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Abstract: Dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are a class of compounds that
have been widely utilized in many areas such as the production of the functional polymers and
optoelectronic materials. The structure variety of the benzoxazines plays a vital role in their desired
properties. The effort of synthesizing functionalized benzoxazines from bioresources is of interest
for sustainable development. Herein, we report the synthesis of the novel benzoxazine monomer
referred to as 3-(furan-2-ylmethyl)-6-methyl-3,4-dihydro-2H-benzo[e][1,3]oxazine or benzoxazine (I)
from a one-pot Mannich reaction using p-cresol, paraformaldehyde, and furfurylamine (a bio-derived
amine). An X-ray crystallographic study was performed at low temperature (100 K) to obtain the
structural characteristics of the benzoxazine (I). The result reveals that the oxazine ring adopts a
half chair conformation to locate all the members of the benzoxazine ring as planar as possible by
employing the expansion of the bond angles within the ring. Apart from the structural parameters,
the intermolecular interactions were also examined. It was found that the significant interactions
within the crystal are C–H···N, C–H···O, and the C–H···π interactions. The C–H···N interactions link
the benzoxazine (I) molecules into an infinite molecular chain, propagating along the [100] direction.
Hirshfeld surfaces and their corresponding fingerprint plots were comprehensively analyzed to
confirm and quantify the significance of these interactions. Moreover, the photophysical properties
of the benzoxazine (I) were investigated in solvents with various polarities. The corresponding
relations between the structural features, frontier molecular orbitals, and absorption-and-emission
characteristics were proposed and explained according to the DFT and TD-DFT calculations.

Keywords: crystal structure; Hirshfeld surface analysis; photophysical properties; benzoxazine

1. Introduction

Dihydrobenzoxazines are versatile compounds used in many areas such as thermoset
manufacture [1–3], optoelectronic materials [4,5], antimicrobial agents [6–10], and medicinal
applications [11–13]. Among different isomers of dihydrobenzoxazines (Scheme 1), 3,4-
dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are the most common as they
can be readily synthesized by Mannich reactions using three reagents, namely phenols,
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paraformaldehyde, and amines. A variety of starting materials can be used in benzox-
azine syntheses, leading to their exceptional flexibility in terms of the molecular design.
This flexible molecular design allows scientists and engineers to form numerous novel
benzoxazines as well as polybenzoxazines with many prominent characteristics, such as
distinctive thermal stabilities [14–19], good mechanical strengths [19,20], desirable dielec-
tric properties [21–24], and high anticorrosion performances [25–30]. These advantages
make the benzoxazine resins promising candidates for applications, such as reinforcement
composites and anticorrosion coatings. Additionally, benzoxazines possess interesting opti-
cal properties, i.e., photochromism [31], electrochromism [32], and photoluminescence [33].
It should be noted that the optical properties of benzoxazine- and polybenzoxazine-based
materials have not been reported as much as the other properties mentioned earlier.

Crystals 2021, 11, x FOR PEER REVIEW 2 of 18 
 

 

(Scheme 1), 3,4-dihydro-1,3,2H-benzoxazines (or benzoxazine monomers) are the most 
common as they can be readily synthesized by Mannich reactions using three reagents, 
namely phenols, paraformaldehyde, and amines. A variety of starting materials can be 
used in benzoxazine syntheses, leading to their exceptional flexibility in terms of the 
molecular design. This flexible molecular design allows scientists and engineers to form 
numerous novel benzoxazines as well as polybenzoxazines with many prominent 
characteristics, such as distinctive thermal stabilities [14–19], good mechanical strengths 
[19,20], desirable dielectric properties [21–24], and high anticorrosion performances [25–
30]. These advantages make the benzoxazine resins promising candidates for applications, 
such as reinforcement composites and anticorrosion coatings. Additionally, benzoxazines 
possess interesting optical properties, i.e., photochromism [31], electrochromism [32], and 
photoluminescence [33]. It should be noted that the optical properties of benzoxazine- and 
polybenzoxazine-based materials have not been reported as much as the other properties 
mentioned earlier. 

 

Scheme 1. Several structural isomers of dihydrobenzoxazines: (a) 3,4-dihydro-2H-
benzo[e][1,2]oxazine, (b) 3,4-dihydro-2H-benzo[e][1,3]oxazine, (c) 3,4-dihydro-2H-
benzo[b][1,4]oxazine, (d) 3,4-dihydro-1H-benzo[c][1,2]oxazine, (e) 2,4-dihydro-1H-
benzo[d][1,3]oxazine, and (f) 3,4-dihydro-1H-benzo[d][1,2]oxazine. 

