Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = bio-anode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2361 KB  
Article
A Biofuel Cell for Electricity Generation from Biomass-Derived Cellobiose
by Piyanut Pinyou, Peeranat Jatooratthawichot, Luciranon Sribrahma, Salila Pengthaisong, Chamaipon Beagbandee, Kantapat Chansaenpak, Vincent Blay and James R. Ketudat Cairns
Biosensors 2025, 15(10), 674; https://doi.org/10.3390/bios15100674 - 7 Oct 2025
Viewed by 353
Abstract
We have developed a new bioanode based on a cascade of reactions catalyzed by two enzymes. A glassy carbon electrode is modified with β-glucosidase and glucose oxidase enzymes entrapped within an osmium redox polymer. Cellobiose, the fuel for the anode, is hydrolyzed by [...] Read more.
We have developed a new bioanode based on a cascade of reactions catalyzed by two enzymes. A glassy carbon electrode is modified with β-glucosidase and glucose oxidase enzymes entrapped within an osmium redox polymer. Cellobiose, the fuel for the anode, is hydrolyzed by β-glucosidase (TxGH116), yielding two molecules of D-glucose. Glucose is then oxidized by glucose oxidase (GOx) into δ-gluconolactone and produces electrons that are transferred to the electrode mediated by osmium redox polymer. We investigated the kinetic parameters of both enzymes at different temperatures. For GOx, the effect of enzyme loading and enzyme/polymer ratio were also optimized. The proposed bioanode is coupled to a biocathode based on horseradish peroxidase (HRP) in which H2O2, the oxidant, is reduced. We investigated the performance of the biofuel cell on cellobiose and sugarcane hydrolysates subjected to different pretreatments. Alkaline pretreatments of biomass were found to be more effective than phosphoric acid pretreatment. Adding TxGH116 β-glucosidase further enhanced current generation, even when commercial cellulase was used. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

35 pages, 5230 KB  
Article
Electrochemical Performances of Li-Ion Batteries Based on LiFePO4 Cathodes Supported by Bio-Sourced Activated Carbon from Millet Cob (MC) and Water Hyacinth (WH)
by Wend-Waoga Anthelme Zemane and Oumarou Savadogo
Batteries 2025, 11(10), 361; https://doi.org/10.3390/batteries11100361 - 30 Sep 2025
Viewed by 477
Abstract
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH [...] Read more.
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH to precursor material: 1:1, 2:1, and 5:1 for both WH and MC-derived carbon. The physical properties (X-ray diffraction patterns, BET surface area, micropore and mesopore volume, conductivity, etc.) and electrochemical performance (specific capacity, discharge at various current rates, electrochemical impedance measurement, etc.) were determined. Material characterization revealed that the activated carbon derived from MC exhibits an amorphous structure, whereas that obtained from WH is predominantly crystalline. High specific surface areas were achieved with activated carbons synthesized using a low KOH-to-carbon mass ratio (1:1), reaching 413.03 m2·g−1 for WH and 216.34 m2·g−1 for MC. However, larger average pore diameters were observed at higher activation ratios (5:1), measuring 8.38 nm for KOH/WH and 5.28 nm for KOH/MC. For both biomass-derived carbons, optimal electrical conductivity was obtained at a 2:1 activation ratio, with values of 14.7 × 10−3 S·cm−1 for KOH/WH and 8.42 × 10−3 S·cm−1 for KOH/MC. The electrochemical performance of coin cells based on cathodes composed of 85% LiFePO4, 8% of these activated carbons, and 7% polyvinylidene fluoride (PVDF) as a binder, with lithium metal as the anode were studied. The LiFePO4/C (LFP/C) cathodes exhibited specific capacities of up to 160 mAh·g−1 at a current rate of C/12 and 110 mAh·g−1 at 5C. Both LFP/MC and LFP/WH cathodes exhibit optimal energy density at specific values of pore size, pore volume, charge transfer resistance (Rct), and diffusion coefficient (DLi), reflecting a favorable balance between ionic transport, accessible surface area, and charge conduction. Maximum energy densities relative to active mass were recorded at 544 mWh·g−1 for LFP/MC 2:1, 554 mWh·g−1 for LFP/WH 2:1, and 568 mWh·g−1 for the reference LFP/graphite system. These performance results demonstrate that the development of high-performing bio-sourced activated carbon depends on the optimization of various parameters, including chemical composition, specific surface area, pore volume and size distribution, as well as electrical conductivity. Full article
Show Figures

