Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = bioderived monomer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1771 KB  
Article
An Integrated Biorefinery Proof of Concept: The Synthesis of Fully Bio-Based, Functional Lignin Polyester Copolymers of Cyclic Anhydrides and Epoxides Towards Polyol Applications and Tunable Bio-Derived Materials
by Oliver J. Driscoll, Daniel J. van de Pas, Kirk M. Torr, Hayden P. Thomas, Richard Vendamme and Elias Feghali
Polymers 2025, 17(20), 2806; https://doi.org/10.3390/polym17202806 - 21 Oct 2025
Viewed by 1293
Abstract
A versatile, sustainable feedstock pathway to bio-based polymeric materials was developed utilizing lignin biomass and the ring-opening copolymerization (ROCOP) of cyclic anhydrides and epoxides to synthesize functional, lignin-derived, fully bio-based polyester polyols. The initial goal was to make the ROCOP reaction more applicable [...] Read more.
A versatile, sustainable feedstock pathway to bio-based polymeric materials was developed utilizing lignin biomass and the ring-opening copolymerization (ROCOP) of cyclic anhydrides and epoxides to synthesize functional, lignin-derived, fully bio-based polyester polyols. The initial goal was to make the ROCOP reaction more applicable to bio-derived starting materials and more attractive to commercialization by conducting the polymerization under less constrained and industrially relevant conditions in air and without the extensive purification of reagents, catalysts, or solvents, typically used in the literature. A refined ROCOP system was applied as a powerful tool in lignin valorization by successfully synthesizing the lignin-derived copolyester prepolymers from lignin models and depolymerized native lignin sourced from the reductive catalytic fractionation of Pinus radiata wood biomass. After mechanistic studies based on NMR characterization, an alternative ROCOP-style mechanism was proposed. This was found to be (1) contributing to the acceleration of the observed reaction rates with added [PPNCl] organo-catalyst and (2) ‘self-initiation/self-promoted’ ROCOP without any added external [PPNCl] catalyst, likely due to the presence of inherent [OH] groups/ species in the lignin-derived glycidyl ether monomer promoting reactivity. As a final goal, the potential of these lignin-derived polyesters as intermediate polyols was demonstrated by applying them in the synthesis of polyurethane (PU) film materials with a high biomass content of 75–79%. A dramatic range of thermomechanical properties was observed for the resulting materials, demonstrating how the ROCOP reaction can be used to tailor the properties of the functional polyester and PU material based on the nature of the epoxide and anhydride substrates used. These findings help endeavors towards predicting the relationship between chemical structure and material thermomechanical properties and performance, relevant for industrial applications. Overall, this study demonstrated the proof of concept that PU materials can be prepared from lignocellulosic biomass utilizing industrially feasible ROCOP of bio-derived cyclic anhydrides and epoxides. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Polymeric Materials)
Show Figures

Graphical abstract

13 pages, 3642 KB  
Article
Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using a Natural Mineral Vermiculite-Loaded Gold–Palladium Bimetallic Catalyst
by Hongke Li, Yiwang Li, Qinghua Xia, Yiran Liu, Wen Guan and Yao Chen
Catalysts 2024, 14(12), 949; https://doi.org/10.3390/catal14120949 - 22 Dec 2024
Cited by 4 | Viewed by 1636
Abstract
Upgrading the bio-derived platform chemical 5-hydroxymethylfurfural (HMF) into the high value-added bioplastic monomer 2,5-furandicarboxylic acid (FDCA) is a promising pathway for biomass conversion. In this work, the natural and abundant available mineral vermiculite was employed as a carrier for loading a Au-Pd bimetal [...] Read more.
Upgrading the bio-derived platform chemical 5-hydroxymethylfurfural (HMF) into the high value-added bioplastic monomer 2,5-furandicarboxylic acid (FDCA) is a promising pathway for biomass conversion. In this work, the natural and abundant available mineral vermiculite was employed as a carrier for loading a Au-Pd bimetal catalyst. Due to the high dispersion of bimetallic nanoparticles, this synthesized vermiculite-supported Au-Pd bimetal catalyst revealed excellent catalytic performance for the aerobic oxidation of HMF to FDCA. By adjusting the ratio of Au and Pd metals, the catalytic performance of the catalyst can be optimized. Finally, 100% HMF conversion and 99.9% FDCA yield could be obtained under the conditions of Au/Pd = 2/1, 2 h, 2 MPa O2, and 100 °C. The catalyst revealed good stability, and the FDCA yield can be maintained at 90.1% after five recycle usages. The physicochemical properties of the synthesized catalysts were characterized by various characterization methods. It could be concluded that the high dispersion and alloying effect of bimetallic nanoparticles promoted the activation of reactants and intermediates, resulting in the effective production of FDCA. This study could provide ideas and references for the development and utilization of natural minerals and also offer a new way to realize the efficient conversion of HMF to FDCA under green conditions. Full article
(This article belongs to the Special Issue Mineral-Based Composite Catalytic Materials)
Show Figures