Although the availability of the feedstocks for benzoxazine production is extremely 
high, most of them are derived from nonrenewable resources, namely the so-called 
petroleum-based chemicals. Therefore, the search for potential raw materials from 
renewable resources is highly desirable for long-term sustainability. Among the three 
starting substances for benzoxazine productions, only phenol and amine derivatives can 
be obtained from natural resources. Recently, there are several reports on the fabrication 
of benzoxazines and polybenzoxazines via bio-based phenol sources [34–41]. Moreover, 
the utilization of bio-derived primary amines in the structural design of benzoxazines 
such as stearylamine [37], dehydroabietylamine [42], and furfurylamine [40,41,43,44] have 
been reported. Among different bio-based primary amines, furfurylamine has been 
ubiquitously employed in the preparation of benzoxazines and polybenzoxazines since it 
can be straightforwardly synthesized from furfural, one of the 10 value-added bio-based 
substance reported by the U.S. Department of Energy [45]. For this reason, the 
furfurylamine-derived benzoxazines are likely to be the prospective materials for 
developing novel polybenzoxazine resins. Even though several research groups have 
reported the syntheses and certain physical properties such as thermal stabilities and 
mechanical properties, no report on the optical properties has been found. This work aims 
to prepare the benzoxazine (I), 3-[(furan-2-yl)methyl]-6-methyl-3,4-dihydro-2H-1,3-
benzoxazine, from furfurylamine as a model benzoxazine monomer to examine its 
photophysical properties. Here, the crystal structure of the benzoxazine (I) is thoroughly 
examined to observe the significant structural features and intermolecular interactions 
related to its properties and reactivity. In addition, quantum chemical calculations on 

Scheme 1. Several structural isomers of dihydrobenzoxazines: (a) 3,4-dihydro-2H-benzo[e][1,2]
oxazine, (b) 3,4-dihydro-2H-benzo[e][1,3]oxazine, (c) 3,4-dihydro-2H-benzo[b][1,4]oxazine, (d) 3,4-
dihydro-1H-benzo[c][1,2]oxazine, (e) 2,4-dihydro-1H-benzo[d][1,3]oxazine, and (f) 3,4-dihydro-1H-
benzo[d][1,2]oxazine.

Although the availability of the feedstocks for benzoxazine production is extremely
high, most of them are derived from nonrenewable resources, namely the so-called
petroleum-based chemicals. Therefore, the search for potential raw materials from renew-
able resources is highly desirable for long-term sustainability. Among the three starting
substances for benzoxazine productions, only phenol and amine derivatives can be ob-
tained from natural resources. Recently, there are several reports on the fabrication of
benzoxazines and polybenzoxazines via bio-based phenol sources [34–41]. Moreover, the
utilization of bio-derived primary amines in the structural design of benzoxazines such as
stearylamine [37], dehydroabietylamine [42], and furfurylamine [40,41,43,44] have been
reported. Among different bio-based primary amines, furfurylamine has been ubiqui-
tously employed in the preparation of benzoxazines and polybenzoxazines since it can be
straightforwardly synthesized from furfural, one of the 10 value-added bio-based substance
reported by the U.S. Department of Energy [45]. For this reason, the furfurylamine-derived
benzoxazines are likely to be the prospective materials for developing novel polyben-
zoxazine resins. Even though several research groups have reported the syntheses and
certain physical properties such as thermal stabilities and mechanical properties, no report
on the optical properties has been found. This work aims to prepare the benzoxazine
(I), 3-[(furan-2-yl)methyl]-6-methyl-3,4-dihydro-2H-1,3-benzoxazine, from furfurylamine
as a model benzoxazine monomer to examine its photophysical properties. Here, the
crystal structure of the benzoxazine (I) is thoroughly examined to observe the significant
structural features and intermolecular interactions related to its properties and reactivity.
In addition, quantum chemical calculations on frontier molecular orbitals and optimized
structural parameters are carried out and identified to investigate the mechanism of the
photo-absorption and emission of the benzoxazine (I).
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2. Materials and Methods
2.1. Synthesis of the Benzoxazine (I)

The benzoxazine monomer, 3-[(furan-2-yl)methyl]-6-methyl-3,4-dihydro-2H-1,
3-benzoxazine, was prepared by a one-pot Mannich reaction like the syntheses of other
derivatives reported in the literature [33,46,47]. Herein, furfurylamine (Alfa Aesar, Haver-
hill, MA, USA, 2.43 g, 25 mmol), paraformaldehyde (Merck, Kenilworth, NJ, USA, 1.50 g,
50 mmol), and para-cresol (Merck, 2.71 g, 25 mmol) were dissolved in dioxane (RCI Lab-
scan, Bangkok, Thailand, 25 mL). The mixture was refluxed for 6 h to obtain a clear dark
yellow solution. The solvent was removed by a rotary evaporator to obtain a brown liquid.
To remove impurities, 25 mL of dichloromethane was added to the brown liquid; the
obtained solution was extracted by 3 N NaOH (25 mL) for three times and subsequently
by 25 mL of deionized water for three times. The extracted product of the benzoxazine
(I) was dried using anhydrous sodium sulfate (Ajax Finechem, Wollongong, Australia).
The anhydrous sodium sulfate was removed by decantation. Then, the dichloromethane
solvent was removed by a rotary evaporator and consequently, the viscous brown liquid of
the benzoxazine (I) was obtained.

