Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = bioactive ceramic coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
60 pages, 1741 KB  
Review
State-of-the-Art Zirconia and Glass–Ceramic Materials in Restorative Dentistry: Properties, Clinical Applications, Challenges, and Future Perspectives
by Sorin Gheorghe Mihali and Adela Hiller
Appl. Sci. 2025, 15(23), 12841; https://doi.org/10.3390/app152312841 - 4 Dec 2025
Viewed by 916
Abstract
Ceramic materials have gained outstanding popularity in restorative and prosthetic dentistry due to their combination of high biocompatibility, mechanical durability, and natural esthetics. Among the most important developments in this field are the use of zirconia- and glass-based ceramics for various applications. Zirconia [...] Read more.
Ceramic materials have gained outstanding popularity in restorative and prosthetic dentistry due to their combination of high biocompatibility, mechanical durability, and natural esthetics. Among the most important developments in this field are the use of zirconia- and glass-based ceramics for various applications. Zirconia ceramics, especially yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), are famous for their high mechanical strength, transformation toughening, chemical stability, and great biocompatibility. Newer generations like 4Y/5Y-PSZ zirconia have addressed the demand for higher translucency, meeting esthetic requirements. Glass–ceramics, including lithium disilicate and leucite-reinforced systems, are preferred for their optical properties, etchability, and strong adhesive bonding. Their microstructure provides a balance between strength and esthetics, supporting minimally invasive restorations with long-term clinical success. Both zirconia and glass–ceramics exhibit favorable biological responses, including low plaque accumulation and soft tissue compatibility. The goal of ongoing research is to overcome limitations, such as low-temperature degradation, bonding limitations, and surface durability. Also, to improve mechanical performance and functional integration, new approaches include 3D printing, graded materials, nanostructuring, and bioactive coatings. This review aims to provide a comprehensive overview of the composition, properties, clinical applications, current limitations, and future perspectives of zirconia- and glass-based ceramics in restorative dentistry. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

31 pages, 5187 KB  
Article
Development and Characterization of Biogenic Hydroxyapatite Coatings Derived from Crab Shell Waste on Ti6Al4V Substrates
by Yago Antonio de Lima Guedes, Maurício Maia Ribeiro, Douglas Santos Silva, Raí Felipe Pereira Junio, Roberto Paulo Barbosa Ramos, Sergio Neves Monteiro, Elza Monteiro Leão Filha and Jean da Silva Rodrigues
Materials 2025, 18(22), 5222; https://doi.org/10.3390/ma18225222 - 18 Nov 2025
Cited by 1 | Viewed by 474
Abstract
In this work, we developed and characterized a hydroxyapatite (HA) ceramic coating derived from Ucides cordatus crab-shell waste and applied it onto Ti–Al–V titanium substrates for biomedical use. Substrate analysis confirmed an α + β two-phase microstructure and Rockwell C hardness of ~35 [...] Read more.
In this work, we developed and characterized a hydroxyapatite (HA) ceramic coating derived from Ucides cordatus crab-shell waste and applied it onto Ti–Al–V titanium substrates for biomedical use. Substrate analysis confirmed an α + β two-phase microstructure and Rockwell C hardness of ~35 HRC; optical emission spectrometry indicated a non-conforming Ti–6Al–4V composition (Al slightly above and V slightly below ASTM F136-18 limits), with expected α-phase predominance. Aqueous synthesis of biogenic HA used CaO (from 800 °C calcined shells) reacted with β-tricalcium phosphate (β-Ca3(PO4)2), followed by deposition onto Ti–Al–V surfaces prepared with or without a thermochemical treatment that homogenized roughness (Ra ≈ 0.587 µm). The coatings were continuous, ~95–98 µm thick, and showed good qualitative adhesion. Scanning Electron Microscopy (SEM) revealed porous, nanocrystalline, acicular morphologies typical of biogenic apatite’s. Energy-Dispersive X-ray Spectroscopy (EDS) yielded Ca/P ≈ 1.85–1.88, while X-ray Fluorescence (XRF) indicated Ca-enrichment relative to stoichiometric HA. X-ray Diffraction (XRD) confirmed a predominantly hexagonal HA phase with high crystallinity. These results demonstrate a technically and environmentally feasible route to bioactive coatings using marine biowaste, aligning low-cost, local waste valorization with functional performance on titanium implants. Full article
Show Figures