Figure 1

20 pages, 9180 KB  
Article
Theaflavins as Electrolyte Additives for Inhibiting Zinc Dendrites and Hydrogen Evolution in Aqueous Zinc-Ion Batteries
by Xiao Zhang, Ting Cheng, Chen Chen, Fuqiang Liu, Fei Wu, Li Song, Baoxuan Hou, Yuan Tian, Xin Zhao, Safi Ullah and Rui Li
Int. J. Mol. Sci. 2025, 26(19), 9399; https://doi.org/10.3390/ijms26199399 - 26 Sep 2025
Viewed by 423
Abstract
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive [...] Read more.
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive for AZIBs to address these challenges. When added into the electrolyte, theaflavins, with their strong de-solvation capability, facilitated the more uniform and stable diffusion of zinc ions, effectively suppressing dendrite formation and HER. This, in turn, significantly enhanced the coulombic efficiency (>95% in Zn/Cu system) and the stability of the zinc deposition/stripping process in Zn/Zn system. The Zn/Zn symmetric battery system stably cycled for approximately 3000 h at current densities of 1 mA/cm2. Compared with H2O molecules, theaflavins exhibited a narrower LUMO and HOMO gap and higher adsorption energy on zinc surfaces. These properties enabled theaflavins to be preferentially adsorbed onto zinc anode surfaces, forming a protective layer that minimized direct contact between water molecules and the zinc surface. This layer also promoted the electron transfer associated with zinc ions, thereby greatly enhancing interfacial stability and significantly mitigating HER. When 10 mmol/L of theaflavins was present in the electrolyte, the system exhibited lower impedance activation energy, a smoother zinc ion deposition process, reduced corrosion current, and higher HER overpotential. Furthermore, incorporating theaflavins into the electrolyte enhanced the vanadium redox reaction and accelerated zinc ion diffusion, thereby significantly improving battery performance. This work explores the design of a cost-effective electrolyte additive, providing essential insights for the progress of practical AZIBs. Full article
Show Figures

Graphical abstract

14 pages, 2422 KB  
Article
Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics
by Amit Sarode and Gymama Slaughter
Energies 2025, 18(12), 3167; https://doi.org/10.3390/en18123167 - 16 Jun 2025
Cited by 1 | Viewed by 880
Abstract
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and [...] Read more.
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and isolated thylakoid membranes. LIG provided a porous, conductive scaffold, while PEDOT enhanced electrode compatibility, electrical conductivity, and operational stability. Compared to MXene-based systems that involve complex, multi-step synthesis, PEDOT offers a cost-effective and scalable alternative for bioelectrode fabrication. Thylakoid membranes were immobilized onto the PEDOT-modified LIG surface to enable light-driven electron generation. Electrochemical characterization revealed enhanced redox activity following PEDOT modification and stable photocurrent generation under light illumination, achieving a photocurrent density of approximately 18 µA cm−2. The assembled photo-bioelectrochemical fuel cell employing a gas diffusion platinum cathode demonstrated an open-circuit voltage of 0.57 V and a peak power density of 36 µW cm−2 in 0.1 M citrate buffer (pH 5.5) under light conditions. Furthermore, the integration of a charge pump circuit successfully boosted the harvested voltage to drive a low-power light-emitting diode, showcasing the practical viability of the system. This work highlights the potential of combining biological photosystems with conductive nanomaterials for the development of self-powered, light-driven bioelectronic devices. Full article
Show Figures