2.2. Single-Crystal X-ray Diffraction (SC-XRD)

Colorless crystals of the benzoxazine (I) were obtained after leaving the viscous liquid
at ambient atmosphere for several months. A single crystal of the benzoxazine (I) was
selected under an optical microscope and mounted on the crystal holder. The diffraction
patterns from the single crystal of the benzoxazine (I) were collected at 100 K on a Bruker
APEX II diffractometer using Mo Kα radiation (λ = 0.71073 Å). Cell refinement and data
reduction were carried out by SAINT [48]. Absorption correction was done by the multiscan
method using SADABS [49]. Using Olex2 [50], the structure was solved by the ShelXT [51]
structure solution program using the intrinsic phasing method and then refined by the
ShelXL [52] refinement package using a least-squares minimization. All nonhydrogen atoms
were treated anisotropically. The C-bound H atoms were placed in idealized positions
(C–H = 0.95–1.00 Å depending on hybridization) and refined as riding atoms. The methyl
groups were allowed to rotate—but not to tip—in order to best fit the electron density. The
constraint Uiso(H) = 1.2 Ueq(carrier) or 1.5 Ueq(methyl C) was applied in all cases. It should
be noted that the absolute structure of the benzoxazine (I) was indeterminate in the present
refinement. The Mercury software package (Version 2020.1) [53] was used to prepare
molecular graphics and materials for publication. A summary of the crystallographic data
for the benzoxazine (I) is given in Table 1.
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Table 1. Crystal data and structure refinement details for the benzoxazine (I).

Crystallographic Data and Structural
Refinement Details Benzoxazine (I)

CCDC number 2015006
Empirical formula C14H15NO2

Formula weight 229.27
Temperature/K 100.0
Crystal system orthorhombic

Space group P212121
a/Å 5.4704(3)
b/Å 9.6887(6)
c/Å 22.2293(16)
α/◦ 90
β/◦ 90
γ/◦ 90

Volume/Å3 1178.18(13)
Z 4

ρcalcg/cm3 1.293
µ/mm−1 0.087

F(000) 488.0
Crystal size/mm3 0.38 × 0.06 × 0.06

Radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/◦ 5.578 to 56.518

Index ranges −7 ≤ h ≤ 4, −12 ≤ k ≤ 7, −28 ≤ l ≤ 29
Reflections collected 6314

Independent reflections 2898 [Rint = 0.0408, Rsigma = 0.0698]
Data/restraints/parameters 2898/0/155

Goodness-of-fit on F2 1.053
Final R indexes [I > = 2σ (I)] R1 = 0.0492, wR2 = 0.0970

Final R indexes [all data] R1 = 0.0710, wR2 = 0.1073
Largest diff. peak/hole/e Å−3 0.25/−0.23

2.3. Characterization of the Benzoxazine (I)

Chemical functional groups of the benzoxazine (I) were examined by Fourier-transform
Raman (FT-Raman) spectroscopy. The FT-Raman spectrum was recorded by the Fourier-
transform Raman spectrophotometer (Horiba, LabRAM HR Evolution model) using a red
laser with a wavelength of 785 nm in the range of 4000–200 cm−1. The acquisition time per
step was set to 5 s, and the spectral data were the average value from 10 accumulated scans.
The FT-IR spectrum was collected by the Fourier-transform infrared spectrophotometer
(Perkin Elmer, Spectrum 100 model), which was carried out in an ATR mode. Both the
background and sample signal were scanned for 100 times using a spectral resolution of
2 cm−1. To elucidate the structure of the benzoxazine (I), nuclear magnetic resonance (NMR
spectrometer, Bruker AVANCE III 500 MHz for 1H and 126 MHz for 13C) was used to
perform 1H-NMR and 13C-NMR studies. The benzoxazine (I) was dissolved in CDCl3 prior
to the NMR investigation. Electrospray-ionization mass spectrometer (ESI-MS, Bruker mi-
crOTOF spectrometer) was employed to measure the molecular weight of the benzoxazine
(I). The powder X-ray diffraction (PXRD) was carried out at Beamline 1.1W (Synchrotron
Light Research Institute, Thailand) using monochromatic X-ray with an energy of 12 keV.