Graphical abstract

19 pages, 7737 KB  
Article
Fabrication of Bioactive, 3D-Printed, Porous, Yttria-Stabilized Zirconia via Mg/Zn-Incorporated Modified Simulated Body Fluid Pretreatment
by Yuwei Wu, Shigeomi Takai and Takeshi Yabutsuka
Int. J. Mol. Sci. 2025, 26(22), 10950; https://doi.org/10.3390/ijms262210950 - 12 Nov 2025
Viewed by 401
Abstract
Yttria-stabilized zirconia (YSZ) has attracted attention as a ceramic implant material owing to its excellent mechanical strength, biocompatibility, and aesthetic properties. However, YSZ is bioinert and lacks the ability to directly bond with bone. This study aims to enhance the bioactivity of 3D-printed [...] Read more.
Yttria-stabilized zirconia (YSZ) has attracted attention as a ceramic implant material owing to its excellent mechanical strength, biocompatibility, and aesthetic properties. However, YSZ is bioinert and lacks the ability to directly bond with bone. This study aims to enhance the bioactivity of 3D-printed porous YSZ through modified simulated body fluid (m-SBF) pretreatments. The porous YSZ substrates fabricated by fused deposition modeling were first etched with hydrofluoric acid (HF) to increase the surface roughness, followed by immersion in CO32−, Mg2+, and/or Zn2+ ion-incorporated m-SBFs. Among the tested solutions, the apatite coating formed in Mg2+- and Zn2+-containing m-SBF within one day, exhibiting uniform precipitation and a reduced tetragonal-to-monoclinic (t→m) transition. The incorporated Mg2+ and Zn2+ ions were successfully detected on the apatite coating, with Mg/Ca and Zn/Ca ratios of approximately 4.82% and 3.33%, respectively. Mg2⁺ is known to stimulate osteogenesis, while Zn2⁺ exhibits antibacterial activity. Furthermore, compared with standard SBF under high-temperature and high-pH conditions, the m-SBF induced markedly less t→m phase transition on YSZ substrates, suggesting that m-SBF, as a biomimetic medium for imparting bioactivity, provides a more suitable environment for YSZ substrates. This study demonstrates that HF surface treatment combined with Mg2+- and Zn2+-containing m-SBF pretreatment effectively imparts bioactivity to 3D-printed YSZ, offering a promising approach for next-generation osteoconductive ceramic implants. Full article
(This article belongs to the Special Issue Application of Biotechnology to Dental Treatment)
Show Figures

Figure 1

12 pages, 5297 KB  
Article
In Situ Hydrogel Growth on Flame-Sprayed Hydroxyapatite (HA)/TiO2-Coated Stainless Steel via TiO2-Photoinitiated Polymerization
by Komsanti Chokethawai, Nattawit Yutimit, Burin Boonsri, Parkpoom Jarupoom, Ketmanee Muangchan, Sahadsawat Tonkaew, Pongpen Kaewdee, Sujitra Tandorn and Chamnan Randorn
Gels 2025, 11(10), 837; https://doi.org/10.3390/gels11100837 - 18 Oct 2025
Viewed by 496
Abstract
Hydroxyapatite (HA) coatings improve implant bioactivity but suffer from brittleness and limited functionality. Here, we report a hybrid coating strategy combining flame-sprayed HA/TiO2 with in situ hydrogel growth. TiO2 incorporated into the HA matrix acted as a photocatalytic initiator for acrylamide [...] Read more.
Hydroxyapatite (HA) coatings improve implant bioactivity but suffer from brittleness and limited functionality. Here, we report a hybrid coating strategy combining flame-sprayed HA/TiO2 with in situ hydrogel growth. TiO2 incorporated into the HA matrix acted as a photocatalytic initiator for acrylamide polymerization under UV. Unlike conventional hydrogel coatings that require added photoinitiators or separate surface modification steps, TiO2 incorporated into the HA layer serves as a built-in photocatalytic initiator, enabling direct polymerization of acrylamide monomers on the sprayed surface. The resulting HA/TiO2–hydrogel coatings exhibited a continuous hydrogel layer with intimate contact to the ceramic surface, as evidenced by SEM cross-sections and elemental mapping. The HA/TiO2 1% coating produced a continuous coverage in close contact with the surface, while excessive TiO2(5%) led to uncontrolled hydrogel growth and partial coating failure. SEM cross-sections revealed a dense, well-adhered coating with homogeneously distributed Ca, P, O, and finely dispersed Ti. Upon immersion in simulated body fluid (SBF), submicron globular deposits progressively developed on the coating surface. EDS showed an increase in Ca/P ratio from ~1.66 (as-sprayed) to ~1.92 (14 days). These findings highlight a straightforward approach for combining flame-sprayed ceramics with photocatalytic hydrogel growth, providing a practical route toward multifunctional implant surface modification. Full article
(This article belongs to the Special Issue Hydrogels for Bone Regeneration (2nd Edition))
Show Figures