Figure 1

17 pages, 4988 KB  
Article
Porous Carbon Derived from Pumpkin Tissue as an Efficient Bioanode Toward Wastewater Treatment in Microbial Fuel Cells
by Jiaxin Liu, Xue Yan, Qiang Ding, Jiwu Xiang, Zuna Wei, Qian Yang, Kangwei Xie, Bo Cheng and Xiaoying Xie
Sustainability 2025, 17(11), 4758; https://doi.org/10.3390/su17114758 - 22 May 2025
Viewed by 585
Abstract
A novel three-dimensional porous biocarbon electrode with exceptional biocompatibility was synthesized via a facile approach using pumpkin as the precursor. The obtained pumpkin-derived biocarbon features a highly porous architecture and serves as an efficient biocarbon electrode (denoted as PBE) in a microbial fuel [...] Read more.
A novel three-dimensional porous biocarbon electrode with exceptional biocompatibility was synthesized via a facile approach using pumpkin as the precursor. The obtained pumpkin-derived biocarbon features a highly porous architecture and serves as an efficient biocarbon electrode (denoted as PBE) in a microbial fuel cell (MFC). This PBE could form robust biofilms to facilitate the adhesion of electroactive bacteria. When used in the treatment of real wastewater, the assembled PBE-MFC achieves a remarkable power density of 231 mW/m2, much higher than the control (carbon brush—MFC, 164 mW/m2) under the identical conditions. This result may be attributed to the upregulation of flagellar assembly pathways and bacterial secretion systems in the electroactive bacteria (e.g., Hydrogenophaga, Desulfovibrio, Thiobacillus, Rhodanobacter) at the anode of the PBE-MFC. The increased abundance of nitrifying bacteria (e.g., Hyphomicrobium, Sulfurimonas, Aequorivita) and organic matter-degrading bacteria (e.g., Lysobacter) in the PBE-MFC also contributed to its exceptional wastewater treatment efficiency. With its outstanding biocompatibility, cost-effectiveness, environmental sustainability, and ease of fabrication, the PBE-MFC displays great potential for application in the field of high-performance and economic wastewater treatment. Full article
Show Figures

Graphical abstract

13 pages, 1244 KB  
Article
Optimizing Hydrogen Production Through Efficient Organic Matter Oxidation Performed by Microbial Electrolysis Cells
by Angela Marchetti, Miriam Cerrillo Moreno, Roberto Lauri and Marco Zeppilli
Processes 2025, 13(4), 1231; https://doi.org/10.3390/pr13041231 - 18 Apr 2025
Cited by 3 | Viewed by 1331
Abstract
Microbial electrolysis cells (MECs) represent a pioneering technology for sustainable hydrogen production by leveraging bioelectrochemical processes. This study investigates the performance of a single-chamber cathodic MEC, where a cation exchange membrane separates the electrically active bioanode from the cathode. The system was constantly [...] Read more.
Microbial electrolysis cells (MECs) represent a pioneering technology for sustainable hydrogen production by leveraging bioelectrochemical processes. This study investigates the performance of a single-chamber cathodic MEC, where a cation exchange membrane separates the electrically active bioanode from the cathode. The system was constantly fed with a synthetic carbonaceous solution, employing a working potential of +0.3 V vs. SHE and an organic loading rate of 2 gCOD/Ld with a hydraulic retention time of 0.3 d. Notably, no methanogenic activity was detected, likely due to the establishment of an alkaline pH in the cathodic chamber. Under these conditions, the system exhibited good performance, achieving a current density of approximately 115 A/m3 and a hydrogen production rate of 1.28 m3/m3d. The corresponding energy consumption for hydrogen production resulted in 6.32 kWh/Nm3 H2, resulting in a slightly higher energetic cost compared to conventional electrolysis; moreover, an average energy efficiency of 85% was reached during the steady-state condition. These results demonstrate the potential of MECs as an effective and sustainable approach for biohydrogen production by helping the development of greener energy solutions. Full article
(This article belongs to the Special Issue Sustainable Hydrogen Production Processes)
Show Figures

