Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = biodiesel emulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3462 KiB  
Article
The Physicochemical Basis for the Production of Rapeseed Oil Fatty Acid Esters in a Plug Flow Reactor
by Sofia M. Kosolapova, Makar S. Smal, Igor N. Pyagay and Viacheslav A. Rudko
Processes 2024, 12(4), 788; https://doi.org/10.3390/pr12040788 - 14 Apr 2024
Cited by 5 | Viewed by 1948
Abstract
This article describes the results of a comprehensive comparative study of the production of fatty acid ethyl esters (FAEEs) for use as biodiesel in perfect mixing reactors (PMRs) and plug flow reactors (PFRs). The products obtained on a laboratory scale at all stages [...] Read more.
This article describes the results of a comprehensive comparative study of the production of fatty acid ethyl esters (FAEEs) for use as biodiesel in perfect mixing reactors (PMRs) and plug flow reactors (PFRs). The products obtained on a laboratory scale at all stages of the separation and purification of the FAEE phase were analyzed using the FTIR, XRF and GC-MS methods. We compared distillation methods for the separation of stoichiometrically excessive ethanol from the reaction mixture. Neutralization methods with H2SO4 solution and carbonation with CO2 were applied for FAEE phase purification from the catalyst. Emulsions formed during the water flushing stage were analyzed via the optical microscopy method. The optimal conditions of stirring speed and temperature were selected to maintain a high level of FAEE–water phase contact area with minimum phase separation time. The efficiency of the carbonation method for catalyst neutralization in the FAEE phase has been proven, allowing us to consider this method as an alternative to the traditional acid neutralization method. According to the results of experimental studies, we have developed a new high-performance technological scheme for the production of fatty acid esters in PFRs. The synthesis of FAEEs in a stoichiometric excess of ethanol of about 1:50 allowed us to increase the reaction rate and productivity of the synthesis unit after the transition from a PMR to a PFR. The yield of the product amounted to 86.7%. The purified FAEE fraction complied with most EN14214 specifications. Full article
(This article belongs to the Special Issue Processes in Biofuel Production and Biomass Valorization)
Show Figures

Figure 1

15 pages, 12986 KiB  
Article
Comparison of the Engine Performance of Soybean Oil Biodiesel Emulsions Prepared by Phase Inversion Temperature and Mechanical Homogenization Methods
by Cherng-Yuan Lin and Keng-Hung Lin
Processes 2023, 11(3), 907; https://doi.org/10.3390/pr11030907 - 16 Mar 2023
Cited by 8 | Viewed by 2403
Abstract
The engine performance and emission characteristics of burning emulsions of soybean oil biodiesel in a compression-ignition diesel engine prepared through the phase inversion temperature method were compared with those of neat soybean oil biodiesel and the emulsion prepared by the mechanical homogenization method. [...] Read more.
The engine performance and emission characteristics of burning emulsions of soybean oil biodiesel in a compression-ignition diesel engine prepared through the phase inversion temperature method were compared with those of neat soybean oil biodiesel and the emulsion prepared by the mechanical homogenization method. The engine torque was set constantly at 98 N·m with varying engine speeds. The experimental results show that the emulsion prepared by the method of phase inversion temperature had higher O2 and NOx emissions, a higher excess air ratio, a higher exhaust gas temperature, and a higher brake fuel conversion efficiency than the emulsion prepared by the mechanical homogenization method, which had lower CO and CO2 emissions, a lower equivalence ratio, and lower brake-specific fuel consumption. While the neat soybean oil biodiesel was found to have the lowest fuel consumption rate, brake-specific fuel consumption, and CO and CO2 emissions, it had the highest exhaust gas temperature and brake fuel conversion efficiency, NOx and O2 emissions, and excess air ratio among those three fuels. Therefore, the phase inversion temperature method is considered promising for preparing fuel emulsions as an alternative to petro-derived diesel for compression-ignition engines. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