Graphical abstract

26 pages, 3967 KB  
Review
Fats and Oils as a Sustainable Source of Photopolymerizable Monomers
by Alberto Spessa, Franca Castiglione, Alessandra Vitale, Roberta Bongiovanni and Sara Dalle Vacche
Polymers 2024, 16(24), 3570; https://doi.org/10.3390/polym16243570 - 20 Dec 2024
Cited by 1 | Viewed by 2108
Abstract
Bio-derived monomers and biobased building blocks obtained from natural sources, e.g., fats and oils, are attracting increasing attention mainly due to sustainability concerns. Due to their features, renewable feedstocks are an excellent alternative to petroleum-based raw materials to shift towards greener chemistry, especially [...] Read more.
Bio-derived monomers and biobased building blocks obtained from natural sources, e.g., fats and oils, are attracting increasing attention mainly due to sustainability concerns. Due to their features, renewable feedstocks are an excellent alternative to petroleum-based raw materials to shift towards greener chemistry, especially when coupled with energy-efficient processes like photopolymerization. In this review, we illustrate the recent research outcomes in the field of photocurable biobased monomers, showing the advantages of using biobased chemicals for the synthesis of photocurable monomers and the potential of naturally derived building blocks in photocuring reactions. Full article
(This article belongs to the Special Issue Latest Advances in Photopolymerization)
Show Figures