Graphical abstract

17 pages, 5705 KB  
Article
Self-Assembled Monolayers of Various Alkyl-Phosphonic Acids on Bioactive FHA Coating for Improving Surface Stability and Corrosion Resistance of Biodegradable AZ91D Mg Alloy
by Chung-Wei Yang and Peng-Hsiu Li
Materials 2025, 18(19), 4633; https://doi.org/10.3390/ma18194633 - 8 Oct 2025
Viewed by 775
Abstract
The aim of present study is to deposit protective coatings with various surface chemical states on AZ91D Mg alloy. Hydrothermal bioactive ceramic coatings are performed with a surface modification by the chemical bonding of self-assembled monolayers (SAM). The electrochemical corrosion behaviors of various [...] Read more.
The aim of present study is to deposit protective coatings with various surface chemical states on AZ91D Mg alloy. Hydrothermal bioactive ceramic coatings are performed with a surface modification by the chemical bonding of self-assembled monolayers (SAM). The electrochemical corrosion behaviors of various surface-coated AZ91D alloy within DMEM cell culture medium related to their surface chemical states are evaluated through microstructure observations, XPS surface chemical bonding analysis, static contact angles measurements, potentiodynamic polarization curves, and immersion tests. XRD and high resolution XPS of F 1s analysis results show that the hydrothermal FHA coating with a phase composition of Ca10(PO4)6(OH)F can be effectively and uniformly deposited on the AZ91D alloy. FHA-coated AZ91D displays better anti-corrosion performances and lower degradation rates than those of uncoated AZ91D alloy in the DMEM solution. Through the high resolution XPS analysis of O 1s and P 2p spectra, it is demonstrated that 1-butylphosphonic acid (BP), 1 octylphosphonic acid (OP), and dodecylphosphonic acid (DP) molecules can be effectively bonded on the FHA surface by a covalent bond to form SAM. BP/OP/DP-SAM specimens display increased static contact angles to show a hydrophobic surface. It demonstrates that the SAM surface treatment can further enhance the corrosion resistance of FHA-coated AZ91D in the DMEM solution. After 2–16 days in vitro immersion tests in the DMEM, the surface SAM-bonded hydrophobic BP/OP/DP-SAM layers can effectively inhibit and reduce the penetration of DMEM into FHA coating. Long alkyl chains of the dodecylphosphonic acid (DP) SAM represents superior enhancing effects on the reduction of corrosion properties and weight loss. Full article
(This article belongs to the Special Issue Corrosion Resistance and Protection of Metal Alloys)
Show Figures