Characterization results: 1H-NMR (500 MHz, CDCl3, δH in ppm): 2.35 (s, 3H), 4.02
(s, 2H), 4.08 (s, 2H), 4.95 (s, 2H), 6.35 (d, J = 3.0 Hz, 1H), 6.44 (dd, J = 3.5, 2.0 Hz, 1H),
6.82 (d, J = 8.5 Hz, 1H), 6.86 (s, 1H), 7.04 (dd, J = 8.0, 2.0 Hz, 1H), 7.15 (d, J = 1.0 Hz, 1H)
(Figure S1, Supplementary Materials); 13C-NMR (126 MHz, CDCl3, δC in ppm): 20.58,
48.22, 49.57, 81.78, 108.91, 110.19, 116.24, 119.28, 127.93, 128.40, 130.01, 142.56, 151.71, 151.75
(Figure S2, Supplementary Materials); ESI-MS: [M + Na]+ = 252.0995 amu (Figure S3,
Supplementary Materials); FT-Raman (cm−1): 3067 (w, Caromatic–H), 2984 (w, Csp

3–H), 2921
(w, Csp

3–H), 2902 (w, Csp
3–H), 1505 (vs, oxazine ring vibration) (Figure S4, Supplemen-
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tary Materials); FT-IR (cm−1): 3084 (w, Caromatic–H), 2983 (w, Csp
3–H), 2921 (w, Csp

3–H),
2903 (w, Csp

3–H), 1500 (vs, oxazine ring vibration) (Figure S5, Supplementary Materials);
PXRD (12 keV): The experimental PXRD diffractogram was similar to the calculated PXRD
data generated from the SC-XRD results (Figure S6, Supplementary Materials).

2.4. Photophysical Studies

The stock solutions of the benzoxazine (I) with the concentration of 2.9 mM in vari-
ous solvents, namely, dioxane, chloroform, ethyl acetate (EtOAc), tetrahydrofuran (THF),
dichloromethane (DCM), N,N-dimethyl formamide (DMF), acetonitrile (ACN), ethanol
(EtOH), methanol (MeOH), and water, were done by dissolving 10 mg of the benzoxazine (I)
in the solvents and then adjusting the volume to 15 mL using a volumetric flask. All organic
solvents used in this work were obtained from Honeywell. The stock solutions were further
diluted to have a concentration of≈20 µM. For UV–Vis absorption and fluorescence studies,
3 mL of the diluted solutions was transferred to a quartz cuvette. Then, the absorption spec-
tra were recorded by a Cary Series UV–Vis–NIR spectrophotometer (Agilent Tech, Santa
Clara, CA, USA) and a PerkinElmer LS55 fluorescence spectrometer, respectively. The pa-
rameters for fluorescence measurement were as follows: excitation wavelengths = 460 nm;
excitation slit widths = 10 nm, and emission slit widths = 10 nm.

2.5. Computational Details

All DFT and TD-DFT calculations were performed using the Gaussian09 program
package [54]. The ground state geometrical structure of the benzoxazine (I) was optimized
without constraints by DFT with the B3LYP functional [55–58] and the 6-311+G(d) basis
set [59,60] using the initial structure obtained from the crystallographic data. This method
gives a good agreement in terms of bond length and bond angle between the X-ray and the
gas-phase optimized structure of benzoxazine (I) with the root mean square displacement
(RMSD) of the bond lengths and bond angles from the X-ray structure of 0.009 Å and 0.8◦,
respectively (see Table S1, Supplementary Materials). However, from the superimposition
of the X-ray and optimized structure (see Figure S7, Supplementary Materials), one can see
the large deviation of atomic positions in the peripheral region (N, C10–C14, and O2). This
probably originates from the molecular packing in the solid crystal. The vertical transition
energies and geometric optimization in the excited state were calculated by the TD-DFT
method at the same level of theory. Both the ground and excited states were calculated
in different solvents, namely dioxane, chloroform, ethyl acetate (EtOAc), tetrahydrofu-
ran (THF), dichloromethane (DCM), N,N-dimethylformamide (DMF), acetonitrile (ACN),
ethanol (EtOH), methanol (MeOH), and water. All true local minima in the ground and
excited states were confirmed by vibrational frequency calculations. The solvent effects
were included by means of the polarized continuum model (PCM) approach [61].