Figure 1

15 pages, 2947 KB  
Article
Biofuel Cells Based on Oxidoreductases and Electroactive Nanomaterials: Development and Characterization
by Olha Demkiv, Nataliya Stasyuk, Galina Gayda, Oksana Zakalska, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(4), 249; https://doi.org/10.3390/bios15040249 - 14 Apr 2025
Viewed by 978
Abstract
Amperometric biosensors (ABSs) and enzymatic biofuel cells (BFCs) share several fundamental principles in their functionality, despite serving different primary purposes. Both devices rely on biorecognition, redox reactions, electron transfer (ET), and advanced electrode materials, including innovative nanomaterials (NMs). ABSs and BFCs, utilizing microbial [...] Read more.
Amperometric biosensors (ABSs) and enzymatic biofuel cells (BFCs) share several fundamental principles in their functionality, despite serving different primary purposes. Both devices rely on biorecognition, redox reactions, electron transfer (ET), and advanced electrode materials, including innovative nanomaterials (NMs). ABSs and BFCs, utilizing microbial oxidoreductases in combination with electroactive NMs, are both efficient and cost-effective. In the current study, several laboratory prototypes of BFCs have been developed with bioanodes based on yeast flavocytochrome b2 (Fcb2) and alcohol oxidase (AO), and a cathode based on fungal laccase. For the first time, BFCs have been developed featuring anodes based on Fcb2 co-immobilized with redox NMs on a glassy carbon electrode (GCE), and cathode-utilizing laccase combined with gold–cerium–platinum nanoparticles (nAuCePt). The most effective lactate BFC, which contains gold–hexacyanoferrate (AuHCF), exhibited a specific power density of 1.8 µW/cm2. A series of BFCs were developed with an AO-containing anode and a laccase/nAuCePt/GCE cathode. The optimal configuration featured a bioanode architecture of AO/nCoPtCu/GCE, achieving a specific power density of 3.2 µW/cm2. The constructed BFCs were tested using lactate-containing food product samples as fuels. Full article
(This article belongs to the Special Issue Advances in Biosensing and Bioanalysis Based on Nanozymes)
Show Figures

Figure 1

19 pages, 5556 KB  
Article
Investigation into the Preparation and Electrochemical Energy Storage Performance of Nickel Cobalt Oxide-Based Composite Anode Materials
by Yuyang Wang, Xiangquan Kong, Zhijie Wang, Dongming Zhang, Yu Song, Su Ma, Ying Duan, Andrii Vyshnikin, Vitalii Palchykov and Jinlong Zuo
Coatings 2025, 15(4), 373; https://doi.org/10.3390/coatings15040373 - 22 Mar 2025
Viewed by 564
Abstract
Microbial fuel cells (MFCs) are a novel bioenergy technology that utilizes microorganisms to catalyze the conversion of fuels into electricity. However, traditional MFCs are constrained by the low electricity generation capacity of microorganisms, resulting in relatively low power output. Additionally, the inability of [...] Read more.
Microbial fuel cells (MFCs) are a novel bioenergy technology that utilizes microorganisms to catalyze the conversion of fuels into electricity. However, traditional MFCs are constrained by the low electricity generation capacity of microorganisms, resulting in relatively low power output. Additionally, the inability of traditional MFCs to store electricity significantly limits their practical applications. In this study, we fabricate a novel oxide graphite/nickel cobalt oxide (GO/NiCo2O4) capacitive composite bioanode material supported on stainless-steel fiber felt (SSFF). This composite material combines the excellent biocompatibility of graphite oxide and the energy storage capacity of nickel cobalt oxide. Consequently, the prepared anode exhibits significant advantages, including high specific capacitance, efficient electron transport, and enhanced biocompatibility. The MFC with the SSFF/GO/NiCo2O4 anode demonstrated a significantly enhanced power density, achieving a maximum of 1267.5 mW/m2—1.38-fold and 2.23-fold higher than those of the SSFF/GO and SSFF anodes, respectively. Moreover, the modified anode (SSFF/GO/NiCo2O4) exhibited a stored charge (Qs) of 1405.35 C/m2, representing 2.61-fold and 35.79-fold increases compared to the SSFF/GO and SSFF anodes, respectively. High-throughput analysis revealed that SSFF/GO/NiCo2O4-modified anode achieved an electrogenic bacterial efficiency exceeding 81%, which was significantly higher than that of the SSFF/GO and SSFF anodes. The results of this study not only provide valuable insights and theoretical guidance for the development of MFCs using capacitive composite anode materials, they also present sustainable power solutions for low-power electronic systems, such as miniaturized sensors and IoT devices. Full article
Show Figures