Figure 1

25 pages, 9472 KB  
Article
Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite
by Leszek Borkowski, Krzysztof Palka and Lukasz Pajchel
Materials 2025, 18(19), 4538; https://doi.org/10.3390/ma18194538 - 29 Sep 2025
Cited by 1 | Viewed by 854
Abstract
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its [...] Read more.
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its various forms, hydroxyapatite (HAP) is the most widely used, owing to its natural occurrence in human and animal hard tissues. An emerging area of research involves the use of fluoride-substituted apatite, particularly fluorapatite (FAP), which can serve as a direct fluoride source at the implant site, potentially offering several biological and therapeutic advantages. However, substituting HAP with FAP may lead to unforeseen changes in material behavior due to the differing physicochemical properties of these two calcium phosphate phases. This study investigates the effects of replacing hydroxyapatite with fluorapatite in ceramic–polymer composite materials incorporating β-1,3-glucan as a bioactive polymeric binder. The β-1,3-glucan polysaccharide was selected for its proven biocompatibility, biodegradability, and ability to form stable hydrogels that promote cellular interactions. Nitrogen adsorption analysis revealed that FAP/glucan composites had a significantly lower specific surface area (0.5 m2/g) and total pore volume (0.002 cm3/g) compared to HAP/glucan composites (14.15 m2/g and 0.03 cm3/g, respectively), indicating enhanced ceramic–polymer interactions in fluoride-containing systems. Optical profilometry measurements showed statistically significant differences in profile parameters (e.g., Rp: 134 μm for HAP/glucan vs. 352 μm for FAP/glucan), although average roughness (Ra) remained similar (34.1 vs. 27.6 μm, respectively). Microscopic evaluation showed that FAP/glucan composites had smaller particle sizes (1 μm) than their HAP counterparts (2 μm), despite larger primary crystal sizes in FAP, as confirmed by TEM. XRD analysis indicated structural differences between the apatites, with FAP exhibiting a reduced unit cell volume (524.6 Å3) compared to HAP (528.2 Å3), due to substitution of hydroxyl groups with fluoride ions. Spectroscopic analyses (FTIR, Raman, 31P NMR) confirmed chemical shifts associated with fluorine incorporation and revealed distinct ceramic–polymer interfacial behaviors, including an upfield shift of PO43− bands (964 cm−1 in FAP vs. 961 cm−1 in HAP) and OH vibration shifts (3537 cm−1 in FAP vs. 3573 cm−1 in HAP). The glucan polymer showed different hydrogen bonding patterns when combined with FAP versus HAP, as evidenced by shifts in polymer-specific bands at 888 cm−1 and 1157 cm−1, demonstrating that fluoride substitution significantly influences ceramic–polymer interactions in these bioactive composite systems. Full article
Show Figures

Figure 1

30 pages, 2009 KB  
Review
Innovative Smart Materials in Restorative Dentistry
by Roxana Ionela Vasluianu, Livia Bobu, Iulian-Costin Lupu, Magda Antohe, Bogdan Petru Bulancea, Antonia Moldovanu, Ovidiu Stamatin, Catalina Cioloca Holban and Ana Maria Dima
J. Funct. Biomater. 2025, 16(9), 318; https://doi.org/10.3390/jfb16090318 - 30 Aug 2025
Cited by 1 | Viewed by 2373
Abstract
The growing challenge of biofilm-associated infections in dentistry necessitates advanced solutions. This review highlights the potential of smart bioactive and antibacterial materials—bioactive glass ceramics (BGCs), silver nanoparticle (AgNP)-doped polymers, and pH-responsive chitosan coatings—in transforming restorative dentistry. BGCs reduce biofilms by >90% while promoting [...] Read more.
The growing challenge of biofilm-associated infections in dentistry necessitates advanced solutions. This review highlights the potential of smart bioactive and antibacterial materials—bioactive glass ceramics (BGCs), silver nanoparticle (AgNP)-doped polymers, and pH-responsive chitosan coatings—in transforming restorative dentistry. BGCs reduce biofilms by >90% while promoting bone integration. AgNP-polymers effectively combat S. mutans and C. albicans but require controlled dosing (<0.3 wt% in PMMA) to avoid cytotoxicity. Chitosan coatings enable pH-triggered drug release, disrupting acidic biofilms. Emerging innovations like quaternary ammonium compounds, graphene oxide hybrids, and 4D-printed hydrogels offer on-demand antimicrobial and regenerative functions. However, clinical translation depends on addressing cytotoxicity, standardizing antibiofilm testing (≥3-log CFU/mL reduction), and ensuring long-term efficacy. These smart materials pave the way for self-defending restorations, merging infection control with tissue regeneration. Future advancements may integrate AI-driven design for multifunctional, immunomodulatory dental solutions. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