3. Results and Discussion
3.1. Molecular Structure, Crystal Packing, and Hirshfeld Surface Analysis

The molecular structure together with a non-IUPAC labeling scheme of the ben-
zoxazine (I) is displayed in Figure 1. The displacement ellipsoids were drawn at a 50%
probability level. The benzoxazine (I) crystallized in a space group P212121. The tertiary-
amine nitrogen atom (N1) adopted a distorted trigonal pyramidal shape as seen from the
expansion of the angles around N1 atom from the theoretical angle of 107◦, i.e., C9–N1–
C10 = 112.9(2)◦, C8–N1–C9 = 108.6(2)◦, and C8–N1–C10 = 112.0(2)◦ [The sum of C–N–C
bond angles = 333.5◦]. The atoms in the benzoxazine ring (C2–C9/N1/O1) were mostly
arranged in a planar orientation, as seen from the RMS deviation of 0.1555 Å. The most
deviated atom was N1, which had a deviation of 0.387(2) Å from the mean plane of the
benzoxazine [62,63]. Moreover, the peripheral atoms attached to the tertiary N atom (C10–
C14/O2) were also arranged in the same plane (the RMS deviation of 0.0080 Å). The two
mean planes intersected with a dihedral angle of 34.85(1)◦. The attempt to locate the mem-
bers of the 1,3-2H-benzoxazine ring in the same plane made the oxazine ring adapt a half
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chair conformation (the puckering parameters θ = 50.8◦ and ϕ = 254◦) [64], as evidently
observed from the expansion of the C5–O1–C8 and N1–C8–O1 bond angles to 114.9(2)◦ and
114.57(2)◦, respectively. The C–N–C bond angles did not expand as much as the other bond
angles, making the N1 atom to be the most deviated atom from the benzoxazine mean
plane. The bond lengths concerning the oxazine ring were well agreed with the previous
literature’s values [33,65–70].
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Figure 1. Molecular structures and non-IUPAC labeling scheme of the benzoxazine (I) with displace-
ment ellipsoids drawn at the 50% probability level.

In the crystal structure, typical intermolecular hydrogen bonds were not observed
since the benzoxazine (I) does not have a hydrogen atom bonded to highly electronegative
atoms (i.e., F, O, or N). However, several contacts were found in the crystal packing of the
benzoxazine (I) (Figure 2). Viewing down towards the [010] direction, the molecules of
the benzoxazine (I) were related by a translational symmetry linked together via C–H···N
and C–H···π short contacts (Figure 2a). Moreover, the C–H···N contact with the C1

1(5)
graph-set motif [71–73] was constructed from the hydrogen atom from the furan moiety
(H12) and the tertiary-amine nitrogen atom (N1) (Figure 2b). Apart from the C–H···N
contact, the molecules in a similar general position can establish two C–H···π bonds on
the opposite sides of the benzene ring. The first C–H···π interaction was formed from one
of the methylene hydrogens on the carbon that bonded to both the oxygen and nitrogen
heteroatoms (H8B) and the centroid of the benzene ring. The second C–H···π interaction
was set up from one of the methyl hydrogens (H1A) and the centroid of the benzene ring.
These three interactions joined the benzoxazine (I) molecules into an infinite molecular
chain propagating along the [100] direction. Moreover, a C1

1(8) C–H···O interaction with
the slightly longer distance than the C–H···N contact was observed between the benzox-
azine (I) molecules related by a 21-screw axis. Geometries of the intermolecular interactions
in terms of distances, angles, and symmetry codes are listed in Table 2. However, no π–π
interaction was found in the crystal structure of the benzoxazine (I). This might be due
to the steric hindrance from the methyl substituent on the benzene ring and the furan
group blocking the aromatic rings from locating closer together. Therefore, the formation of
C–H···π interactions were more favorable than π–π interactions. The formation of all four
contacts mentioned stabilized the crystal structure of the molecules of the benzoxazine (I).
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ring (C2 to C7). (d) The C13–H13···O1 contact shown in yellow dash line. 

Figure 2. (a) A view down towards a [010] showing a part of an [100] infinite molecular chain of the
C–H···N contact (green dash line) and the C–H···π interactions (orange and magenta dash lines). A
closer look at (b) the C12–H12···N1 contact (green dash line), (c) the C1–H1A···Cg (orange dash line),
and the C8–H8B···Cg (magenta dash line). Note that Cg is the centroid of the benzene ring (C2 to C7).
(d) The C13–H13···O1 contact shown in yellow dash line.
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Table 2. Geometries of C–H···N, C–H···O, and C–H···π interactions (Å, ◦).