Figure 1

27 pages, 35081 KB  
Article
Carbon Felt/Nickel Oxide/Polyaniline Nanocomposite as a Bifunctional Anode for Simultaneous Power Generation and Energy Storage in a Dual-Chamber MFC
by Yuyang Wang, Zhijie Wang, Dongming Zhang, Xiangquan Kong, Yu Song, Su Ma, Ying Duan, Andrii Vyshnikin and Vitalii Palchykov
Coatings 2025, 15(3), 356; https://doi.org/10.3390/coatings15030356 - 19 Mar 2025
Cited by 2 | Viewed by 612
Abstract
Microbial fuel cell (MFC) technology has become a novel and attractive method for generating renewable energy during wastewater treatment. In this study, researchers combined carbon felt (CF), metal oxide (NiO), and polyaniline (PANI) to prepare CF/NiO/PANI multilayer capacitive bioelectrodes. The MFC equipped with [...] Read more.
Microbial fuel cell (MFC) technology has become a novel and attractive method for generating renewable energy during wastewater treatment. In this study, researchers combined carbon felt (CF), metal oxide (NiO), and polyaniline (PANI) to prepare CF/NiO/PANI multilayer capacitive bioelectrodes. The MFC equipped with a CF/NiO/PANI bioanode has a peak power density of 1988.31 ± 50.96 mW/m2, which is 3.8 times higher than that of the MFC with a bare CF electrode, having a peak power density of 518.29 ± 27.07 mW/m2. Charge–discharge cycle tests show that the storage charge capacity of the CF/NiO/PANI bioanode is 3304.64 C/m2, which is 10.5 times greater than that of the bare CF anode. The electrochemical, morphological, and chemical properties of the prepared anodes are characterized using techniques such as SEM, EDS, FTIR, XPS, and XRD. Notably, high-throughput sequencing reveals that electrogenic bacteria account for 79.2% of the total microbial population on the CF/NiO/PANI multilayer capacitive bioelectrode. The synergistic effects of the composite materials result in the formation of a richer biofilm on the electrode surface, providing more active sites and enhancing capacitive characteristics. This innovative approach significantly improves the output power and peak current of MFCs, while also endowing the electrode with dual functions of simultaneous power generation and energy storage. Full article
Show Figures