38 pages, 7741 KB  
Review
A Comprehensive Literature Review of Total Hip Arthroplasty (THA): Part 1—Biomaterials
by Chiara Morano, Salvatore Garofalo, Paolo Bertuccio, Agata Sposato, Irene Zappone and Leonardo Pagnotta
J. Funct. Biomater. 2025, 16(5), 179; https://doi.org/10.3390/jfb16050179 - 14 May 2025
Cited by 7 | Viewed by 7308
Abstract
The rapid advancement of materials science has revolutionized total hip arthroplasty (THA), a critical orthopedic procedure aimed at restoring mobility and improving patient quality of life. This review investigates the evolution of biomaterials used in THA, analyzing their mechanical, biological, and chemical properties. [...] Read more.
The rapid advancement of materials science has revolutionized total hip arthroplasty (THA), a critical orthopedic procedure aimed at restoring mobility and improving patient quality of life. This review investigates the evolution of biomaterials used in THA, analyzing their mechanical, biological, and chemical properties. The study outlines the transition from early natural materials to modern metals, polymers, and ceramics, highlighting their benefits and limitations in clinical applications. Particular emphasis is placed on the development of advanced materials such as highly cross-linked polyethylene (HXLPE), zirconia-toughened alumina (ZTA), and tantalum alloys (Ta), which demonstrate enhanced biocompatibility, wear resistance, and longevity. By examining emerging trends, including bioactive coatings and nanotechnology, this paper aims to provide a comprehensive understanding of current challenges and future directions in material selection for hip prostheses, ultimately aiming to minimize annual revision rates and improve long-term outcomes. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Graphical abstract

23 pages, 6254 KB  
Article
Influence of Deposition Temperature on Microstructure and Properties of Tantalum Oxide Sputtered Coatings
by Maria P. Nikolova and Iliyan Tzvetkov
Materials 2025, 18(9), 1895; https://doi.org/10.3390/ma18091895 - 22 Apr 2025
Viewed by 1587
Abstract
To increase the wear and corrosion resistance of (α + β) titanium-aluminium-vanadium (Ti6Al4V) alloy, ceramic tantalum oxide coatings were deposited by direct current (DC) magnetron sputtering at three different substrate temperatures—400, 450, and 500 °C. The crystallographic structure, surface morphology, chemical compositions, film [...] Read more.
To increase the wear and corrosion resistance of (α + β) titanium-aluminium-vanadium (Ti6Al4V) alloy, ceramic tantalum oxide coatings were deposited by direct current (DC) magnetron sputtering at three different substrate temperatures—400, 450, and 500 °C. The crystallographic structure, surface morphology, chemical compositions, film adhesion, and hardness of the coatings were described using XRD, SEM, EDS, scratch tests, and microhardness measurements. The samples’ ability to withstand corrosion was assessed using electrochemical studies. Results revealed that thin films have an amorphous or crystalline structure dependent on temperature. The film’s thicknesses varied between 560 and 600 nm. With the increase in deposition temperature, the hardness of the film rose. All oxide coatings were tightly adherent to the titanium alloy substrate, and critical force increased from about 8.6 up to 20 N when the temperature rose from 400 to 500 °C. During the polarisation investigations, after 1 h of immersion, a drop in current density (jcorr) verified an improvement in the corrosion resistance of the amorphous and well-crystalline coatings. A two-layer model of the surface film accurately describes the coated systems’ electrochemical behaviour. However, according to the EIS analysis, the well-crystalline film deteriorates greatly, whereas the amorphous film prevents penetration during the 7-day immersion test in SBF. The wettability tests demonstrated the hydrophilic nature of the coatings, and after seven days, the mineralisation of calcium phosphate proves the coatings become bioactive in simulated bodily fluid (SBF). Thus, we produced films of tantalum oxide, which, with the proper deposition parameters, may prove to be appropriate surfaces for titanium-based implant bio-applications. Full article
Show Figures