Figure 1

18 pages, 4785 KB  
Article
Multi-Material 3D Printing of Biobased Epoxy Resins
by Matteo Bergoglio, Elisabeth Rossegger, Sandra Schlögl, Thomas Griesser, Christoph Waly, Florian Arbeiter and Marco Sangermano
Polymers 2024, 16(11), 1510; https://doi.org/10.3390/polym16111510 - 27 May 2024
Cited by 14 | Viewed by 4645
Abstract
Additive manufacturing (AM) has revolutionised the manufacturing industry, offering versatile capabilities for creating complex geometries directly from a digital design. Among the various 3D printing methods for polymers, vat photopolymerisation combines photochemistry and 3D printing. Despite the fact that single-epoxy 3D printing has [...] Read more.
Additive manufacturing (AM) has revolutionised the manufacturing industry, offering versatile capabilities for creating complex geometries directly from a digital design. Among the various 3D printing methods for polymers, vat photopolymerisation combines photochemistry and 3D printing. Despite the fact that single-epoxy 3D printing has been explored, the fabrication of multi-material bioderived epoxy thermosets remains unexplored. This study introduces the feasibility and potential of multi-material 3D printing by means of a dual-vat Digital Light Processing (DLP) technology, focusing on bioderived epoxy resins such as ELO (epoxidized linseed oil) and DGEVA (vanillin alcohol diglycidyl ether). By integrating different materials with different mechanical properties into one sample, this approach enhances sustainability and offers versatility for different applications. Through experimental characterisation, including mechanical and thermal analysis, the study demonstrates the ability to produce structures composed of different materials with tailored mechanical properties and shapes that change on demand. The findings underscore the promising technology of dual-vat DLP technology applied to sustainable bioderived epoxy monomers, allowing sustainable material production and complex structure fabrication. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 3276 KB  
Article
Tough Bioplastics from Babassu Oil-Based Acrylic Monomer, Hemicellulose Xylan, and Carnauba Wax
by Yehor Polunin, Vasylyna Kirianchuk, Najah Mhesn, Liying Wei, Sergiy Minko, Igor Luzinov and Andriy Voronov
Int. J. Mol. Sci. 2023, 24(7), 6103; https://doi.org/10.3390/ijms24076103 - 23 Mar 2023
Cited by 11 | Viewed by 3254
Abstract
We describe here the fabrication, characterization, and properties of tough bioplastics made of a babassu oil-based acrylic polymer (PBBM), hemicellulose xylan grafted with PBBM chains, and carnauba wax (CW). The plastic was primarily designed to obtain bioderived materials that can replace low-density polyethylene [...] Read more.
We describe here the fabrication, characterization, and properties of tough bioplastics made of a babassu oil-based acrylic polymer (PBBM), hemicellulose xylan grafted with PBBM chains, and carnauba wax (CW). The plastic was primarily designed to obtain bioderived materials that can replace low-density polyethylene (LDPE) in certain food packaging applications. To obtain plastic, the radical polymerization of an original babassu oil-based acrylic monomer (BBM) in the presence of xylan macromolecules modified with maleic anhydride (X-MA) was conducted. The polymerization resulted in a material (PBBM-X) mostly consisting of highly branched PBBM/X-MA macromolecules. PBBM-X has a glass transition of 42 °C, a storage modulus of 130 MPa (at 25 °C, RT), and a Young’s modulus of 30 MPa at RT. To increase the moduli, we blended PBBM-X with carnauba wax, a natural material with a high modulus and a melting temperature of ~80 °C. It was found that PBBM-X is compatible with the wax, as evidenced by the alternation of the material’s thermal transitions and the co-crystallization of BBM side alkyl fragments with CW. As a result, the PBBM-X/CW blend containing 40% of the wax had a storage modulus of 475 MPa (RT) and a Young’s modulus of 248 MPa (RT), which is close to that of LDPE. As polyethylene, the PBBM-X and PBBM-X/CW bioplastics have the typical stress-strain behavior demonstrated by ductile (tough) plastics. However, the bioplastic’s yield strength and elongation-at-yield are considerably lower than those of LDPE. We evaluated the moisture barrier properties of the PBBM-X/(40%)CW material and found that the bioplastic’s water vapor permeability (WVP) is quite close to that of LDPE. Our bioderived material demonstrates a WVP that is comparable to polyethylene terephthalate and lower than the WVP of nylon and polystyrene. Taking into account the obtained results, the fabricated materials can be considered as polyethylene alternatives to provide sustainability in plastics production in the packaging areas where LDPE currently dominates. Full article
(This article belongs to the Special Issue Synthesis of Advanced Polymer Materials)
Show Figures

Figure 1

15 pages, 4698 KB  
Article
Functionalization of Polylactide with Multiple Tetraphenyethane Inifer Groups to Form PLA Block Copolymers with Vinyl Monomers
by Mateusz Grabowski, Bartłomiej Kost, Agnieszka Bodzioch and Melania Bednarek
Int. J. Mol. Sci. 2023, 24(1), 19; https://doi.org/10.3390/ijms24010019 - 20 Dec 2022
Cited by 5 | Viewed by 2331
Abstract
In the present contribution, a new strategy for preparing block copolymers of polylactide (PLA), a bio-derived polymer of increasing importance, is described. The method should lead to multiblock copolymers of lactide with vinyl monomers (VM), i.e., monomers that polymerize according to different mechanisms, [...] Read more.
In the present contribution, a new strategy for preparing block copolymers of polylactide (PLA), a bio-derived polymer of increasing importance, is described. The method should lead to multiblock copolymers of lactide with vinyl monomers (VM), i.e., monomers that polymerize according to different mechanisms, and is based on the introduction of multiple “inifer” (INItiator/transFER agent) groups into PLA’s structure. As an “inifer” group, tetraphenylethane (TPE, known to easily thermally dissociate to radicals) was incorporated into PLA chains using diisocyanate. PLA that contained TPE groups (PLA-PU) was characterized, and its ability to form initiating radicals was demonstrated by ESR measurements. PLA-PU was used as a “macroinifer” for the polymerization of acrylonitrile and styrene upon moderate heating (85 °C) of the PLA-PU in the presence of monomers. The formation of block copolymers PLA/PVM was confirmed by 1H NMR, DOSY NMR, and FTIR spectroscopies and the SEC method. The prepared copolymers showed only one glass transition in DSC curves with Tg values higher than those of PLA-PU. Full article
(This article belongs to the Special Issue Biopolymer Composites 2022)
Show Figures