20 pages, 5900 KiB  
Article
Biodiesel from Crude Tall Oil and Its NOx and Aldehydes Emissions in a Diesel Engine Fueled by Biodiesel-Diesel Blends with Water Emulsions
by Murari Mohon Roy, Md Shariful Islam and Md Nur Alam
Processes 2021, 9(1), 126; https://doi.org/10.3390/pr9010126 - 8 Jan 2021
Cited by 14 | Viewed by 3456
Abstract
Using biodiesel in diesel engines is beneficial for reducing emissions of carbon monoxide (CO), hydrocarbons (HC) and particulate matters (PM). Biodiesel is usually produced from vegetable oils or animal fats. When produced from plant oil or woody plant sources, biodiesel can reduce a [...] Read more.
Using biodiesel in diesel engines is beneficial for reducing emissions of carbon monoxide (CO), hydrocarbons (HC) and particulate matters (PM). Biodiesel is usually produced from vegetable oils or animal fats. When produced from plant oil or woody plant sources, biodiesel can reduce a significant amount of carbon dioxide on a life cycle basis. The objective of this study is to produce biodiesel from a non-conventional woody plant source that is, crude tall oil, which is a dark brown viscous liquid extracted and processed in wood pulping plants. It contains a high percentage of fatty acids. From raw crude tall oil, tall oil fatty acids were separated and were successfully used for the production of biodiesel in this study. Although biodiesel produces lower CO, HC and PM than petroleum diesel fuel, it produces higher oxides of nitrogen (NOx) emissions in diesel engines. Water emulsifications of diesel-biodiesel blends are investigated in a direct injection (DI) diesel engine in this work to understand their potential for NOx reduction. When using 10% water in the emulsions, NOx was reduced by nearly 15%. In aldehyde emissions, B100 showed 35% lower aldehydes and B100 with 10% water emulsion produced nearly 90% lower aldehydes than diesel fuel—a substantial reduction. Therefore, this study accomplished the desired goal of producing biodiesel from a non-conventional source, which satisfies ASTM biodiesel standard and results in lower NOx and aldehydes emissions with water emulsifications of diesel-biodiesel blends in a diesel engine compared to that of diesel fuel. Full article
Show Figures

Figure 1

20 pages, 5862 KiB  
Article
Emulsifier-Free Water-in-Biodiesel Emulsion Fuel via Steam Emulsification: Its Physical Properties, Combustion Performance, and Exhaust Emission
by Dhani Avianto Sugeng, Ahmad Muhsin Ithnin, Wira Jazair Yahya and Hasannuddin Abd Kadir
Energies 2020, 13(20), 5406; https://doi.org/10.3390/en13205406 - 16 Oct 2020
Cited by 14 | Viewed by 3679
Abstract
The focus of this work is to investigate the effect of emulsifier-free emulsion fuel via steam emulsification (SD) to the diesel engine through physical properties, combustion performance, and exhaust analysis, and compare with conventional emulsion fuel with water percentages of 5% and 10% [...] Read more.
The focus of this work is to investigate the effect of emulsifier-free emulsion fuel via steam emulsification (SD) to the diesel engine through physical properties, combustion performance, and exhaust analysis, and compare with conventional emulsion fuel with water percentages of 5% and 10% (E5 and E10) and biodiesel blend (B5). The SD was prepared using a custom 200 mL glass mixing column. The B5 fuel quantitatively was filled in the column, and then the steam was injected from the bottom of the mixing column through the porous frit glass with the pores ranging from 40 to 100 µm. The average water droplet size of SD is 0.375 µm with the average water percentage of 6.18%. The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) of SD improved 4.19% and 3.92%, respectively, as compared to B5. The in-cylinder pressure (ICP) was lower than B5, however, yielding close to the B5 at 4 kW engine load. As for the exhaust emission test, NOx and PM for SD were reduced significantly with a percentage reduction of 25.22% and 10.68%, respectively, as compared to neat B5. The steam emulsification method offers a huge potential to be explored further as the concept offers the alternative method of making emulsion fuel without the use of conventional mechanical mixers. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance)
Show Figures