D–H···A d(D–H)/Å d(H9A)/Å d(D···A)/Å D–H···A/◦

C12–H12···N1 i 0.95 2.56 3.505(3) 172
C13–H13···O1 ii 0.95 2.62 3.430 143
C8–H8B···Cg

i 0.99 2.61 3.574 165
C1–H1A···Cg

i 0.98 2.95 3.931 175
Note that Cg is the centroid of the benzene ring (C2–C7). Symmetry codes: (i) −1 + x, y, z; (ii) 1 − x, −1/2 + y,
1/2 − z.

The interactions within the crystal of the benzoxazine (I) can be visualized by per-
forming a Hirshfeld surface (HS) analysis [74,75] using Crystal Explorer 17.5 software (the
University of Western Australia, Crawley, Australia) [76]. Hirshfeld surfaces for the ben-
zoxazine (I) mapped over dnorm in the range from −0.155 to +1.157 arbitrary units together
with the shape-index-mapped Hirshfeld surfaces are displayed in Figure 3. As seen from
Figure 3a, the bright red spots near H12 and N1 atoms correspond to the intermolecular
C12–H12···N1 contact (green dash line), while the bright red spot near the H1A atom
and the Cg (C2–C7) centroid of the benzene ring represents the C1–H1A···Cg interaction
(orange circle). Moreover, the remarkable “pothole” on the shape-index-mapped Hirshfeld
surface in between the H1A atom and the Cg (C2–C7) centroid confirms the formation
of the C1–H1A···Cg interaction (orange circle, Figure 3a). The red spots, as well as the
notable “pothole” near H8B atom and Cg (C2–C7) centroid, support the presence of the
C8–H8B···Cg (C–H···π) contact (Figure 3b). The C13–H13···O1 contact can be illustrated by
the red spots near the H13 and O1 atoms (yellow dash line, Figure 3c). As seen from the
shape-index Hirshfeld surfaces, no π···π interactions were observed. The results agree with
the analysis of interactions within the crystal structure discussed in the previous section.

To determine the contribution of each contact within the crystal packing quantitively,
the two-dimensional fingerprint plot was calculated [77]. The full fingerprint plot and
those delineated into H···H, H···C/C···H, H···O/O···H, and H···N/N···H interactions
are illustrated in Figure 4a–e, respectively. Investigating the fingerprint plot shows that
the significant interactions (together with their contributions) in the crystal structure of
the benzoxazine (I) are H···H (58.5%), H···C/C···H (23.2%), H···O/O···H (15.6%), and
H···N/N···H (2.6%) with a total contribution of H-related contacts of 99.9%. Two most
important contacts (H···H contacts and H···C/C···H contacts) are characterized by a single
spike at de + di ' 2.2 Å and a pair of peaks at de + di ' 2.65 Å, respectively. These two
contacts reveal that the molecules of the benzoxazine (I) are majorly held by van der Waals
forces as well as C–H···π interactions. The H···O/O···H contacts are viewed as a pair of
sharp peaks at de + di ' 2.5 Å, while the pair of sharp peaks for the H···N/N···H contacts
are located at de + di ' 2.4 Å. The results confirm the presence of the C–H···N interactions
and the C–H···O contacts with a relatively longer distance than C–H···N interactions. The
other contacts apart from the H-related contacts can be counted as a negligible effect on the
crystal packing since their total contribution is only 0.1%.
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3.2. Photophysical Studies

The absorption and emission spectra of the benzoxazine (I) were recorded in the
solvents with various polarities (Figure 5). The relevant parameters were tabulated in
Table 3. Herein, the benzoxazine (I) shows a broad absorption peak with various intensities
in the range of 282–291 nm and a broad emission peak in the range of 297–313 nm. The
absorption and emission maxima were varied with different types of solvents depending
on the polarity and proticity of the solvents. The differences in emission spectra were more
pronounced compared to the ones in the absorption spectra, which suggests the higher
polarity of the excited state than the ground state [78]. According to the limited studies
on the luminescence properties of dihydrobenzoxazines, the fluorescence characteristics
can be explained by comparing them to the other benzoxazole derivatives instead. The
benzoxazine (I) showed an emission peak in most of the solvent studied in this work;
however, no fluorescence was observed in the chloroform solution upon the excitation of
the wavelength of 284 nm. Generally, the maxima are blue-shifted in apolar solvents, while
they are red-shifted in polar protic solvents [78]. However, there are some benzoxazole
derivatives of which fluorescence signals are not very sensitive to the alteration of solvent
polarities [79]. In our case, the solution of benzoxazine (I) in DMF exhibited the most
blued-shift emission peak (the lowest Stoke shift) but the highest quantum yield. This
result agrees well with the other derivatives reported in the literature [80], which could
be ascribed to the intermolecular forces between benzoxazine (I) and DMF. Those forces
include the strong interactions between the polar aprotic DMF solvent via the partially
negative charge on the oxygen atom of the C=O group and the partially positive charge
on the hydrogen of the –O–CH2–N– moiety in the benzoxazine (I). In the case of the
solution in ACN, those intermolecular forces are weaker since the N atom of ACN is less
electronegative than the O atom of DMF.
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estimated by using quinine sulfate in 0.1 M H2SO4 as a standard (Φf = 0.58), eε = molar absorptivity, and
NF = nonfluorescence.