Graphical abstract

15 pages, 3292 KB  
Article
Curing Kinetics of Bioderived Furan-Based Epoxy Resins: Study on the Effect of the Epoxy Monomer/Hardener Ratio
by Angela Marotta, Noemi Faggio and Cosimo Brondi
Polymers 2022, 14(23), 5322; https://doi.org/10.3390/polym14235322 - 5 Dec 2022
Cited by 11 | Viewed by 3123
Abstract
The potential of furan-based epoxy thermosets as a greener alternative to diglycidyl ether of Bisphenol A (DGEBA)-based resins has been demonstrated in recent literature. Therefore, a deep investigation of the curing behaviour of these systems may allow their use for industrial applications. In [...] Read more.
The potential of furan-based epoxy thermosets as a greener alternative to diglycidyl ether of Bisphenol A (DGEBA)-based resins has been demonstrated in recent literature. Therefore, a deep investigation of the curing behaviour of these systems may allow their use for industrial applications. In this work, the curing mechanism of 2,5-bis[(oxiran-2-ylmethoxy)methyl]furan (BOMF) with methyl nadic anhydride (MNA) in the presence of 2-methylimidazole as a catalyst is analyzed. In particular, three systems characterized by different epoxy/anhydride molar ratios are investigated. The curing kinetics are studied through differential scanning calorimetry, both in isothermal and non-isothermal modes. The total heat of reaction of the epoxy resin as well as its activation energy are estimated by the non-isothermal measurements, while the fitting of isothermal data with Kamal’s autocatalytic model provides the kinetic parameters. The results are discussed as a function of the resin composition. The global activation energy for the curing process of BOMF/MNA resins is in the range 72–79 kJ/mol, depending on both the model used and the sample composition; higher values are experienced by the system with balanced stoichiometry. By the fitting of the isothermal analysis, it emerged that the order of reaction is not only dependent on the temperature, but also on the composition, even though the values range between 0.31 and 1.24. Full article
Show Figures

Graphical abstract

19 pages, 10900 KB  
Article
Bio-Based Poly(lactic acid)/Poly(butylene sebacate) Blends with Improved Toughness
by Adriana Nicoleta Frone, Marius Stelian Popa, Cătălina Diana Uşurelu, Denis Mihaela Panaitescu, Augusta Raluca Gabor, Cristian Andi Nicolae, Monica Florentina Raduly, Anamaria Zaharia and Elvira Alexandrescu
Polymers 2022, 14(19), 3998; https://doi.org/10.3390/polym14193998 - 24 Sep 2022
Cited by 20 | Viewed by 3740
Abstract
A series of poly(butylene sebacate) (PBSe) aliphatic polyesters were successfully synthesized by the melt polycondensation of sebacic acid (Se) and 1,4-butanediol (BDO), two monomers manufactured on an industrial scale from biomass. The number average molecular weight (Mn) in the range from [...] Read more.
A series of poly(butylene sebacate) (PBSe) aliphatic polyesters were successfully synthesized by the melt polycondensation of sebacic acid (Se) and 1,4-butanediol (BDO), two monomers manufactured on an industrial scale from biomass. The number average molecular weight (Mn) in the range from 6116 to 10,779 g/mol and the glass transition temperature (Tg) of the PBSe polyesters were tuned by adjusting the feed ratio between the two monomers. Polylactic acid (PLA)/PBSe blends with PBSe concentrations between 2.5 to 20 wt% were obtained by melt compounding. For the first time, PBSe’s effect on the flexibility and toughness of PLA was studied. As shown by the torque and melt flow index (MFI) values, the addition of PBSe endowed PLA with both enhanced melt processability and flexibility. The tensile tests and thermogravimetric analysis showed that PLA/PBSe blends containing 20 wt% PBSe obtained using a BDO molar excess of 50% reached an increase in elongation at break from 2.9 to 108%, with a negligible decrease in Young’s modulus from 2186 MPa to 1843 MPa, and a slight decrease in thermal performances. These results demonstrated the plasticizing efficiency of the synthesized bio-derived polyesters in overcoming PLA’s brittleness. Moreover, the tunable properties of the resulting PBSe can be of great industrial interest in the context of circular bioeconomy. Full article
(This article belongs to the Special Issue Advances in Biocompatible and Biodegradable Polymers II)
Show Figures