Figure 1

28 pages, 7495 KiB  
Article
Effect of Nano-Graphene Oxide and n-Butanol Fuel Additives Blended with Diesel—Nigella sativa Biodiesel Fuel Emulsion on Diesel Engine Characteristics
by Hurmathulla Khan, Manzoore Elahi M. Soudagar, Rajagopal Harish Kumar, Mohammad Reza Safaei, Muhammad Farooq, Abdulqhadar Khidmatgar, Nagaraj R Banapurmath, Rizwan A. Farade, Muhammad Mujtaba Abbas, Asif Afzal, Waqar Ahmed, Marjan Goodarzi and Syed Noeman Taqui
Symmetry 2020, 12(6), 961; https://doi.org/10.3390/sym12060961 - 5 Jun 2020
Cited by 135 | Viewed by 8833
Abstract
The present investigation uses a blend of Nigella sativa biodiesel, diesel, n-butanol, and graphene oxide nanoparticles to enhance the performance, combustion and symmetric characteristics and to reduce the emissions from the diesel engine of a modified common rail direct injection (CRDI). A symmetric [...] Read more.
The present investigation uses a blend of Nigella sativa biodiesel, diesel, n-butanol, and graphene oxide nanoparticles to enhance the performance, combustion and symmetric characteristics and to reduce the emissions from the diesel engine of a modified common rail direct injection (CRDI). A symmetric toroidal-type combustion chamber and a six-hole solenoid fuel injector were used in the current investigation. The research aimed to study the effect of two fuel additives, n-butanol and synthesized asymmetric graphene oxide nanoparticles, in improving the fuel properties of Nigella sativa biodiesel (NSME25). The concentration of n-butanol (10%) was kept constant, and asymmetric graphene oxide nano-additive and sodium dodecyl benzene sulphonate (SDBS) surfactant were added to n-butanol and NSME25 in the form of nanofluid in varying proportions. The nanofluids were prepared using a probe sonication process to prevent nanoparticles from agglomerating in the base fluid. The process was repeated for biodiesel, n-butanol and nanofluid, and four different stable and symmetric nanofuel mixtures were prepared by varying the graphene oxide (30, 60, 90 and 120 ppm). The nanofuel blend NSME25B10GO90 displayed an enhancement in the brake thermal efficiency (BTE) and a reduction in brake-specific fuel consumption (BSFC) at maximum load due to high catalytic activity and the enhanced microexplosion phenomenon developed by graphene oxide nanoparticles. The heat release rate (HRR), in-cylinder temperature increased, while exhaust gas temperature (EGT) decreased. Smoke, hydrocarbon (HC), carbon monoxide (CO2) and carbon monoxide (CO) emissions also fell, in a trade-off with marginally increased NOx, for all nanofuel blends, compared with Nigella sativa biodiesel. The results obtained indicates that 90 ppm of graphene oxide nanoparticles and 10% n-butanol in Nigella sativa biodiesel are comparable with diesel fuel. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Human Life)
Show Figures

Figure 1

14 pages, 1333 KiB  
Article
Transesterification in Microreactors—Overstepping Obstacles and Shifting Towards Biodiesel Production on a Microscale
by Martin Gojun, Matea Bačić, Anabela Ljubić, Anita Šalić and Bruno Zelić
Micromachines 2020, 11(5), 457; https://doi.org/10.3390/mi11050457 - 28 Apr 2020
Cited by 19 | Viewed by 4300
Abstract
Biodiesel, which was earlier used only as an alternative fuel, is now an indispensable component of commercial diesel. Conventional production processes are unable to cope with the increasing demand for biodiesel, and therefore more and more work is being done to intensify the [...] Read more.
Biodiesel, which was earlier used only as an alternative fuel, is now an indispensable component of commercial diesel. Conventional production processes are unable to cope with the increasing demand for biodiesel, and therefore more and more work is being done to intensify the existing processes. The intensification of the biodiesel production process, taking into account the environmental and economic factors, is based on increasing productivity. One way to achieve that is by reducing the volume of production units. The application of the enzymatic reaction path, while reducing the volume of process equipment to the micro-level, has significantly magnified the productivity of the biodiesel production process, which is primarily due to better mass transfer in microsystems. Additional breakthrough is the use of deep eutectic solvents (DES) instead of buffers for enzyme stabilization. In this study, a lipase from Thermomyces lanuginosus (TlL) (both commercial and produced by solid-state fermentation) was used as a catalyst for biodiesel production. Edible and waste sunflower oil, as well as methanol, were used as substrates. The reaction mediums were buffer and DES. The transesterification reaction was carried out in a batch reactor and the emphasis was made on different microreactor configurations. The highest yield of 32% for residence time of only τ = 30 min was obtained in the microreactor system with an emulsion of waste oil and a commercial enzyme suspended in a buffer. This indicates that enzymatic transesterification could be a valuable reaction path for dealing with waste oils. Furthermore, biodiesel synthesis in DES showed somewhat lower yields, but by increasing the water content in the system, the reaction could prove much better results. In the end, the effects of reaction conditions on the volumetric productivity of the process were analyzed. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Biology and Biomedicine 2020)
Show Figures