Figure 1

21 pages, 8600 KB  
Article
Influence of Detonation Spraying Parameters on the Microstructure and Mechanical Properties of Hydroxyapatite Coatings
by Zhuldyz Sagdoldina, Marcin Kot, Daryn Baizhan, Dastan Buitkenov and Laila Sulyubayeva
Materials 2024, 17(21), 5390; https://doi.org/10.3390/ma17215390 - 4 Nov 2024
Cited by 3 | Viewed by 1485
Abstract
The process of osteointegration depends significantly on the surface roughness, structure, chemical composition, and mechanical characteristics of the coating. In this regard, an important direction in the development of medical materials is the development of new techniques of surface modification and the creation [...] Read more.
The process of osteointegration depends significantly on the surface roughness, structure, chemical composition, and mechanical characteristics of the coating. In this regard, an important direction in the development of medical materials is the development of new techniques of surface modification and the creation of bioactive ceramic coatings. Calcium-phosphate materials based on hydroxyapatite have been proposed as bioactive ceramic coatings on titanium implants for the effective acceleration of bone tissue healing. To obtain bioactive ceramic coatings, pulse power sources are best suited, namely detonation spraying, in which the energy of the explosion of gas mixtures is used as a source of pulse action. The pulse mode of operation in the detonation spraying method is preferable for the formation of bioactive ceramic coatings. It provides a high velocity of hydroxyapatite particles, which promotes their effective fixation on the titanium substrate, while minimizing the heating of the material. This approach preserves the substrate structure and improves the coating adhesion. Four different types of coatings with varying O2/C2H2 molar ratios, ranging from 2.6 to 3.7, were obtained using detonation spraying. Powders and obtained coatings of hydroxyapatite were studied by Raman spectroscopy and XRD structural analysis. The results of XRD phase analysis showed the partial conversion of the hydroxyapatite phase to the α-tricalcium phosphate (α-TCP) phase during the detonation spraying process. The results obtained by Raman spectroscopy indicate that hydroxyapatite is the main phase in coatings. All hydroxyapatite-based coatings exhibited hydrophobic properties, which was confirmed by contact-angle values above 90° in wettability tests, characteristic of hydrophobic surfaces. The adhesive strength of the coatings was measured by the scratch test method. Tribological tests were conducted using the ball-on-disk method under both dry conditions and in Ringer’s solution. This approach enabled the evaluation of wear resistance and friction coefficient of the coatings in different environments, simulating both lubrication-free conditions and those resembling physiological environments. Full article
(This article belongs to the Special Issue Advances in Tribological and Other Functional Properties of Materials)
Show Figures

Figure 1

20 pages, 9148 KB  
Article
On the Role of Substrate in Hydroxyapatite Coating Formation by Cold Spray
by John Henao, Astrid Giraldo-Betancur, Carlos A. Poblano-Salas, Diego German Espinosa-Arbelaez, Jorge Corona-Castuera, Paola Andrea Forero-Sossa and Rene Diaz-Rebollar
Coatings 2024, 14(10), 1302; https://doi.org/10.3390/coatings14101302 - 12 Oct 2024
Cited by 3 | Viewed by 2001
Abstract
The deposition of agglomerated hydroxyapatite (HAp) powders by low-pressure cold spray has been a topic of interest in recent years. Key parameters influencing the deposition of HAp powders include particle morphology and impact kinetic energy. This work examines the deposition of HAp powders [...] Read more.
The deposition of agglomerated hydroxyapatite (HAp) powders by low-pressure cold spray has been a topic of interest in recent years. Key parameters influencing the deposition of HAp powders include particle morphology and impact kinetic energy. This work examines the deposition of HAp powders on various metal surfaces to assess the impact of substrate properties on the formation of HAp deposits via cold spray. The substrates studied here encompass metals with varying hardness and thermal conductivities, including Al6061, Inconel alloy 625, AISI 316 stainless steel, H13 tool steel, Ti6Al4V, and AZ31 alloy. Single-track experiments offer insights into the initial interactions between HAp particles and different substrate surfaces. In this study, the results indicate that the ductility of the substrate may enhance HAp particle deposition only at the first deposition stages where substrate/particle interaction is the most critical factor for deposition. Features on the substrate associated with the first deposition sprayed layer include localized substrate deformation and the formation of clusters of HAp agglomerates, which aid in HAp deposition. Furthermore, after multiple spraying passes on the various metallic surfaces, deposition efficiency was significantly reduced when the build-up process of HAp coatings shifted from ceramic/metal to ceramic/ceramic interactions. Overall, this study achieved agglomerated HAp deposits with high deposition efficiencies (30–60%) through single-track experiments and resulted in the preparation of HAp coatings on various substrates with thickness values ranging from 24 to 53 µm. These coatings exhibited bioactive behavior in simulated body fluid. Full article
(This article belongs to the Special Issue Development of Hydroxyapatite Coatings)
Show Figures