Graphical abstract

13 pages, 2449 KB  
Article
Waterborne Polyurethane/Acrylic Adhesive Blends from Physaria fendleri Oil for Food Packaging Applications
by Rebecca Mort, Emily Olson, Henry Thurber, Shan Jiang, Keith Vorst and Greg Curtzwiler
Sustainability 2022, 14(14), 8657; https://doi.org/10.3390/su14148657 - 15 Jul 2022
Cited by 10 | Viewed by 3685
Abstract
Environmental concerns and the diminishing acceptability of using petrochemical polymers require innovative synthetic approaches to materials for essential polymeric technologies such as adhesives. Biobased plant oils have been suggested as replacements for petrochemical monomers in polyurethane formulations. A variety of seed oil extracts [...] Read more.
Environmental concerns and the diminishing acceptability of using petrochemical polymers require innovative synthetic approaches to materials for essential polymeric technologies such as adhesives. Biobased plant oils have been suggested as replacements for petrochemical monomers in polyurethane formulations. A variety of seed oil extracts from plants contain naturally occurring functional groups such as hydroxyl and glycidyl ether, which can be utilized in polyurethane synthesis. Most studies of bioderived polyurethane adhesives occur in solventborne systems and with chemically modified oils. However, rising concerns and manufacturing limitations of volatile organic compounds in solventborne systems warrant investigation into more sustainable and alternatives that are easier to handle. In this work, we synthesized waterborne polyurethanes comprised of oil derived from Physaria fendleri seed (naturally occurring hydroxyl functionality), hexamethylene diisocyanate, toluene diisocyanate, and dimethyl propionic acid. Acrylate copolymers were synthesized via emulsion polymerization comprised of different butyl and methylmethacrylate monomer ratios. These polymers were formulated into waterborne polyurethane/acrylic adhesive blends. The resulting formulations possess a commercially comparable peel strength of >6 N and are suggested for use in resealable food packaging applications. This study demonstrates the utility of oil derived from Physaria fendleri seeds in waterborne adhesive applications, adding value with bioderived materials and increasing sustainability of polyurethane adhesives. Full article
(This article belongs to the Special Issue Sustainable Practices in Food Systems)
Show Figures