3.3. Computational Study

To gain a better understanding of the absorption and emission spectra of the benzox-
azine (I), quantum chemical calculations were performed. DFT and TD-DFT calculations at
the B3LYP level of theory using the 6-311+G(d) basis set were computed to visualize the
frontier molecular orbitals (FMOs) and to optimize the geometrical structures of ground
states and excited states of the benzoxazine (I), respectively. The calculated absorption
and emission characteristics of the benzoxazine (I) in the solvent with various polarities
are listed in Table 4. In all solvent systems, the values of λmax for UV–Vis absorption and
fluorescence emission from TD-DFT calculations are around 0.3 eV above the experimental
values. It should be noted that TD-DFT is known to give overestimated excitation energies
(up to 1 eV) [81]. Therefore, one is generally interested in the relative values rather than the
absolute values. All absorption peaks were found to be involved in the electronic transition
from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular
orbital (LUMO), H→L, which can be assigned to a π→π* transition. The proposed mechanism
for the absorption and emission process of the benzoxazine (I) is depicted in Figure 6. The
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difference between absorption and emission is observed due to the vibrational relaxation
causing the Stoke shift of about 30 nm, which is in a good agreement with the experimental
results. As we closely considered the FMO regarding the absorption process, it is worth
noting that the HOMO of the ground state has a characteristic of the whole molecule as
clearly seen from the presence of the electron orbitals located on almost every atom in the
benzoxazine (I) molecule. On the other hand, the LUMO shows only the characteristic
of the electronic structure belonging to the benzene group. For the emission process, the
feature of LUMO resembles the one observed in the absorption process. However, the
HOMO for the emission process is attributed to the electronic orbitals on the benzoxazine
core structure, excluding the THF pedant group. Figure 7 displays the optimized struc-
tures of the ground and excited states at the PCM(acetonitrile)/B3LYP/6-311+G(d) and
PCM(acetonitrile)/TD-B3LYP/6-311+G(d) levels of theory, respectively. The corresponding
optimized structural parameters, e.g., bond lengths and dihedral angles, are tabulated in
Table S2 and Table S3 (Supplementary Materials). It was seen that the bond lengths of
the structures at the ground state and the excited state are remarkably similar. However,
the dihedral angles involving in the benzoxazine core structure are significantly different.
Specifically, the dihedral angles deviated from the planarity up to 10◦. This might imply
the reason why the characteristic of the LUMO is solely on the benzene moiety. Therefore,
we can conclude that the fluorescence property of the benzoxazine (I) is the electronic tran-
sition from LUMO possessing the main characteristic of benzene moieties to the HOMO
possessing the main feature of the benzoxazine ring.

Table 4. Calculated UV–Vis absorption and fluorescence emission for the benzoxazine (I) in different solvents.

Solvent ε

Absorption Emission

Energy
nm (eV) ƒ a Electronic

Transition b
Energy

nm (eV) ƒ a Electronic
Transition b

Dioxane 2.210 262 (4.73) 0.0637 S0→S1 (H→L) 290 (4.21) 0.1013 S1→S0 (L→H)
Chloroform 4.711 262 (4.74) 0.0648 S0→S1 (H→L) 291 (4.26) 0.1246 S1→S0 (L→H)

EtOAc 5.987 261 (4.74) 0.0621 S0→S1 (H→L) 290 (4.27) 0.1304 S1→S0 (L→H)
THF 7.426 261 (4.74) 0.0633 S0→S1 (H→L) 291 (4.26) 0.1349 S1→S0 (L→H)
DCM 8.930 261 (4.74) 0.0641 S0→S1 (H→L) 291 (4.26) 0.1382 S1→S0 (L→H)
DMF 37.219 261 (4.75) 0.0643 S0→S1 (H→L) 291 (4.26) 0.1525 S1→S0 (L→H)
ACN 35.688 261 (4.76) 0.0610 S0→S1 (H→L) 291 (4.27) 0.1523 S1→S0 (L→H)
EtOH 24.852 261 (4.75) 0.0616 S0→S1 (H→L) 291 (4.27) 0.1501 S1→S0 (L→H)
MeOH 32.613 261 (4.76) 0.0603 S0→S1 (H→L) 290 (4.27) 0.1518 S1→S0 (L→H)
Water 78.355 261 (4.76) 0.0605 S0→S1 (H→L) 291 (4.27) 0.1552 S1→S0 (L→H)

a Oscillator strength. b H, HOMO (highest occupied molecular orbital) and L, LUMO (lowest unoccupied molecular orbital).
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the PCM(acetonitrile)/B3LYP/6-311+G(d) and PCM(acetonitrile)/TD-B3LYP/6-311+G(d) levels of
theory, respectively.