Figure 1

13 pages, 4708 KB  
Article
Preparation and Characterization of Nanofiber Coatings on Bone Implants for Localized Antimicrobial Activity Based on Sustained Ion Release and Shape-Preserving Design
by Yubao Cao, Hong Wang, Shuyun Cao, Zaihao Liu and Yanni Zhang
Materials 2024, 17(11), 2584; https://doi.org/10.3390/ma17112584 - 28 May 2024
Cited by 3 | Viewed by 1352
Abstract
Titanium (Ti), as a hard tissue implant, is facing a big challenge for rapid and stable osseointegration owing to its intrinsic bio-inertness. Meanwile, surface-related infection is also a serious threat. In this study, large-scale quasi-vertically aligned sodium titanate nanowire (SNW) arrayed coatings incorporated [...] Read more.
Titanium (Ti), as a hard tissue implant, is facing a big challenge for rapid and stable osseointegration owing to its intrinsic bio-inertness. Meanwile, surface-related infection is also a serious threat. In this study, large-scale quasi-vertically aligned sodium titanate nanowire (SNW) arrayed coatings incorporated with bioactive Cu2+ ions were fabricated through a compound process involving acid etching, hydrothermal treatment (HT), and ion exchange (IE). A novel coating based on sustained ion release and a shape-preserving design is successfully obtained. Cu2+ substituted Na+ in sodium titanate lattice to generate Cu-doped SNW (CNW), which maintains the micro-structure and phase components of the original SNW, and can be efficiently released from the structure by immersing them in physiological saline (PS) solutions, ensuring superior long-term structural stability. The synergistic effects of the acid etching, bidirectional cogrowth, and solution-strengthening mechanisms endow the coating with higher bonding strengths. In vitro antibacterial tests demonstrated that the CNW coatings exhibited effective good antibacterial properties against both Gram-positive and Gram-negative bacteria based on the continuous slow release of copper ions. This is an exciting attempt to achieve topographic, hydrophilic, and antibacterial activation of metal implants, demonstrating a paradigm for the activation of coatings without dissolution and providing new insights into insoluble ceramic-coated implants with high bonding strengths. Full article
Show Figures

Figure 1

18 pages, 4730 KB  
Article
Hybrid Coatings Based on Polyvinylpyrrolidone/Polyethylene Glycol Enriched with Collagen and Hydroxyapatite: Incubation Studies and Evaluation of Mechanical and Physiochemical Properties
by Dagmara Słota, Josef Jampilek and Agnieszka Sobczak-Kupiec
J. Funct. Biomater. 2024, 15(3), 62; https://doi.org/10.3390/jfb15030062 - 1 Mar 2024
Cited by 4 | Viewed by 3051
Abstract
Coating materials offers an intriguing solution for imparting inert implants with additional bioactive characteristics without changing underlying parameters such as mechanical strength. Metallic implants like endoprostheses or polymeric implants can be coated with a thin layer of bioactive film capable of stimulating bone-forming [...] Read more.
Coating materials offers an intriguing solution for imparting inert implants with additional bioactive characteristics without changing underlying parameters such as mechanical strength. Metallic implants like endoprostheses or polymeric implants can be coated with a thin layer of bioactive film capable of stimulating bone-forming cells to proliferate or release a drug. However, irrespective of the final implantation site of such a coating biomaterial, it is necessary to conduct detailed mechanical and physicochemical in vitro analyses to determine its likely behavior under biological conditions. In this study, polymeric and composite coatings with hydroxyapatite obtained under UV light underwent incubation tests in four different artificial biological fluids: simulated body fluid (SBF), artificial saliva, Ringer’s fluid, and water (as the reference fluid). The potentiometric and conductometric properties, sorption capacity, and degradation rate of the coatings were examined. Furthermore, their hardness, modulus of elasticity, and deformation were determined. It was demonstrated that the coatings remained stable in SBF liquid at a pH value of around 7.4. In artificial saliva, the greatest degradation of the polymer matrix (ranging between 36.19% and 39.79%) and chipping of hydroxyapatite in the composite coatings were observed. Additionally, the effect of ceramics on sorption capacity was determined, with lower capacity noted with higher HA additions. Moreover, the evaluation of surface morphology supported by elemental microanalysis confirmed the appearance of new apatite layers on the surface as a result of incubation in SBF. Ceramics also influenced mechanical aspects, increasing hardness and modulus of elasticity. For the polymer coatings, the value was 11.48 ± 0.61, while for the composite coating with 15% ceramics, it increased more than eightfold to a value of 93.31 ± 11.18 N/mm2. Based on the conducted studies, the effect of ceramics on the physicochemical as well as mechanical properties of the materials was determined, and their behavior in various biological fluids was evaluated. However, further studies, especially cytotoxicity analyses, are required to determine the potential use of the coatings as biomaterials. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