Figure 1

26 pages, 5544 KB  
Article
Superior Properties through Feedstock Development for Vat Photopolymerization Additive Manufacturing of High-Performance Biobased Feedstocks
by Anthony M. Clay, Joshua R. Mitchell, Zachary R. Boelter and John J. La Scala
Materials 2021, 14(17), 4843; https://doi.org/10.3390/ma14174843 - 26 Aug 2021
Cited by 4 | Viewed by 3669
Abstract
Vat photopolymerization additive manufacturing (Vat AM) technologies have found niche industrial use being able to produce personalized parts in moderate quantity. However, Vat AM lacks in its ability to produce parts of satisfactory thermal and mechanical properties for structural applications. The purpose of [...] Read more.
Vat photopolymerization additive manufacturing (Vat AM) technologies have found niche industrial use being able to produce personalized parts in moderate quantity. However, Vat AM lacks in its ability to produce parts of satisfactory thermal and mechanical properties for structural applications. The purpose of this investigation was to develop high-performance resins with glass transition temperatures (Tg) above 200 °C for Vat AM, evaluate the properties of the produced thermosets and establish a structure–property relationship of the thermosets produced. Herein, we have developed SLA-type resins that feature bio-derived monomer hesperetin trimethacrylate (HTM) synthesized from the flavonone hesperetin. Diluents 4-acryloyl morpholine, styrene, 4-methyl styrene and 4-tert butylstyrene (tbutylsty) were photocured with HTM as the monomer and all produced thermosets with Tg values above 200 °C. Investigations of suitable crosslinkers urethane dimethacrylate, the vinyl ester CN 151 and Ebecryl 4859 (Eb4859) showed that each crosslinker displayed different benefits when formulated with HTM as the monomer and tbutylSty as the diluent (HTM:crosslinker:tbutylSty with mass ratio 2:1:2). The crosslinker CN 151 produced the thermoset of greatest onset of thermal decomposition temperature (T0) of 352 °C. Eb4859 produced the thermoset of highest tensile strength, 19 ± 7 MPa, amongst the set of varied crosslinkers. The formulation featuring UDM (HTM:UDM:tbutysty) offered ease of processing and was seemingly the easiest to print. Investigations of reactive diluent showed that styrene produced the thermoset of the highest extent of cure and the overall highest tensile strength, 25 ± 5 MPa, while tbutylSty produced the thermoset with the greatest Tan-δ Tg, 231 °C. HTM was synthesized, formulated with diluents, crosslinkers and initiators. The HTM resins were then 3D printed to produce thermosets of Tg values greater than 200 °C. The polymer properties were evaluated and a structure–reactivity relationship was discussed. Full article
(This article belongs to the Special Issue New Materials and Approaches in Polymer Additive Manufacturing)
Show Figures

Figure 1

17 pages, 5367 KB  
Article
Novel Dihydro-1,3,2H-benzoxazine Derived from Furfurylamine: Crystal Structure, Hirshfeld Surface Analysis, Photophysical Property, and Computational Study
by Worawat Wattanathana, Yuranan Hanlumyuang, Suttipong Wannapaiboon, Kantapat Chansaenpak, Piyanut Pinyou, Tanin Nanok and Pongsakorn Kanjanaboos
Crystals 2021, 11(5), 568; https://doi.org/10.3390/cryst11050568 - 20 May 2021
Cited by 7 | Viewed by 4876
Abstract
Dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are a class of compounds that have been widely utilized in many areas such as the production of the functional polymers and optoelectronic materials. The structure variety of the benzoxazines plays a vital role in their desired [...] Read more.
Dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are a class of compounds that have been widely utilized in many areas such as the production of the functional polymers and optoelectronic materials. The structure variety of the benzoxazines plays a vital role in their desired properties. The effort of synthesizing functionalized benzoxazines from bioresources is of interest for sustainable development. Herein, we report the synthesis of the novel benzoxazine monomer referred to as 3-(furan-2-ylmethyl)-6-methyl-3,4-dihydro-2H-benzo[e][1,3]oxazine or benzoxazine (I) from a one-pot Mannich reaction using p-cresol, paraformaldehyde, and furfurylamine (a bio-derived amine). An X-ray crystallographic study was performed at low temperature (100 K) to obtain the structural characteristics of the benzoxazine (I). The result reveals that the oxazine ring adopts a half chair conformation to locate all the members of the benzoxazine ring as planar as possible by employing the expansion of the bond angles within the ring. Apart from the structural parameters, the intermolecular interactions were also examined. It was found that the significant interactions within the crystal are C–H···N, C–H···O, and the C–H···π interactions. The C–H···N interactions link the benzoxazine (I) molecules into an infinite molecular chain, propagating along the [100] direction. Hirshfeld surfaces and their corresponding fingerprint plots were comprehensively analyzed to confirm and quantify the significance of these interactions. Moreover, the photophysical properties of the benzoxazine (I) were investigated in solvents with various polarities. The corresponding relations between the structural features, frontier molecular orbitals, and absorption-and-emission characteristics were proposed and explained according to the DFT and TD-DFT calculations. Full article
Show Figures

