement for analyst 2 | |||||
Agreement (%) | 59.6 | 68.1 | 78.7 | 83.0 | 68.1 |
Weighted Cohen’s kappa | 0.85 (p < 0.01) | 0.94 (p < 0.01) | 0.90 (p < 0.01) | 0.96 (p < 0.01) | 0.87 (p = 0.01) |
Agreement with a tolerance of ± 1 (%) | 97.9 | 100 | 95.7 | 100 | 97.9 |
Combinations of Cranial Morphological Traits | Correctly Classified (%) Using Whole Sample | Sex Bias (%) | ||
---|---|---|---|---|
Combined | Females | Males | ||
Nuchal crest, mastoid process | 83.6 | 76.2 | 90.3 | −14.1 |
Mastoid process, glabella | 84.7 | 72.6 | 95.7 | −23.1 |
Mastoid process, mental eminence | 79.7 | 67.9 | 90.3 | −22.4 |
Orbital margin, mental eminence | 74.6 | 56.0 | 91.4 | −29.2 |
Glabella, mental eminence | 81.9 | 66.7 | 95.7 | −29.0 |
Mastoid process, glabella, mental eminence | 85.9 | 78.6 | 92.5 | −13.9 |
Combinations of Cranial Morphological Traits | Estimates | AIC a | Correctly Classified (%) Using Training Sample b | Sex Bias (%) | Correctly Classified (%) Using Validation Sample b | Sex Bias (%) | |||
---|---|---|---|---|---|---|---|---|---|
Intercept | Cranial Morphological Traits Coefficient c | Females | Males | Females | Males | ||||
Nuchal crest | −5.95 | 1.886 | 105.5 | 90.0 | 70.3 | 19.7 | 87.5 | 75.9 | 11.6 |
Mastoid process | −3.442 | 1.261 | 118.7 | 75.0 | 84.4 | −9.4 | 87.5 | 93.1 | −5.6 |
Orbital margin | −4.349 | 1.568 | 111.0 | 75.0 | 90.6 | −15.6 | 83.3 | 93.1 | −9.8 |
Glabella | −4.764 | 1.603 | 89.5 | 75.0 | 92.2 | −17.2 | 75.0 | 96.6 | −21.6 |
Mental eminence | −3.662 | 1.226 | 108.7 | 60.0 | 85.9 | −25.9 | 75.0 | 96.6 | −21.6 |
Nuchal crest, mastoid process | −5.933 | 1.369, 0.586 | 102.1 | 85.0 | 78.1 | 6.9 | 87.5 | 82.2 | 4.7 |
Nuchal crest, orbital margin | −6.728 | 1.296, 0.935 | 100.0 | 86.7 | 82.8 | 3.9 | 87.5 | 86.2 | 1.3 |
Nuchal crest, glabella | −6.437 | 0.916, 1.192 | 107.6 | 90.0 | 89.1 | 0.9 | 91.7 | 93.1 | −1.4 |
Nuchal crest, mental eminence | −7.023 | 1.528, 0.702 | 85.1 | 85.0 | 85.9 | −0.9 | 87.5 | 86.2 | 1.3 |
Mastoid process, orbital margin | −5.006 | 0.716, 1.092 | 103.9 | 85.0 | 87.5 | −2.5 | 87.5 | 96.6 | −9.1 |
Mastoid process, glabella | −5.558 | 0.575, 1.335 | 86.5 | 90.0 | 90.6 | −0.6 | 87.5 | 96.6 | −9.1 |
Mastoid process, mental eminence | −4.571 | 0.932, 0.672 | 112.2 | 80.0 | 81.2 | −1.2 | 91.7 | 93.1 | −1.4 |
Orbital margin, glabella | −5.491 | 0.59 d, 1.272 | 88.5 | 83.3 | 90.6 | −7.3 | 87.5 | 96.6 | −9.1 |
Orbital margin, mental eminence | −5.325 | 1.223, 0.641 | 105.5 | 83.3 | 87.5 | −4.2 | 87.5 | 89.7 | −2.2 |
Glabella, mental eminence | −5.65 | 1.43, 0.466 d | 88.1 | 83.3 | 90.6 | −7.3 | 83.3 | 96.6 | −13.3 |
Nuchal crest, mastoid process, orbital margin | −6.566 | 1.099, 0.287, 0.818 | 97.0 | 86.7 | 89.1 | −2.4 | 91.7 | 89.7 | 2.0 |
Nuchal crest, mastoid process, glabella | −6.489 | 0.682, 0.342, 1.13 | 85.8 | 90.0 | 89.1 | 0.9 | 91.7 | 93.1 | −1.4 |
Nuchal crest, mastoid process, mental eminence | −6.851 | 1.303, 0.324, 0.591 | 98.4 | 81.7 | 89.1 | −7.4 | 87.5 | 89.7 | −2.2 |
Nuchal crest, orbital margin, glabella | −6.757 | 0.809, 0.401, 1.014 | 85.9 | 90.0 | 90.6 | −0.6 | 91.7 | 93.1 | −1.4 |
Nuchal crest, orbital margin, mental eminence | −7.226 | 1.171, 0.721, 0.478 d | 94.3 | 85.0 | 89.1 | −4.1 | 87.5 | 86.2 | 1.3 |
Nuchal crest, glabella, mental eminence | −6.891 | 0.812, 1.084, 0.346 | 85.4 | 88.3 | 92.2 | −3.9 | 91.7 | 93.1 | −1.4 |
Mastoid process, orbital margin, glabella | −5.822 | 0.477 d, 0.343, 1.183 | 87.7 | 93.3 | 90.6 | 2.7 | 87.5 | 96.6 | −9.1 |
Mastoid process, orbital margin, mental eminence | −5.468 | 0.551, 0.956, 0.428 | 103.2 | 86.7 | 87.5 | −0.8 | 91.7 | 93.1 | −1.4 |
Mastoid process, glabella, mental eminence | −5.886 | 0.459, 1.278, 0.271 | 87.6 | 90.0 | 89.1 | 0.9 | 87.5 | 96.6 | −9.1 |
Orbital margin, glabella, mental eminence | −5.987 | 0.444, 1.206, 0.372 | 88.6 | 88.3 | 89.1 | −0.8 | 87.5 | 96.6 | −9.1 |
Nuchal crest, mastoid process, orbital margin, glabella | −6.671 | 0.658, 0.258, 0.290, 1.016 | 87.2 | 90.0 | 90.6 | −0.6 | 91.7 | 93.1 | −1.4 |
Nuchal crest, mastoid process, orbital margin, mental eminence | −7.128 | 1.106, 0.115, 0.683, 0.447 d | 96.2 | 85.0 | 89.1 | −4.1 | 87.5 | 86.2 | 1.3 |
Nuchal crest, mastoid process, glabella, mental eminence | −6.801 | 0.68, 0.229, 1.064, 0.269 | 86.9 | 90.0 | 92.2 | −2.2 | 91.7 | 93.1 | −1.4 |
Nuchal crest, orbital margin, glabella, mental eminence | −7.043 | 0.749 d, 0.307, 0.963, 0.293 | 86.7 | 88.3 | 90.6 | −2.3 | 91.7 | 93.1 | −1.4 |
Mastoid process, orbital margin, glabella, mental eminence | −6.064 | 0.389, 0.291, 1.155, 0.238 | 89.0 | 90.0 | 89.1 | 0.9 | 87.5 | 96.6 | −9.1 |
Nuchal crest, mastoid process, orbital margin, glabella, mental eminence | −6.94 | 0.665, 0.162, 0.248, 0.972, 0.248 | 88.5 | 88.3 | 92.2 | −3.2 | 91.7 | 93.1 | −1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappella, A.; Bertoglio, B.; Di Maso, M.; Mazzarelli, D.; Affatato, L.; Stacchiotti, A.; Sforza, C.; Cattaneo, C. Sexual Dimorphism of Cranial Morphological Traits in an Italian Sample: A Population-Specific Logistic Regression Model for Predicting Sex. Biology 2022, 11, 1202. https://doi.org/10.3390/biology11081202
Cappella A, Bertoglio B, Di Maso M, Mazzarelli D, Affatato L, Stacchiotti A, Sforza C, Cattaneo C. Sexual Dimorphism of Cranial Morphological Traits in an Italian Sample: A Population-Specific Logistic Regression Model for Predicting Sex. Biology. 2022; 11(8):1202. https://doi.org/10.3390/biology11081202
Chicago/Turabian StyleCappella, Annalisa, Barbara Bertoglio, Matteo Di Maso, Debora Mazzarelli, Luciana Affatato, Alessandra Stacchiotti, Chiarella Sforza, and Cristina Cattaneo. 2022. "Sexual Dimorphism of Cranial Morphological Traits in an Italian Sample: A Population-Specific Logistic Regression Model for Predicting Sex" Biology 11, no. 8: 1202. https://doi.org/10.3390/biology11081202
APA StyleCappella, A., Bertoglio, B., Di Maso, M., Mazzarelli, D., Affatato, L., Stacchiotti, A., Sforza, C., & Cattaneo, C. (2022). Sexual Dimorphism of Cranial Morphological Traits in an Italian Sample: A Population-Specific Logistic Regression Model for Predicting Sex. Biology, 11(8), 1202. https://doi.org/10.3390/biology11081202