Figure 1

13 pages, 1618 KB  
Article
Painted Electrode with Activated Coconut Carbon for Microbial Fuel Cell
by Paweł P. Włodarczyk and Barbara Włodarczyk
Energies 2025, 18(6), 1350; https://doi.org/10.3390/en18061350 - 10 Mar 2025
Viewed by 1006
Abstract
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based [...] Read more.
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based materials. Therefore, a carbon-based material (by-product of coconut processing) was selected for testing in this study. The anode was prepared by bonding activated coconut carbon with carbon paint on a glass electrode. The aim of this study was to analyze the feasibility of using an electrode prepared in this manner as a surface layer on the anode of an MFC. The performance of an electrode coated only with carbon paint was also evaluated. These two electrodes were compared with a carbon felt electrode, which is commonly used as an anode material in MFCs. In this research, the MFC was fed with a by-product of yeast production, namely a molasses decoction from yeast processing. Measurements were conducted in a standard two-chamber glass MFC with a glass membrane separating the chambers. During the experiment, parameters such as start-up time, cell voltage during MFC start-up, output cell voltage, and power density curves were analyzed. The carbon paint-coated electrode with the activated coconut carbon additive demonstrated operating parameters similar to those of the carbon felt electrode. The results indicate that it is possible to produce electrodes (on a base of by-product of coconut processing) for MFCs using a painting method; however, to achieve a performance comparable to carbon felt, the addition of activated coconut carbon is necessary. This study demonstrates the feasibility of forming a biocompatible layer on various surfaces. Incorporating activated coconut carbon does not complicate the anode fabrication process, as fine ACC grains can be directly applied to the wet carbon paint layer. Additionally, the use of carbon paint as a conductive layer for the active anode in MFCs offers versatility in designing electrodes of various shapes, enabling them to be coated with a suitable active and conductive layer to promote biofilm formation. Moreover, the findings of this study confirm that waste-derived materials can be effectively utilized as electrode components in MFC anodes. The results validate the chosen research approach and emphasize the potential for further investigations in this field, contributing to the development of cost-efficient electrodes derived from by-products for MFC applications. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

35 pages, 11162 KB  
Review
Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts
by Yunong Zhang, Yuxin Liu, Andreas Offenhäusser and Yulia Mourzina
Biosensors 2025, 15(2), 124; https://doi.org/10.3390/bios15020124 - 19 Feb 2025
Cited by 3 | Viewed by 3194
Abstract
The operating principle of a fuel cell is attracting increasing attention in the development of self-powered electrochemical sensors (SPESs). In this type of sensor, the chemical energy of the analyzed substance is converted into electrical energy in a galvanic cell through spontaneous electrochemical [...] Read more.
The operating principle of a fuel cell is attracting increasing attention in the development of self-powered electrochemical sensors (SPESs). In this type of sensor, the chemical energy of the analyzed substance is converted into electrical energy in a galvanic cell through spontaneous electrochemical reactions, directly generating an analytical signal. Unlike conventional (amperometric, voltammetric, and impedimetric) sensors, no external energy in the form of an applied potential is required for the redox detection reactions to occur. SPESs therefore have several important advantages over conventional electrochemical sensors. They do not require a power supply and modulation system, which saves energy and costs. The devices also offer greater simplicity and are therefore more compatible for applications in wearable sensor devices as well as in vivo and in situ use. Due to the dual redox properties of hydrogen peroxide, it is possible to develop membraneless fuel cells and fuel-cell-based hydrogen peroxide SPESs, in which hydrogen peroxide in the analyzed sample is used as the only source of energy, as both an oxidant and a reductant (fuel). This also suppresses the dependence of the devices on the availability of oxygen. Electrode catalyst materials for different hydrogen peroxide reaction pathways at the cathode and the anode in a one-compartment cell are a key technology for the implementation and characteristics of hydrogen peroxide SPESs. This article provides an overview of the operating principle and designs of H2O2–H2O2 fuel cells and H2O2 fuel-cell-based SPESs, focusing on biomimetic and nanozyme catalysts, and highlights recent innovations and prospects of hydrogen-peroxide-based SPESs for (bio)electrochemical analysis. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