Figure 1

9 pages, 1099 KB  
Communication
Thermal Upgrade of Enzymatically Synthesized Aliphatic and Aromatic Oligoesters
by James W. Comerford, Fergal P. Byrne, Simone Weinberger, Thomas J. Farmer, Georg M. Guebitz, Lucia Gardossi and Alessandro Pellis
Materials 2020, 13(2), 368; https://doi.org/10.3390/ma13020368 - 13 Jan 2020
Cited by 19 | Viewed by 4082
Abstract
The enzymatic synthesis of polyesters in solventless systems is an environmentally friendly and sustainable method for synthetizing bio-derived materials. Despite the greenness of the technique, in most cases only short oligoesters are obtained, with limited practical applications or requiring further chemical processing for [...] Read more.
The enzymatic synthesis of polyesters in solventless systems is an environmentally friendly and sustainable method for synthetizing bio-derived materials. Despite the greenness of the technique, in most cases only short oligoesters are obtained, with limited practical applications or requiring further chemical processing for their elongation. In this work, we present a catalyst-free thermal upgrade of enzymatically synthesized oligoesters. Different aliphatic and aromatic oligoesters were synthesized using immobilized Candida antarctica lipase B (iCaLB) as the catalyst (70 °C, 24 h) yielding poly(1,4-butylene adipate) (PBA, Mw = 2200), poly(1,4-butylene isophthalate) (PBI, Mw = 1000), poly(1,4-butylene 2,5-furandicarboxylate) (PBF, Mw = 600), and poly(1,4-butylene 2,4-pyridinedicarboxylate) (PBP, Mw = 1000). These polyesters were successfully thermally treated to obtain an increase in Mw of 8.5, 2.6, 3.3, and 2.7 folds, respectively. This investigation focused on the most successful upgrade, poly(1,4-butylene adipate), then discussed the possible effect of di-ester monomers as compared to di-acids in the thermally driven polycondensation. The herein-described two-step synthesis method represents a practical and cost-effective way to synthesize higher-molecular-weight polymers without the use of toxic metal catalysts such as titanium(IV) tert-butoxide, tin(II) 2-ethylhexanoate, and in particular, antimony(IV) oxide. At the same time, the method allows for the extension of the number of reuses of the biocatalyst by preventing its exposure to extreme denaturating conditions. Full article
(This article belongs to the Special Issue Sustainable Polymers: From Synthesis to Functional Properties)
Show Figures

Figure 1

16 pages, 5507 KB  
Article
Copolymerization of Styrene and Pentadecylphenylmethacrylate (PDPMA): Synthesis, Characterization, Thermomechanical and Adhesion Properties
by Tomy Muringayil Joseph, Sumi Murali Nair, Suresh Kattimuttathu Ittara, Józef T. Haponiuk and Sabu Thomas
Polymers 2020, 12(1), 97; https://doi.org/10.3390/polym12010097 - 4 Jan 2020
Cited by 14 | Viewed by 7864
Abstract
The copolymerization of styrene (St) with a bioderived monomer, pentadecylphenyl methacrylate (PDPMA), via atom transfer radical polymerization (ATRP) was studied in this work. The copolymerization reactivity ratio was calculated using the composition data obtained from 1H NMR spectroscopy, applying Kelen-Tudos and Finemann-Ross [...] Read more.
The copolymerization of styrene (St) with a bioderived monomer, pentadecylphenyl methacrylate (PDPMA), via atom transfer radical polymerization (ATRP) was studied in this work. The copolymerization reactivity ratio was calculated using the composition data obtained from 1H NMR spectroscopy, applying Kelen-Tudos and Finemann-Ross methods. The reactivity ratio of styrene (r1 = 0.93) and PDPMA (r2 = 0.05) suggested random copolymerization of the two monomers with alternation. The copolymerization conversion increased with increasing PDPMA concentration of the feed, upto 70 wt % PDPMA, but decreased thereafter. The molecular weight determined by gel permeation chromatography was lower than the theoretical values and the polydispersity increased from 1.32 to 2.19, with increasing PDPMA content in the feed. The influence of styrene content on the glass transition and thermal decomposition behavior of the copolymers was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis, respectively. Morphological characterization by transmission electron microscopy (TEM) revealed a phase separated soft core-hard shell type structure. The complex viscosity and adhesion properties like peel strength and lap shear strength of the copolymer on different substrates increased with increasing styrene content. Full article
Show Figures