4. Conclusions

This work reported the successful synthesis of the novel benzoxazine monomer—the
so-called 3-(furan-2-ylmethyl)-6-methyl-3,4-dihydro-2H-benzo[e][1,3]oxazine, otherwise
known as benzoxazine (I)—from a one-pot Mannich reaction, and the investigation of its
photophysical properties was also carried out. The X-ray crystallography disclosed that
the benzoxazine moiety tried to arrange its atoms as planar as possible by expanding the
C–O–C and N–C–O bonds. The C–N–C bonds were not as deviated as the C–O–C and
N–C–O bonds. For the C–H···N interactions, one of the furan hydrogens and an amine
nitrogen atom joined between the benzoxazine (I) molecules, creating a C1

1(5) molecule
chain. Two types of C–H···π short were observed on the opposite sides of the benzene ring.
The first C–H···π contact was formed between the centroid of the benzene ring (Cg) and
the methylene group of the O–CH2–N of the oxazine ring. The second C–H···π contact was
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set up from the centroid of the benzene ring and one of the H atoms in the tetrahydrofuran
group. Apart from the C–H···N and C–H···π interactions, the C–H···O interaction was also
established between different molecules of the benzoxazine (I) related by a 21-screw axis,
resulting in a C1

1(8) supramolecular chain. The absorption and emission spectra of the
benzoxazine (I) in the different solvents were collected and compared with DFT calculated
results, showing a broad absorption peak around 282–291 nm and a broad emission peak
around 297–313 nm. A significant blued shift was observed in DMF solution because of
the unique intermolecular forces between benzoxazine (I) and DMF. The absorption peak
was attributed to the HOMO→LUMO transition, where the HOMO had a characteristic of
the whole molecule. On the contrary, the LUMO has a feature of the benzene ring only. In
other word, the fluorescence phenomenon was occurred via the electronic transition from
LUMO with a main contribution from benzene characteristics toward HOMO, possessing
whole benzoxazine (I) contribution.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11050568/s1. Figure S1: 1H-NMR spectrum of the benzoxazine (I). Figure S2: 13C-NMR
spectrum of the benzoxazine (I). Figure S3: ESI–MS spectrum of the benzoxazine (I). Figure S4:
Raman spectrum of the benzoxazine (I). Figure S5: FT-IR spectrum of the benzoxazine (I). Figure S6:
Comparing powder X-ray diffraction pattern (PXRD) of the benzoxazine (I), 3-[(furan-2-yl)methyl]-
6-methyl-3,4-dihydro-2H-1,3-benzoxazine, measured by using a monochromatic synchrotron X-
ray with an energy of 12 keV (wavelength 1.0332 Å) plotted in blue color with respect to the
simulated PXRD from cif file collected from single crystal X-ray crystallography (black plot). Figure S7:
Superimposition of the X-ray (with atom labels) and gas-phase optimized (white color) structures
of the benzoxazine (I). Table S1: Selected bond lengths, bond angles, and dihedral angles of the
optimized ground state structures of the benzoxazine (I) in gas phase compared with that in solid
crystals. Table S2: Selected bond lengths and dihedral angles of the optimized ground state (GS) and
excited state (ES) structures of the benzoxazine (I) in different solvents (dioxane, chloroform, EtOAc,
THF and DCM). Table S3: Selected bond lengths and dihedral angles of the optimized ground state
(GS) and excited state (ES) structures of the benzoxazine (I) in different solvents (EtOH, MeOH, ACN,
DMF and water). Reported cartesian coordinates of the optimized structures of the benzoxazine (I) at
ground state and excited state.
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62. Rivera, A.; Camacho, J.; Ríos-Motta, J.; Kučeraková, M.; Dušek, M. 3,3′-(Ethane-1,2-diyl)bis(6-methoxy-3,4-dihydro-2H-1,3-
benzoxazine) monohydrate. Acta Cryst. 2012, E68, o2734. [CrossRef] [PubMed]

63. Arendt-Pindel, A.; Marszałek-Harych, A.; Gȩbarowska, E.; Gȩbarowski, T.; Jȩdrzkiewicz, D.; Plaskowska, E.; Zalewski, D.;
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