17 pages, 3468 KB  
Article
Electrogenic Bacteria Enhance the Structure and Performance of Nitrite-Reducing Electroactive Biofilms
by Zhufan Lin, Xinyuan He, Huahua Li, Yi Lu and Shaoan Cheng
Processes 2025, 13(2), 509; https://doi.org/10.3390/pr13020509 - 12 Feb 2025
Viewed by 969
Abstract
The reverse polarity biocathode culture (RPBC) is a technology for the rapid preparation of biocathodes, which quickly enrich electroactive bacteria (EAB) in the microbial fuel cell (MFC) anode and then transform the electrode function from bioanode to biocathode by reversing bioelectrode polarity. However, [...] Read more.
The reverse polarity biocathode culture (RPBC) is a technology for the rapid preparation of biocathodes, which quickly enrich electroactive bacteria (EAB) in the microbial fuel cell (MFC) anode and then transform the electrode function from bioanode to biocathode by reversing bioelectrode polarity. However, the mechanism of RPBC is still unclear, and methods to regulate performance and ensure the long-term stability of cultured biocathodes have not been established. This study investigated the correlation between electrogenic bacteria and the target reducing EAB, from two aspects: energy supply and the formation of a composite biofilm. The results showed that electrogenic bacteria provided energy for the reducing EAB through interspecies electron transfer. This process could be regulated by changing the electrode potential and substrate concentration to obtain an optimized biocathode. In addition, the RPBC forms a composite biofilm of electrogenic bacteria and reducing EAB, which significantly improves the enrichment efficiency and the amount of reducing EAB (compared with a direct biocathode culture, respectively, shortening the enrichment time by 80%, increasing the electroactivity by 12.4 times, and increasing the nitrate degradation rate by 4.85 times). This study provides insights into regulating the performance and maintaining the long-term stability of RPBC-cultured biocathodes. Full article
(This article belongs to the Special Issue State of the Art of Waste Utilization and Resource Recovery)
Show Figures

Figure 1

25 pages, 13843 KB  
Article
Sustainable MXene Synthesis via Molten Salt Method and Nano-Silicon Coating for Enhanced Lithium-Ion Battery Performance
by Hansu Kim, Yunki Jung, Wonhwa Lee, Young-Pyo Jeon, Jin-Yong Hong and Jea Uk Lee
Molecules 2025, 30(4), 812; https://doi.org/10.3390/molecules30040812 - 10 Feb 2025
Cited by 9 | Viewed by 3128
Abstract
MXenes, a family of 2D transition metal carbides, nitrides, and carbonitrides, have attracted significant attention due to their exceptional physicochemical properties and electrochemical performance, making them highly promising for diverse applications, particularly in energy storage. Despite notable advancements, MXene synthesis remains a critical [...] Read more.
MXenes, a family of 2D transition metal carbides, nitrides, and carbonitrides, have attracted significant attention due to their exceptional physicochemical properties and electrochemical performance, making them highly promising for diverse applications, particularly in energy storage. Despite notable advancements, MXene synthesis remains a critical challenge, as conventional methods often rely on hazardous hydrofluoric acid-based processes, posing substantial environmental and safety risks. In this study, we present an eco-friendly synthesis approach for MXenes using molten salt processes, which offer a safer, sustainable alternative while enabling scalable production. Additionally, we explore the development of high-performance battery anodes by fabricating nanocomposites of nano-silicon and MXene, followed by a bio-inspired polydopamine coating and carbonization process. This innovative strategy not only enhances the structural stability and electrochemical performance of the anodes but also aligns with environmentally conscious design principles. Our findings demonstrate the potential of eco-friendly MXene synthesis and nanocomposite materials in advancing sustainable energy storage technologies. Full article
(This article belongs to the Special Issue The Way Forward in MXenes Materials)
Show Figures