Graphical abstract

32 pages, 1569 KB  
Review
Application of Protein-Based Films and Coatings for Food Packaging: A Review
by Hongbo Chen, Jingjing Wang, Yaohua Cheng, Chuansheng Wang, Haichao Liu, Huiguang Bian, Yiren Pan, Jingyao Sun and Wenwen Han
Polymers 2019, 11(12), 2039; https://doi.org/10.3390/polym11122039 - 9 Dec 2019
Cited by 386 | Viewed by 23421
Abstract
As the IV generation of packaging, biopolymers, with the advantages of biodegradability, process ability, combination possibilities and no pollution to food, have become the leading food packaging materials. Biopolymers can be directly extracted from biomass, synthesized from bioderived monomers and produced directly by [...] Read more.
As the IV generation of packaging, biopolymers, with the advantages of biodegradability, process ability, combination possibilities and no pollution to food, have become the leading food packaging materials. Biopolymers can be directly extracted from biomass, synthesized from bioderived monomers and produced directly by microorganisms which are all abundant and renewable. The raw materials used to produce biopolymers are low-cost, some even coming from agrion dustrial waste. This review summarized the advances in protein-based films and coatings for food packaging. The materials studied to develop protein-based packaging films and coatings can be divided into two classes: plant proteins and animal proteins. Parts of proteins are referred in this review, including plant proteins i.e., gluten, soy proteins and zein, and animal proteins i.e., casein, whey and gelatin. Films and coatings based on these proteins have excellent gas barrier properties and satisfactory mechanical properties. However, the hydrophilicity of proteins makes the protein-based films present poor water barrier characteristics. The application of plasticizers and the corresponding post-treatments can make the properties of the protein-based films and coatings improved. The addition of active compounds into protein-based films can effectively inhibit or delay the growth of microorganisms and the oxidation of lipids. The review also summarized the research about the storage requirements of various foods that can provide corresponding guidance for the preparation of food packaging materials. Numerous application examples of protein-based films and coatings in food packaging also confirm their important role in food packaging materials. Full article
Show Figures

Graphical abstract

14 pages, 2596 KB  
Article
Towards High-performance Materials Based on Carbohydrate-Derived Polyamide Blends
by Aleksandra A. Wróblewska, Nils Leoné, Stefaan M. A. De Wildeman and Katrien V. Bernaerts
Polymers 2019, 11(3), 413; https://doi.org/10.3390/polym11030413 - 4 Mar 2019
Cited by 4 | Viewed by 4933
Abstract
A bio-derived monomer called 2,3:4,5-di-O-isopropylidene-galactarate acid/ester (GalXMe) has great potential in polymer production. The unique properties of this molecule, such as its rigidity and bulkiness, contribute to the good thermal properties and appealing transparency of the material. The main problem, however, [...] Read more.
A bio-derived monomer called 2,3:4,5-di-O-isopropylidene-galactarate acid/ester (GalXMe) has great potential in polymer production. The unique properties of this molecule, such as its rigidity and bulkiness, contribute to the good thermal properties and appealing transparency of the material. The main problem, however, is that like other biobased materials, the polymers derived thereof are very brittle. In this study, we report on the melt blending of GalXMe polyamides (PAs) with different commercial PA grades using extrusion as well as blend characterization. Biobased PA blends showed limited to no miscibility with other polyamides. However, their incorporation resulted in strong materials with high Young moduli. The increase in modulus of the prepared GalXMe blends with commercial PAs ranged from up to 75% for blends with aliphatic polyamide composed of 1,6-diaminohexane and 1,12-dodecanedioic acid PA(6,12) to up to 82% for blends with cycloaliphatic polyamide composed of 4,4′-methylenebis(cyclohexylamine) and 1,12-dodecanedioic acid PA(PACM,12). Investigation into the mechanism of blending revealed that for some polyamides a transamidation reaction improved the blend compatibility. The thermal stability of the biobased PAs depended on which diamine was used. Polymers with aliphatic/aromatic or alicyclic diamines showed no degradation, whereas with fully aromatic diamines such as p-phenylenediamine, some degradation processes were observed under extrusion conditions (260/270 °C). Full article
(This article belongs to the Special Issue Recent Advances in Bioplastics)
Show Figures

Graphical abstract

Back to TopTop