Graphical abstract

21 pages, 4767 KiB  
Article
Secondary Atomization of a Biodiesel Micro-Emulsion Fuel Droplet Colliding with a Heated Wall
by Alexander E. Ashikhmin, Nikita A. Khomutov, Maxim V. Piskunov and Vyacheslav A. Yanovsky
Appl. Sci. 2020, 10(2), 685; https://doi.org/10.3390/app10020685 - 18 Jan 2020
Cited by 23 | Viewed by 4620
Abstract
Using high-speed video recording, we establish the following regimes of hydrodynamic interaction of a biodiesel micro-emulsion fuel droplet with a heated wall: deposition (including drop spreading and receding), drop hydrodynamic breakup, and rebound. Collision regime maps are plotted using a set of dimensionless [...] Read more.
Using high-speed video recording, we establish the following regimes of hydrodynamic interaction of a biodiesel micro-emulsion fuel droplet with a heated wall: deposition (including drop spreading and receding), drop hydrodynamic breakup, and rebound. Collision regime maps are plotted using a set of dimensionless criteria: Weber number We = 470–1260, Ohnesorge number Oh = 0.146–0.192, and Reynolds number Re = 25–198. The scenarios of droplet hydrodynamic disintegration are studied for transient and film boiling. We also estimate the disintegration characteristics of a biodiesel micro-emulsion droplet (mean diameter of child droplets, their number, and evaporation surface area increase due to breakup). The study establishes the effect of water proportion on the micro-emulsion composition (8–16 vol.%), heating temperature (300–500 °C), droplet size (1.8–2.8 mm), droplet velocity (3–4 m/s), rheological properties of the examined compositions, and emulsifier concentration (10.45 vol.% and 20 vol.%) on the recorded characteristics. The results show that the initial liquid surface area can be increased 2–19 times. The paper analyzes ways to control the process. The hydrodynamic disintegration characteristics of a biodiesel micro-emulsion fuel droplet are compared using 2D and 3D recording. Full article
(This article belongs to the Special Issue Heat and Mass Transfer in Intense Liquid Evaporation)
Show Figures

Graphical abstract

14 pages, 3523 KiB  
Article
Silica Nanoflowers-Stabilized Pickering Emulsion as a Robust Biocatalysis Platform for Enzymatic Production of Biodiesel
by Lihui Wang, Xinlong Liu, Yanjun Jiang, Peng Liu, Liya Zhou, Li Ma, Ying He, Heyu Li and Jing Gao
Catalysts 2019, 9(12), 1026; https://doi.org/10.3390/catal9121026 - 4 Dec 2019
Cited by 20 | Viewed by 3517
Abstract
Enzymatic production of biodiesel had attracted much attention due to its high efficiency, mild conditions and environmental protection. However, the high cost of enzyme, poor solubility of methanol in oil and adsorption of glycerol onto the enzyme limited the popularization of the process. [...] Read more.
Enzymatic production of biodiesel had attracted much attention due to its high efficiency, mild conditions and environmental protection. However, the high cost of enzyme, poor solubility of methanol in oil and adsorption of glycerol onto the enzyme limited the popularization of the process. To address these problems, we developed a silica nanoflowers-stabilized Pickering emulsion as a biocatalysis platform with Candida antarctica lipase B (CALB) as model lipase for biodiesel production. Silica nanoflowers (SNFs) were synthesized in microemulsion and served as a carrier for CALB immobilization and then used as an emulsifier for constructing Pickering emulsion. The structure of SNFs and the biocatalytic Pickering emulsion (CALB@SNFs-PE) were characterized in detail. Experimental data about the methanolysis of waste oil to biodiesel was evaluated by response surface methodology. The highest experimental yield of 98.5 ± 0.5% was obtained under the optimized conditions: methanol/oil ratio of 2.63:1, a temperature of 45.97 °C, CALB@SNFs dosage of 33.24 mg and time of 8.11 h, which was closed to the predicted value (100.00%). Reusability test showed that CALB@SNFs-PE could retain 76.68% of its initial biodiesel yield after 15 cycles, which was better than that of free CALB and N435. Full article
Show Figures

Figure 1

15 pages, 2176 KiB  
Article
Synthesis of Fatty Acid Methyl Esters from Pomace Oil Catalyzed by Zinc Stearate: A Kinetic Study of the Transesterification and Esterification Reactions
by Mariana Soledad Alvarez Serafini and Gabriela Marta Tonetto
Catalysts 2019, 9(12), 978; https://doi.org/10.3390/catal9120978 - 21 Nov 2019
Cited by 7 | Viewed by 4838
Abstract
In this work, the simultaneous transesterification and esterification reactions of olive pomace oil with methanol catalyzed by zinc stearate were studied. This catalyst is a crystalline solid at room temperature, but it is soluble in the reaction medium at reaction temperature. Zinc stearate [...] Read more.
In this work, the simultaneous transesterification and esterification reactions of olive pomace oil with methanol catalyzed by zinc stearate were studied. This catalyst is a crystalline solid at room temperature, but it is soluble in the reaction medium at reaction temperature. Zinc stearate has surfactant properties that cause the formation of an emulsion in the reaction system. The stability of the emulsion formed in the oil–methanol–catalyst system was compared to that in the FAME (fatty acid methyl esters)–methanol–catalyst system. It was observed that the emulsion formed in the presence of high amounts of FAME is much more unstable, which makes the catalyst easy to separate from the reaction products. The kinetics of esterification and transesterification were also studied. All the kinetic and equilibrium constants were determined with a complete model, considering the three stepwise reactions corresponding to the transesterification of triglycerides and the esterification of free fatty acids. The parameters obtained were used to model the operating conditions that would allow obtaining biodiesel that meets the quality standards. Full article
(This article belongs to the Special Issue Commemorative Issue in Honor of Professor Hugo de Lasa)
Show Figures

Figure 1

24 pages, 3987 KiB  
Article
The Influence of Formulation Ratio and Emulsifying Settings on Tri-Fuel (Diesel–Ethanol–Biodiesel) Emulsion Properties
by M. Mukhtar N. A., Abd Rashid Abd Aziz, Ftwi Y. Hagos, M. M. Noor, Kumaran Kadirgama, Rizalman Mamat and A. Adam Abdullah
Energies 2019, 12(9), 1708; https://doi.org/10.3390/en12091708 - 6 May 2019
Cited by 17 | Viewed by 4579
Abstract
In this study, an alternative fuel for compression ignition (CI) engines called tri-fuel emulsion was prepared using an ultrasonic emulsifier. The objective of the study is to investigate the effect of emulsifying settings and formulation ratio on the physicochemical properties of tri-fuel emulsions. [...] Read more.
In this study, an alternative fuel for compression ignition (CI) engines called tri-fuel emulsion was prepared using an ultrasonic emulsifier. The objective of the study is to investigate the effect of emulsifying settings and formulation ratio on the physicochemical properties of tri-fuel emulsions. Design of experiment (DOE) with the two-level factorial design was employed to analyze the effect of emulsifying settings such as time, amplitude, and cycle along with the variation ratio of tri-fuel emulsion components as control factors. Numbers of responses identified were important parameters that may contribute to microexplosion phenomenon in CI engine. Analysis of variance (ANOVA) was carried out for each response, and the results indicated that density, dynamic viscosity, surface tension, and average droplet size were influenced by specific preparation control factors. Furthermore, interaction among the control factors was found to affect the responses as well. Interaction means the effect of two factors together is different than what would be expected from each factor separately. Besides, the stability of the tri-fuel emulsion was observed for three months. Furthermore, a qualitative approach with a multiobjective lens digital microscope revealed the geometry of freshly made dispersed tri-fuel emulsion droplets. Microscopic examination on tri-fuel emulsion droplets has shown that the dispersed ethanol capsulated within diesel with the help of biodiesel is similar to a water in diesel emulsion and is dissimilar to commercial diesel mixed with fatty acid methyl esters found in the market. Full article
(This article belongs to the Special Issue Biofuels for Internal Combustion Engine)
Show Figures

Figure 1

12 pages, 6876 KiB  
Article
Biocatalytic Pickering Emulsions Stabilized by Lipase-Immobilized Carbon Nanotubes for Biodiesel Production
by Lihui Wang, Xinlong Liu, Yanjun Jiang, Liya Zhou, Li Ma, Ying He and Jing Gao
Catalysts 2018, 8(12), 587; https://doi.org/10.3390/catal8120587 - 27 Nov 2018
Cited by 40 | Viewed by 4346
Abstract
Biodiesel is a promising renewable energy source that can replace fossil fuel, but its production is limited by a lack of high-efficiency catalysts for mass production and popularization. In this study, we developed a biocatalytic Pickering emulsion using multiwall carbon nanotube-immobilized Candida antarctica [...] Read more.
Biodiesel is a promising renewable energy source that can replace fossil fuel, but its production is limited by a lack of high-efficiency catalysts for mass production and popularization. In this study, we developed a biocatalytic Pickering emulsion using multiwall carbon nanotube-immobilized Candida antarctica lipase B (CALB@PE) to produce biodiesel, with J. curcas L. seed oil and methanol as substrates. The morphology of CALB@PE was characterized in detail. A central composite design of the response surface methodology (CCD-RSM) was used to study the effects of the parameters on biodiesel yield, namely the amount of J. curcas L. seed oil (1.5 g), molar ratio of methanol to oil (1:1–7:1), CALB@PE dosage (20–140 mg), temperature (30–50 °C), and reaction time (0–24 h). The experimental responses were fitted with a quadratic polynomial equation, and the optimum reaction conditions were the methanol/oil molar ratio of 4.64:1, CALB@PE dosage of 106.87 mg, and temperature of 34.9 °C, with a reaction time of 11.06 h. A yield of 95.2%, which was basically consistent with the predicted value of 95.53%, was obtained. CALB@PE could be reused up to 10 times without a substantial loss of activity. CALB@PE exhibited better reusability than that of Novozym 435 in the process of biodiesel production. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Biodiesel Production)
Show Figures

Graphical abstract

15 pages, 1313 KiB  
Article
Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation
by Chia-Chi Chang, Syuan Teng, Min-Hao Yuan, Dar-Ren Ji, Ching-Yuan Chang, Yi-Hung Chen, Je-Lueng Shie, Chungfang Ho, Sz-Ying Tian, Cesar Augusto Andrade-Tacca, Do Van Manh, Min-Yi Tsai, Mei-Chin Chang, Yen-Hau Chen, Michael Huang and Bo-Liang Liu
Energies 2018, 11(6), 1456; https://doi.org/10.3390/en11061456 - 5 Jun 2018
Cited by 11 | Viewed by 3342
Abstract
The reduction of high acid value (AV) of inedible jatropha oil (JO) by esterification with isopropanol (IPA), which is a common alcohol solvent waste in Taiwan’s high-tech industry, was studied. The decrease of AV is beneficial for the subsequent transesterification to produce JO [...] Read more.
The reduction of high acid value (AV) of inedible jatropha oil (JO) by esterification with isopropanol (IPA), which is a common alcohol solvent waste in Taiwan’s high-tech industry, was studied. The decrease of AV is beneficial for the subsequent transesterification to produce JO biodiesel (i.e., biodiesel of fatty acid isopropyl ester (FAIE)). Acid catalyst (H2SO4) and a novel mixing/emulsion technique using ultrasound irradiation (UI) were applied to promote and facilitate the esterification process. The results showed that increased IPA/oil molar ratio (MIOE) can significantly reduce the AV, kinematic viscosity (KV), density (ρLO), and water content (MW) of esterified JO, while also providing the benefit of enhancing the yield (YF) of biodiesel of FAIE. For example, with MIOE = 5 at esterification temperature (TE) = 394.2 K (393.8–394.7 K), a reduction of AV of 99.25% with YF of 67.15% can be achieved. Free fatty acid (FFA) was reduced from 18.06 wt.% to 0.14 wt.%, indicating 17.92 wt.% out of 18.06 wt.% of FFA was esterified to FAIE. As a result, among the YF of 67.15%, 49.23% (= 67.15 wt.% deducting 17.92 wt.%) was contributed by the transesterification of triglycerides. By esterification of high FFA-containing raw JO with acid catalyst, one can not only avoid saponification, but also reduce the loading of the subsequent alkali-catalyzed transesterification. Moreover, increasing TE from 394.2 to 454.4 K further reduced AV (from 0.27 to 0.084 mg KOH/g) and MW (from 0.27 to 0.043 wt.%), but, on the other hand, it increased KV (from 14.62 to 25.2 mm2/s) and ρLO (from 901.6 to 913.3 kg/m3), while it decreased YF (from 67.15 to 25.84%). In sum, IPA was successfully used as a replacement for methanol in the esterification of JO while UI provided mixing/emulsion along with heating resulting from cavitation for the system. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

18 pages, 1630 KiB  
Article
Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998
by Adriana Ferreira Souza, Dayana M. Rodriguez, Daylin R. Ribeaux, Marcos A. C. Luna, Thayse A. Lima e Silva, Rosileide F. Silva Andrade, Norma B. Gusmão and Galba M. Campos-Takaki
Int. J. Mol. Sci. 2016, 17(10), 1608; https://doi.org/10.3390/ijms17101608 - 23 Sep 2016
Cited by 31 | Viewed by 6925
Abstract
Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce [...] Read more.
Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 22 experimental designs with 1% inoculums (107 cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2–5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm2 of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. Full article
(This article belongs to the Special Issue Biodegradable Materials 2017)
Show Figures

Graphical abstract

12 pages, 442 KiB  
Article
Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method
by Cherng-Yuan Lin and Bo-Yu Lin
Energies 2015, 8(2), 1154-1165; https://doi.org/10.3390/en8021154 - 3 Feb 2015
Cited by 13 | Viewed by 6895
Abstract
Lipids were extracted from Isochrysis galbana using a microwave-assisted method accompanied by various types of organic solvents. The effects of organic solvent type and microwave input energy on the fatty acid characteristics of the extracted lipids and their biodiesel product were investigated. Variations [...] Read more.
Lipids were extracted from Isochrysis galbana using a microwave-assisted method accompanied by various types of organic solvents. The effects of organic solvent type and microwave input energy on the fatty acid characteristics of the extracted lipids and their biodiesel product were investigated. Variations in the characteristics of the lipids extracted using a combination of n-hexane and iso-propanol solvents in both emulsion and direct mixtures were also compared. The experimental results showed that greater quantities of Isochrysis galbana lipids, and fatty acid methyl esters transesterified from those lipids, were extracted when using microwave irradiation with an organic solvent mixture of n-hexane and isopropanol in a 2:1 volumetric ratio than when using either n-hexane or isopropanol as the sole solvent. A greater quantity of Isochrysis galbana lipids was extracted when an emulsion of isopropanol solvent evenly dispersed in the continuous phase of n-hexane solvent was used than when a direct mixture of the two solvents was used. In addition, the quantity of lipids extracted from the dried Isochrysis galbana powder with the assistance of microwave irradiation was 9.08 wt% greater than when using traditional Soxhlet extraction without microwave irradiation. Full article
(This article belongs to the Special Issue Algae Based Technologies)
Show Figures

Figure 1

23 pages, 1243 KiB  
Article
Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV) for Diesel Engines
by Saddam H. Al-lwayzy, Talal Yusaf and Raed A. Al-Juboori
Energies 2014, 7(3), 1829-1851; https://doi.org/10.3390/en7031829 - 24 Mar 2014
Cited by 91 | Viewed by 16625
Abstract
This work aims to investigate biofuels for diesel engines produced on a lab-scale from the fresh water microalgae Chlorella vulgaris (FWM-CV). The impact of growing conditions on the properties of biodiesel produced from FWM-CV was evaluated. The properties of FWM-CV biodiesel were found [...] Read more.
This work aims to investigate biofuels for diesel engines produced on a lab-scale from the fresh water microalgae Chlorella vulgaris (FWM-CV). The impact of growing conditions on the properties of biodiesel produced from FWM-CV was evaluated. The properties of FWM-CV biodiesel were found to be within the ASTM standards for biodiesel. Due to the limited amount of biodiesel produced on the lab-scale, the biomass of dry cells of FWM-CV was used to yield emulsified water fuel. The preparation of emulsion fuel with and without FWM-CV cells was conducted using ultrasound to overcome the problems of large size microalgae colonies and to form homogenized emulsions. The emulsified water fuels, prepared using ultrasound, were found to be stable and the size of FWM-CV colonies were effectively reduced to pass through the engine nozzle safely. Engine tests at 3670 rpm were conducted using three fuels: cottonseed biodiesel CS-B100, emulsified cottonseed biodiesel water fuel, water and emulsifier (CS-E20) and emulsified water containing FWM-CV cells CS-ME20. The results showed that the brake specific fuel consumption (BSFC) was increased by about 41% when the engine was fueled with emulsified water fuels compared to CS-B100. The engine power, exhaust gas temperature, NOx and CO2 were significantly lower than that produced by CS-B100. The CS-ME20 produced higher power than CS-E20 due to the heating value improvement as a result of adding FWM-CV cells to the fuel. Full article
(This article belongs to the Special Issue Renewable Energy for Agriculture)
Show Figures

Back to TopTop