Figure 1

19 pages, 4042 KB  
Article
Electrolysis of Liquefied Biomass for Sustainable Hydrogen and Organic Compound Production: A Biorefinery Approach
by Ana P. R. A. Ferreira, M. Margarida Mateus and Diogo M. F. Santos
Reactions 2025, 6(1), 10; https://doi.org/10.3390/reactions6010010 - 2 Feb 2025
Viewed by 1266
Abstract
Liquefaction is an effective thermochemical process for converting lignocellulosic biomass into bio-oil, a hydrocarbon-rich resource. This study explores liquefied biomass electrolysis as a novel method to promote the electrocracking of organic molecules into value-added compounds while simultaneously producing hydrogen (H2). Key [...] Read more.
Liquefaction is an effective thermochemical process for converting lignocellulosic biomass into bio-oil, a hydrocarbon-rich resource. This study explores liquefied biomass electrolysis as a novel method to promote the electrocracking of organic molecules into value-added compounds while simultaneously producing hydrogen (H2). Key innovations include utilizing water from the liquefaction process as an electrolyte component to minimize industrial waste and incorporating carbon dioxide (CO2) into the process to enhance decarbonization efforts and generate valuable byproducts. The electrolysis process was optimized by adding 2 M KOH, and voltammetric methods were employed to analyze the resulting emulsion. The experimental conditions, such as the temperature, anode material, current type, applied cell voltage, and CO2 bubbling, were systematically evaluated. Direct current electrolysis at 70 °C using nickel electrodes produced 55 mL of H2 gas with the highest Faradaic (43%) and energetic (39%) efficiency. On the other hand, pulsed electrolysis at room temperature generated a higher H2 gas volume (102 mL) but was less efficient, showing 30% Faradaic and 11% energetic efficiency. FTIR analysis revealed no significant functional group changes in the electrolyte post-electrolysis. Additionally, the solid deposits formed at the anode had an ash content of 36%. This work demonstrates that electrocracking bio-oil is a clean, sustainable approach to H2 production and the synthesis of valuable organic compounds, offering significant potential for biorefinery applications. Full article
Show Figures

Figure 1

18 pages, 3593 KB  
Article
Lateral Spacing of TiO2 Nanotube Coatings Modulates In Vivo Early New Bone Formation
by Andreea Mariana Negrescu, Iuliana Ionascu, Madalina Georgiana Necula, Niculae Tudor, Maksim Kamaleev, Otilia Zarnescu, Anca Mazare, Patrik Schmuki and Anisoara Cimpean
Biomimetics 2025, 10(2), 81; https://doi.org/10.3390/biomimetics10020081 - 28 Jan 2025
Cited by 1 | Viewed by 1444
Abstract
Due to the bio-inert nature of titanium (Ti) and subsequent accompanying chronic inflammatory response, an implant’s stability and function can be significantly affected, which is why various surface modifications have been employed, including the deposition of titanium oxide (TiO2) nanotubes (TNTs) [...] Read more.
Due to the bio-inert nature of titanium (Ti) and subsequent accompanying chronic inflammatory response, an implant’s stability and function can be significantly affected, which is why various surface modifications have been employed, including the deposition of titanium oxide (TiO2) nanotubes (TNTs) onto the native surface through the anodic oxidation method. While the influence of nanotube diameter on cell behaviour and osteogenesis is very well documented, information regarding the effects of nanotube lateral spacing on the in vivo new bone formation process is insufficient and hard to find. Considering this, the present study’s aim was to evaluate the mechanical properties and the osteogenic ability of two types of TNTs-based pins with different lateral spacing, e.g., 25 nm (TNTs) and 92 nm (spTNTs). The mechanical properties of the TNT-coated implants were characterised from a morphological point of view (tube diameter, spacing, and tube length) using scanning electron microscopy (SEM). In addition, the chemical composition of the implants was evaluated using X-ray photoelectron spectroscopy, while surface roughness and topography were characterised using atomic force microscopy (AFM). Finally, the implants’ hardness and elastic modulus were investigated using nanoindentation measurements. The in vivo new bone formation was histologically evaluated (haematoxylin and eosin—HE staining) at 6 and 30 days post-implantation in a rat model. Mechanical characterisation revealed that the two morphologies presented a similar chemical composition and mechanical strength, but, in terms of surface roughness, the spTNTs exhibited a higher average roughness. The microscopic examination at 1 month post-implantation revealed that spTNTs pins (57.21 ± 34.93) were capable of promoting early new bone tissue formation to a greater extent than the TNTs-coated implants (24.37 ± 6.5), with a difference in the average thickness of the newly formed bone tissue of ~32.84 µm, thus highlighting the importance of this parameter when designing future dental/orthopaedic implants. Full article
Show Figures

Figure 1

Back to TopTop