20 pages, 9311 KB  
Article
Hierarchical Hybrid Coatings with Drug-Eluting Capacity for Mg Alloy Biomaterials
by Ana Nicolao-Gómez, Enrique Martínez-Campos, Lara Moreno, Juan Rodríguez-Hernández and Endzhe Matykina
Materials 2023, 16(24), 7688; https://doi.org/10.3390/ma16247688 - 18 Dec 2023
Cited by 7 | Viewed by 2501
Abstract
A hierarchical hybrid coating (HHC) comprising a ceramic oxide layer and two biodegradable polymeric (polycaprolactone, PCL) layers has been developed on Mg3Zn0.4Ca cast alloy in order to provide a controlled degradation rate and functionality by creating a favorable porous surface topography for cell [...] Read more.
A hierarchical hybrid coating (HHC) comprising a ceramic oxide layer and two biodegradable polymeric (polycaprolactone, PCL) layers has been developed on Mg3Zn0.4Ca cast alloy in order to provide a controlled degradation rate and functionality by creating a favorable porous surface topography for cell adhesion. The inner, ceramic layer formed by plasma electrolytic oxidation (PEO) has been enriched in bioactive elements (Ca, P, Si). The intermediate PCL layer sealed the defect in the PEO layer and the outer microporous PCL layer loaded with the appropriate active molecule, thus providing drug-eluting capacity. Morphological, chemical, and biological characterizations of the manufactured coatings loaded with ciprofloxacin (CIP) and paracetamol (PAR) have been carried out. In vitro assays with cell lines relevant for cardiovascular implants and bone prosthesis (endothelial cells and premyoblasts) showed that the drug-loaded coating allows for cell proliferation and viability. The study of CIP and PAR cytotoxicity and release rate indicated that the porous PCL layer does not release concentrations detrimental to the cells. However, complete system assays revealed that corrosion behavior and increase of the pH negatively affects cell viability. H2 evolution during corrosion of Mg alloy substrate generates blisters in PCL layer that accelerate the corrosion locally in crevice microenvironment. A detailed mechanism of the system degradation is disclosed. The accelerated degradation of the developed system may present interest for its further adaptation to new cancer therapy strategies. Full article
Show Figures

Figure 1

24 pages, 3488 KB  
Review
Strategies to Enhance Biomedical Device Performance and Safety: A Comprehensive Review
by Julia Sánchez-Bodón, Maria Diaz-Galbarriatu, Leyre Pérez-Álvarez, Isabel Moreno-Benítez and José Luis Vilas-Vilela
Coatings 2023, 13(12), 1981; https://doi.org/10.3390/coatings13121981 - 21 Nov 2023
Cited by 15 | Viewed by 4949
Abstract
This paper reviews different approaches to obtain biomaterials with tailored functionalities and explains their significant characteristics that influence their bioactivity. The main goal of this discussion underscores the significance of surface properties in materials, with a particular emphasis on their role in facilitating [...] Read more.
This paper reviews different approaches to obtain biomaterials with tailored functionalities and explains their significant characteristics that influence their bioactivity. The main goal of this discussion underscores the significance of surface properties in materials, with a particular emphasis on their role in facilitating cell adhesion in order to obtain good biocompatibility and biointegration, while preventing adverse effects, such as bacterial contamination and inflammation processes. Consequently, it is essential to design strategies and interventions that avoid bacterial infections, reducing inflammation and enhancing compatibility systems. Within this review, we elucidate the most prevalent techniques employed for surface modification, notably emphasizing surface chemical composition and coatings. In the case of surface chemical composition, we delve into four commonly applied approaches: hydrolysis, aminolysis, oxidation, and plasma treatment. On the other hand, coatings can be categorized based on their material composition, encompassing ceramic-based and polymer-based coatings. Both types of coatings have demonstrated efficacy in preventing bacterial contamination, promoting cell adhesion and improving biological properties of the surface. Furthermore, the addition of biological agents such as drugs, proteins, peptides, metallic ions plays a pivotal role in manifesting the prevention of bacterial infection, inflammatory responses, and coagulation mechanism. Full article
(This article belongs to the Special Issue Advanced Coatings for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop