Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,364)

Search Parameters:
Keywords = binding agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5094 KB  
Article
Effects of Ritonavir, Lopinavir, and Alcohol on ABC Transporters and Secretion of Bile Acid and Bilirubin in Senescent Hepatocytes
by Liting Chen, Eric Duran, Diego Headrick and Cheng Ji
Int. J. Mol. Sci. 2026, 27(3), 1189; https://doi.org/10.3390/ijms27031189 (registering DOI) - 25 Jan 2026
Abstract
Drug- and alcohol-induced liver injury involves impaired bile acids or bilirubin secretion, but it is not known how senescence influences the secretion of hepatocytes exposed to drugs and alcohol. In this study, the toxic effects of ritonavir, lopinavir, and alcohol on hepatocyte transporters [...] Read more.
Drug- and alcohol-induced liver injury involves impaired bile acids or bilirubin secretion, but it is not known how senescence influences the secretion of hepatocytes exposed to drugs and alcohol. In this study, the toxic effects of ritonavir, lopinavir, and alcohol on hepatocyte transporters and the secretion of bile acids and bilirubin were investigated in hydrogen peroxide-induced senescent HepG2 and doxorubicin-induced senescent primary human hepatocytes. In HepG2, intracellular conjugated bilirubin increased upon senescence and extracellular conjugated bilirubin in culture medium was decreased by ritonavir and lopinavir treatment. In the primary hepatocytes, intracellular bile acids or medium bilirubin were not significantly changed upon senescence. However, intracellular bile acids were increased, and medium conjugated bilirubin were decreased in senescent primary hepatocytes treated with alcohol and the two drugs. Transcriptional expressions of adenosine triphosphate (ATP)-binding cassette (ABC) transporters (ABCB4, ABCC6, ABCB11, and ABCD3) were decreased whereas UDP-glucuronosyltransferase (UGT1A1) was increased by ritonavir and lopinavir in senescent HepG2. In senescent primary hepatocytes, expressions of ABCB11, ABCC1, ABCC2, ABCC3, ABCC4, and ABCC6 were apparently reduced whereas UGT1A1 and the cytochrome P450 enzyme CYP7A1 were markedly increased by alcohol combined with ritonavir and lopinavir. Selective ABCC6 knockdown in the primary hepatocytes altered expressions of two senescence markers, Lamin A/C and cyclin-dependent kinase inhibitor CKI (p21), increased expressions of CYP7A1 and hydroxy methyl glutaryl-CoA reductase (HMGCR), and increased intracellular bile acids. Further, anti-cholestasis agents, ursodeoxycholic acid and glycyrrhizin, significantly ameliorated the impaired secretions of bile acids and bilirubin as well as reducing intracellular lipid accumulation and cell death caused by ritonavir, lopinavir, and alcohol in the primary hepatocytes with ABCC6 knockdown. These results indicate that senescence moderately impairs the ABC transporters of hepatocytes and secretion of bile acids or bilirubin, which become worse in the presence of the drugs and alcohol but could be improved by anti-cholestasis agents. Full article
Show Figures

Figure 1

18 pages, 3825 KB  
Article
Low-Molecular-Weight Sulfated Chitosan Microparticles Efficiently Bind HIV-1 In Vitro: Potential for Microbicide Applications
by Sergio A. Bucarey, Verónica Ramos, Alejandro A. Hidalgo, Victor Neira, Andrónico Neira-Carrillo and Pablo Ferrer
Molecules 2026, 31(3), 395; https://doi.org/10.3390/molecules31030395 - 23 Jan 2026
Viewed by 22
Abstract
Background: Human Immunodeficiency Virus type 1 (HIV-1) remains a major global health challenge. Despite advances in antiretroviral therapy, new prevention strategies are needed, particularly topical microbicides capable of blocking the earliest steps of viral entry. HIV-1 attachment relies on interactions with heparan sulfate [...] Read more.
Background: Human Immunodeficiency Virus type 1 (HIV-1) remains a major global health challenge. Despite advances in antiretroviral therapy, new prevention strategies are needed, particularly topical microbicides capable of blocking the earliest steps of viral entry. HIV-1 attachment relies on interactions with heparan sulfate proteoglycans on host cell surfaces; therefore, sulfated heparan-mimetic polymers have been explored as antiviral agents. In this context, sulfated chitosan microparticles are designed to mimic natural glycosaminoglycan receptors, acting as biomimetic decoys that prevent viral attachment and entry. Methods: Low-molecular-weight sulfated chitosan (LMW Chi-S) microparticles were synthesized and characterized (SEM, EDS, DLS, FTIR) following US Patent No. 11,246,839 B2. Their antiviral activity was evaluated by incubating the microparticles with high-viral-load HIV-1-positive plasma (~3.5 × 106 copies/mL) to enable viral binding and removal by pull-down. The performance of the synthesized Chi-S microparticles was compared with established heparinoid controls, including soluble heparin and heparin microparticles. Results: Chi-S microparticles exhibited stronger virus-binding and neutralizing capacity than all heparinoid comparators, achieving up to 70% reduction in viral load relative to untreated HIV-1 plasma. In comparison, soluble heparin and heparin microparticles reduced viral load by approximately 53% and 60%, respectively. Subsequent evaluation across multiple tested concentrations confirmed a consistent antiviral effect, indicating that the synthesized Chi-S microparticles maintain robust virus–particle interactions throughout the concentration range examined. Conclusions: These findings demonstrate that LMW Chi-S microparticles possess potent antiviral properties and outperform classical heparinoid materials, supporting their potential application as topical microbicides targeting early HIV-1 entry mechanisms. Full article
Show Figures

Figure 1

20 pages, 7024 KB  
Article
Paving the Way for CCK2R-Targeted Peptide Receptor Radionuclide Therapy with [177Lu]Lu-DOTA-MGS5 in Patients with Small Cell Lung Cancer
by Taraneh Sadat Zavvar, Giulia Santo, Leonhard Gruber, Ariane Kronthaler, Judith Hagenbuchner, Ira Skvortsova, Inken Piro, Katja Steiger, Vladan Martinovic, Danijela Minasch, Judith Löffler-Ragg, Gianpaolo di Santo, Irene J. Virgolini and Elisabeth von Guggenberg
Pharmaceutics 2026, 18(1), 138; https://doi.org/10.3390/pharmaceutics18010138 - 22 Jan 2026
Viewed by 22
Abstract
Background/Objectives: Peptide receptor radionuclide therapy (PRRT) is an established treatment for neuroendocrine tumors (NETs), enabling targeted radiation delivery via radiolabeled peptides. Small cell lung cancer (SCLC) remains a major therapeutic challenge due to its aggressive nature and poor prognosis. Despite advances, relapse [...] Read more.
Background/Objectives: Peptide receptor radionuclide therapy (PRRT) is an established treatment for neuroendocrine tumors (NETs), enabling targeted radiation delivery via radiolabeled peptides. Small cell lung cancer (SCLC) remains a major therapeutic challenge due to its aggressive nature and poor prognosis. Despite advances, relapse rates are high and effective therapies are limited. We previously demonstrated the diagnostic potential of the cholecystokinin-2 receptor (CCK2R)-targeting minigastrin analog [68Ga]Ga-DOTA-MGS5 in PET/CT imaging of different NETs. Building on this, we developed and evaluated [177Lu]Lu-DOTA-MGS5 as a therapeutic PRRT agent. Methods: Preclinical studies investigating the receptor-mediated cellular internalization and intracellular distribution over time in A431 cells with and without CCK2R expression were performed using the fluorescent tracer ATTO-488-MGS5. Short- and long-term cytotoxic effects of [177Lu]Lu-DOTA-MGS5 were evaluated on the same cell line using trypan blue exclusion and clonogenic survival assays. CCK2R expression was assessed by immunohistochemistry in 42 SCLC tissue specimens. In addition, the first PRRT with [177Lu]Lu-DOTA-MGS5 was conducted in a patient with extensive disease SCLC (ED-SCLC) after confirming CCK2R-positive uptake in [68Ga]Ga-DOTA-MGS5 PET/CT. Results: Rapid binding and internalization into A431-CCK2R cells, with progressive accumulation in intracellular compartments, was observed for ATTO-488-MGS5. Short-term irradiation effects of [177Lu]Lu-DOTA-MGS5 were comparable for 4 h and 24 h incubation and were between the effects obtained with 2 and 4 Gy of external beam radiotherapy (EBRT). Clonogenic survival of A431-CCK2R cells incubated with increasing activity of [177Lu]Lu-DOTA-MGS5 decreased in a dose-dependent manner. Immunohistochemistry on SCLC specimens confirmed moderate to high CCK2R expression in 16 out of 42 SCLC samples. In the first patient with SCLC treated with four cycles of [177Lu]Lu-DOTA-MGS5 with a total activity of 17.2 GBq, an improvement in clinical symptoms was observed. Conclusions: The preclinical and clinical results confirm the feasibility of [177Lu]Lu-DOTA-MGS5 PRRT in patients with SCLC and support further clinical studies investigating the therapeutic value and clinical applicability of this new CCK2R-targeted theranostic approach in larger patient cohorts. Full article
Show Figures

Figure 1

19 pages, 2182 KB  
Article
Gut Microbiota and Type 2 Diabetes: Genetic Associations, Biological Mechanisms, Drug Repurposing, and Diagnostic Modeling
by Xinqi Jin, Xuanyi Chen, Heshan Chen and Xiaojuan Hong
Int. J. Mol. Sci. 2026, 27(2), 1070; https://doi.org/10.3390/ijms27021070 - 21 Jan 2026
Viewed by 74
Abstract
Gut microbiota is a potential therapeutic target for type 2 diabetes (T2D), but its role remains unclear. Investigating causal associations between them could further our understanding of their biological and clinical significance. A two-sample Mendelian randomization (MR) analysis was conducted to assess the [...] Read more.
Gut microbiota is a potential therapeutic target for type 2 diabetes (T2D), but its role remains unclear. Investigating causal associations between them could further our understanding of their biological and clinical significance. A two-sample Mendelian randomization (MR) analysis was conducted to assess the causal relationship between gut microbiota and T2D. Key genes and mechanisms were identified through the integration of Genome-Wide Association Studies (GWAS) and cis-expression quantitative trait loci (cis-eQTL) data. Network pharmacology was applied to identify potential drugs and targets. Additionally, gut microbiota community analysis and machine learning models were used to construct a diagnostic model for T2D. MR analysis identified 17 gut microbiota taxa associated with T2D, with three showing significant associations: Actinomyces (odds ratio [OR] = 1.106; 95% confidence interval [CI]: 1.06–1.15; p < 0.01; adjusted p-value [padj] = 0.0003), Ruminococcaceae (UCG010 group) (OR = 0.897; 95% CI: 0.85–0.95; p < 0.01; padj = 0.018), and Deltaproteobacteria (OR = 1.072; 95% CI: 1.03–1.12; p < 0.01; padj = 0.029). Ten key genes, such as EXOC4 and IGF1R, were linked to T2D risk. Network pharmacology identified INSR and ESR1 as target driver genes, with drugs like Dienestrol showing promise. Gut microbiota analysis revealed reduced α-diversity in T2D patients (p < 0.05), and β-diversity showed microbial community differences (R2 = 0.012, p = 0.001). Furthermore, molecular docking confirmed the binding affinity of potential therapeutic agents to their targets. Finally, we developed a class-weight optimized Extreme Gradient Boosting (XGBoost) diagnostic model, which achieved an area under the curve (AUC) of 0.84 with balanced sensitivity (95.1%) and specificity (83.8%). Integrating machine learning predictions with MR causal inference highlighted Bacteroides as a key biomarker. Our findings elucidate the gut microbiota-T2D causal axis, identify therapeutic targets, and provide a robust tool for precision diagnosis. Full article
(This article belongs to the Special Issue Type 2 Diabetes: Molecular Pathophysiology and Treatment)
Show Figures

Figure 1

27 pages, 2553 KB  
Article
Biotechnological Potential of Algerian Saffron Floral Residues: Recycling Phytochemicals with Antimicrobial Activity
by Nouria Meliani, Bouchra Loukidi, Larbi Belyagoubi, Nabila Belyagoubi-Benhammou, Salim Habi, Alessia D’Agostino, Antonella Canini, Saber Nahdi, Nassima Mokhtari Soulimane, Angelo Gismondi, Abdel Halim Harrath, Erdi Can Aytar and Gabriele Di Marco
Biology 2026, 15(2), 197; https://doi.org/10.3390/biology15020197 - 21 Jan 2026
Viewed by 81
Abstract
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the [...] Read more.
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the possible interactions between saffron tepal metabolites and bacterial target proteins. In parallel, antioxidant activity was assessed using radical scavenging assays, whereas antimicrobial potential (i.e., MIC, MBC, and MFC) was tested against selected bacterial strains. Results indicated that aqueous successive and crude extracts yielded the highest concentrations of polyphenols, flavonoids, and condensed tannins. In detail, HPLC-DAD analysis specifically identified significant levels of gallic acid, epicatechin, and various anthocyanins. These extracts demonstrated robust antioxidant and antimicrobial activities. This latter evidence was corroborated by the docking analyses, which revealed that chlorogenic acid and petunidin-3-glucoside exhibited high binding affinities for 2NRK and 2NZF, whereas epicatechin and pelargonidin effectively targeted 8ACR. These findings underscore the therapeutic potential of C. sativus tepals as natural bioactive agents, suggesting a promising role in overcoming antibiotic resistance and supporting their development for pharmaceutical applications. Full article
(This article belongs to the Special Issue Young Researchers in Plant Sciences)
Show Figures

Graphical abstract

32 pages, 2940 KB  
Article
Integrated In Vitro and In Silico Profiling of Piperazinyl Thiosemicarbazone Derivatives Against Trypanosoma cruzi: Stage-Specific Activity and Enzyme Inhibition
by Héctor A. Baldoni, María L. Sbaraglini, Darío E. Balcazar, Diego G. Arias, Sergio A. Guerrero, Catalina D. Alba Soto, Wioleta Cieslik, Marta Rogalska, Jaroslaw Polański, Ricardo D. Enriz, Josef Jampilek and Robert Musiol
Pharmaceuticals 2026, 19(1), 182; https://doi.org/10.3390/ph19010182 (registering DOI) - 20 Jan 2026
Viewed by 204
Abstract
Background: Trypanosoma cruzi, the causative agent of Chagas disease, remains a major public health concern, and there is a continued need for new antitrypanosomal agents. Thiosemicarbazone (TSC) derivatives have emerged as a promising class of compounds with potential antiparasitic activity. Objectives: [...] Read more.
Background: Trypanosoma cruzi, the causative agent of Chagas disease, remains a major public health concern, and there is a continued need for new antitrypanosomal agents. Thiosemicarbazone (TSC) derivatives have emerged as a promising class of compounds with potential antiparasitic activity. Objectives: This study aimed to report the synthesis, characterization, and biological profiling of a novel series of thiosemicarbazone derivatives as antitrypanosomal agents against Trypanosoma cruzi. Methods: Fourteen new compounds and six previously described analogues were prepared and characterized by 1H/13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). As a preliminary in vitro screen, activity was assessed by direct parasite counting in epimastigote and bloodstream trypomastigote forms, as tractable models of replicative and infective stages sharing core metabolic targets with intracellular amastigotes. Epimastigote potency was quantified as half-maximal effective concentrations (EC50) derived from dose–response curves, whereas trypomastigote response was evaluated as percent viability after treatment at a fixed concentration of 20 µM. Mechanistic profiling included inhibition assays against the cysteine protease cruzipain (CZP) and selected redox defense enzymes, complemented by in silico similarity clustering and binding-pose affinity scoring. Results: A nitro-methoxy-substituted TSC showed potent CZP inhibition but limited trypomastigote efficacy, whereas brominated analogues displayed dual-stage activity independent of CZP inhibition. Tanimoto similarity analysis identified distinct structure–activity clusters, linking nitro-methoxy substitution to epimastigote selectivity and brominated scaffolds to broader antiparasitic profiles, with hydrophobicity and steric complementarity as key determinants. Enzymatic assays revealed no significant inhibition of cytosolic tryparedoxin peroxidase (cTXNPx) or glutathione peroxidase type I (TcGPx-I), suggesting redox disruption is not a primary mode of action. In vitro and in silico analyses showed low or no non-specific cytotoxicity under the tested conditions, supporting further optimization of these derivatives as antitrypanosomal preliminary hits. Key hits included derivative 3e (epimastigote EC50 = 0.36 ± 0.02 µM) and brominated analogues 2c and 2e (epimastigote EC50 = 3.92 ± 0.13 and 4.36 ± 0.10 µM, respectively), while docking supported favorable binding-pose affinity (e.g., ΔGS-pose = −20.78 ± 2.47 kcal/mol for 3e). Conclusions: These results support further optimization of the identified thiosemicarbazone derivatives as preliminary antitrypanosomal hits and provide insight into structure–activity relationships and potential mechanisms of action. Full article
Show Figures

Graphical abstract

23 pages, 5560 KB  
Article
Natural Protective Mechanisms of Cucumis callosus Leaves in Escherichia Species-Induced Urinary Tract Infection: An Integrated In Silico and In Vivo Study
by Meenal Sahu, Tripti Paliwal, Radhika Joshi, Arya Kuhu Vishwapriya, Namita Misra, Smita Jain, Gautam Singhvi, Gulshan Kumar, Devesh U. Kapoor, Dipjyoti Chakraborty and Swapnil Sharma
Pathogens 2026, 15(1), 111; https://doi.org/10.3390/pathogens15010111 - 19 Jan 2026
Viewed by 256
Abstract
Leaves of Cucumis callosus, traditionally employed in Ayurvedic medicine for the treatment of urinary disorders, were investigated in depth for their therapeutic potential against bacterially induced urinary tract infection (UTI) for the first time. The present work is the first to explore [...] Read more.
Leaves of Cucumis callosus, traditionally employed in Ayurvedic medicine for the treatment of urinary disorders, were investigated in depth for their therapeutic potential against bacterially induced urinary tract infection (UTI) for the first time. The present work is the first to explore the antibacterial activity of C. callosus leaf fractions with an integrative in silico, in vitro, and in vivo approach. Through bioassay-guided fractionation, the chloroform fraction (F1) was identified as the most active, exhibiting potent activity against Uropathogenic Escherichia spp. species. Liquid chromatography–mass spectrometry (LC-MS) analysis of F1 revealed the presence of bioactive compounds, including stigmasterol, 1,2,3,4-tetrahydroisoquinoline, lactose, hydroxy(mesityl)acetic acid, and 2,4-di-tert-butylphenol. Molecular docking studies validated the strong binding affinities of these compounds for bacterial resistance enzymes, including AmpC β-lactamase and carbapenemases, thereby providing plausible mechanisms of antimicrobial action. In vivo studies carried out on female rats infected with Escherichia spp. species revealed a dose-dependent reduction in bacterial load, with a significant decrease in urinary tract inflammation upon F1 administration. Histopathological evaluation confirmed the protective effect, with reduced epithelial damage and inflammation in bladder tissues. These findings indicate significant antibacterial and tissue-protective effects of the C. callosus leaf fraction F1, supporting its ethnomedicinal use and establishing it as a promising phytotherapeutic agent for the treatment of urinary tract infections. Full article
(This article belongs to the Special Issue Current Progress on Bacterial Antimicrobial Resistance)
Show Figures

Figure 1

18 pages, 3163 KB  
Article
Daxx-Dependent H3.3 Deposition Promotes Double-Strand Breaks Repair by Homologous Recombination
by Laura Zannini, Simona Aliprandi, Domenico Delia and Giacomo Buscemi
Cells 2026, 15(2), 162; https://doi.org/10.3390/cells15020162 - 16 Jan 2026
Viewed by 253
Abstract
DNA double-strand breaks (DSBs) can be induced by cellular byproducts or genotoxic agents. Improper processing of these lesions leads to increased genome instability, which constitutes a hallmark of pathological conditions and fuels carcinogenesis. DSBs are primarily repaired by homologous recombination (HR) and non-homologous [...] Read more.
DNA double-strand breaks (DSBs) can be induced by cellular byproducts or genotoxic agents. Improper processing of these lesions leads to increased genome instability, which constitutes a hallmark of pathological conditions and fuels carcinogenesis. DSBs are primarily repaired by homologous recombination (HR) and non-homologous end joining (NHEJ) and the proper balance between these two pathways is finely modulated by specific molecular events. Here, we report that the histone chaperone DAXX plays a fundamental role in the response to DSBs. Indeed, in human cells, DSBs induce ATM/ATR-dependent phosphorylation of DAXX on serine 424 and 712 and promote its binding to chromatin and the deposition of the histone variant H3.3 in proximity to DNA breaks. Enrichment of H3.3 at DSBs promotes 53BP1 recruitment to these lesions and the repair of DNA breaks by HR pathways. Moreover, H3.3-specific post translational modifications, particularly K36 tri-methylation, play a key role in these processes. Altogether, these findings indicate that DAXX and H3.3 mutations may contribute to tumorigenesis-enhancing genome instability. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

14 pages, 1836 KB  
Article
Development of a Peptide-Based Photoimmunotherapy Drug Targeting PD-L1
by Takuya Otani, Naoya Kondo, Ayaka Kanai and Hirofumi Hanaoka
Molecules 2026, 31(2), 302; https://doi.org/10.3390/molecules31020302 - 14 Jan 2026
Viewed by 205
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) has recently attracted attention as a highly selective cancer treatment, with good treatment outcomes observed from the only antibody-based drug currently available for clinical use. However, since only a single agent is currently used clinically and the development of new [...] Read more.
Near-infrared photoimmunotherapy (NIR-PIT) has recently attracted attention as a highly selective cancer treatment, with good treatment outcomes observed from the only antibody-based drug currently available for clinical use. However, since only a single agent is currently used clinically and the development of new antibodies is costly, exploring other therapeutic modalities is important. In this study, we investigated a novel peptide-based PIT drug targeting programmed death-ligand 1 (PD-L1), which is overexpressed in many types of cancer. The WL12 peptide, which is known to bind to PD-L1, was conjugated with the photoabsorber IRDye700DX (IR700), and its usefulness was evaluated in vitro and in vivo. In therapeutic experiments on PD-L1-positive cells, NIR-PIT with WL12-IR700 induced PIT-like morphological changes in cells and reduced cancer cell viability in an NIR light dose- and drug concentration-dependent manner. In vivo experiments showed significant suppression of tumor growth and an extended overall survival rate. These results indicate that the developed peptide-based drug can be used for PD-L1-targeted NIR-PIT. Full article
Show Figures

Graphical abstract

35 pages, 3066 KB  
Review
Terpenoids: Emerging Natural Modulators for Reversing ABC Transporter-Mediated Multidrug Resistance in Cancer Chemotherapy
by Lanfei Ma, Dina Mahemuti, Yuanhong Lan, Jianxiong Xu, Wenfang Li, Zhengding Su, Jinyao Li, Aytursun Abuduwaili and Ayitila Maimaitijiang
Pharmaceuticals 2026, 19(1), 146; https://doi.org/10.3390/ph19010146 - 14 Jan 2026
Viewed by 215
Abstract
Multidrug resistance (MDR) is a central cause of chemotherapy failure and tumor recurrence and metastasis, and its mechanism involves enhanced drug efflux, target mutation, upregulation of DNA repair and remodeling of the tumor microenvironment. ABC transporter protein (P-gp, MRP, and BCRP)-mediated efflux of [...] Read more.
Multidrug resistance (MDR) is a central cause of chemotherapy failure and tumor recurrence and metastasis, and its mechanism involves enhanced drug efflux, target mutation, upregulation of DNA repair and remodeling of the tumor microenvironment. ABC transporter protein (P-gp, MRP, and BCRP)-mediated efflux of drugs is the most intensively researched aspect of the study, but the first three generations of small-molecule reversal agents were stopped in the clinic because of toxicity or pharmacokinetic defects. Natural products are considered as the fourth generation of MDR reversal agents due to their structural diversity, multi-targeting and low toxicity. In this paper, we systematically summarize the inhibitory activities of monoterpenes, sesquiterpenes, diterpenes and triterpenes against ABC transporter proteins in in vitro and in vivo models and focus on the new mechanism of reversing drug resistance by blocking efflux pumps, modulating signaling pathways such as PI3K-AKT, Nrf2, NF-κB and remodeling the tumor microenvironment. For example, Terpenoids possess irreplaceable core advantages over traditional multidrug resistance (MDR) reversers: Compared with the first three generations of synthetic reversers, natural/semisynthetic terpenoids integrate low toxicity (mostly derived from edible medicinal plants, half-maximal inhibitory concentration IC50 > 50 μM), high target specificity (e.g., oleanolic acid specifically inhibits the ATP-binding cassette (ABC) transporter subtype ABCC1 without cross-reactivity with ABCB1), and multi-mechanistic synergistic effects (e.g., β-caryophyllene simultaneously mediates the dual effects of “ABCB1 efflux inhibition + apoptotic pathway activation”). These unique characteristics enable terpenoids to effectively circumvent key limitations of traditional synthetic reversers, such as high toxicity and severe drug–drug interactions. Among them, lupane-type derivative BBA and euphane-type sooneuphanone D (triterpenoids), as well as dihydro-β-agarofuran-type compounds and sesquiterpene lactone Conferone (sesquiterpenoids), have emerged as the core lead compounds with the greatest translational potential in current MDR reverser research, attributed to their potent in vitro and in vivo MDR reversal activity, low toxicity, and excellent druggable modifiability. At the same time, we point out bottlenecks, such as low bioavailability, insufficient in vivo evidence, and unclear structure–activity relationship and put forward a proposal to address these bottlenecks. At the same time, the bottlenecks of low bioavailability, insufficient vivo evidence and unclear structure–activity relationship have been pointed out, and future research directions such as nano-delivery, structural optimization and combination strategies have been proposed to provide theoretical foundations and potential practical pathways for the clinical translation research of terpenoid compounds, whose clinical application still requires further in vivo validation and translational research support. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

27 pages, 4953 KB  
Article
Integrative miRNA–mRNA Network and Molecular Dynamics-Based Identification of Therapeutic Candidates for Paroxysmal Nocturnal Hemoglobinuria
by Peng Zhao, Yujie Tang, Xin Sun, Yibo Xi, Haojun Zhang, Jia Xue, Wenqian Zhou, Hongyi Li and Xuechun Lu
Pharmaceuticals 2026, 19(1), 143; https://doi.org/10.3390/ph19010143 - 14 Jan 2026
Viewed by 134
Abstract
Background: Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematopoietic stem cell disease characterized primarily by intravascular hemolysis, thrombosis, and bone marrow failure. Complement inhibitors are commonly used in clinical treatment and show limited efficacy, highlighting the urgent need to identify new therapeutic targets [...] Read more.
Background: Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematopoietic stem cell disease characterized primarily by intravascular hemolysis, thrombosis, and bone marrow failure. Complement inhibitors are commonly used in clinical treatment and show limited efficacy, highlighting the urgent need to identify new therapeutic targets and explore alternative treatment strategies to provide theoretical guidance for clinical practice. Methods: We established a PNH cell model and constructed an miRNA–mRNA regulatory network to identify key miRNAs and core target genes. Single-cell sequencing data were analyzed to further clarify the critical genes. Finally, integrated drug database analysis identified potential therapeutic agents for PNH, which were validated by molecular docking and molecular dynamics simulations. Results: Using CRISPR/RNP technology, we successfully constructed a PIGA-knockout (PIGA-KO) THP-1 cell model. Differential expression analysis identified 1979 differentially expressed mRNAs (DEmRNAs) and 97 differentially expressed miRNAs (DEmiRNAs). The multiMiR package in R was used to predict the target genes of DEmiRNAs, from which those experimentally validated through dual-luciferase reporter assays were selected. After integration with the DEmRNAs, an miRNA–mRNA regulatory network was constructed, comprising 26 miRNAs and 38 mRNAs. Subsequent miRNA pathway enrichment analysis identified hsa-miR-23a-3p as a key miRNA, with CXCL12, CXCL8, HES1, and TRAF5 serving as core target genes. The integration of single-cell sequencing datasets (PRJNA1061334 and GSE157344) was performed, followed by cell communication and enrichment analysis. This approach, combined with clinical relevance, identified the neutrophil cluster as the key cluster. Intersection analysis of neutrophil cluster differential analysis results with key modules from hdWGCNA further clarified the critical genes. Drug prediction using EpiMed, CMap, and DGIdb identified Leflunomide, Dipyridamole, and Pentoxifylline as potential therapeutic agents. Molecular docking and molecular dynamics simulations showed stable binding of these potential drugs to the critical molecules, indicating a viable molecular interaction foundation. Conclusions: Leflunomide, Dipyridamole, and Pentoxifylline may serve as promising therapeutic agents for PNH, and the hsa-miR-23a-3p/CXCL8 regulatory axis could play a pivotal role in the pathogenesis and progression of PNH. Full article
Show Figures

Figure 1

27 pages, 4157 KB  
Article
LASSBio-1986 as a Multifunctional Antidiabetic Lead: SGLT1/2 Docking, Redox–Inflammatory Modulation and Metabolic Benefits in C57BL/6 Mice
by Landerson Lopes Pereira, Raimundo Rigoberto B. Xavier Filho, Gabriela Araújo Freire, Caio Bruno Rodrigues Martins, Maurício Gabriel Barros Perote, Cibelly Loryn Martins Campos, Manuel Carlos Serrazul Monteiro, Isabelle de Fátima Vieira Camelo Maia, Renata Barbosa Lacerda, Luis Gabriel Valdivieso Gelves, Damião Sampaio de Sousa, Régia Karen Barbosa De Souza, Paulo Iury Gomes Nunes, Tiago Lima Sampaio, Gisele Silvestre Silva, Deysi Viviana Tenazoa Wong, Lidia Moreira Lima, Walter José Peláez, Márcia Machado Marinho, Hélcio Silva dos Santos, Jane Eire Silva Alencar de Menezes, Emmanuel Silva Marinho, Kirley Marques Canuto, Pedro Filho Noronha Souza, Francimauro Sousa Morais, Nylane Maria Nunes de Alencar and Marisa Jadna Silva Fredericoadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2026, 27(2), 829; https://doi.org/10.3390/ijms27020829 - 14 Jan 2026
Viewed by 191
Abstract
Type 2 diabetes mellitus (T2DM) involves chronic hyperglycemia, insulin resistance, low-grade inflammation, and oxidative stress that drive cardiometabolic and renal damage despite current therapies. Sodium–glucose cotransporter (SGLT) inhibitors have reshaped the treatment landscape, but residual risk and safety concerns highlight the need for [...] Read more.
Type 2 diabetes mellitus (T2DM) involves chronic hyperglycemia, insulin resistance, low-grade inflammation, and oxidative stress that drive cardiometabolic and renal damage despite current therapies. Sodium–glucose cotransporter (SGLT) inhibitors have reshaped the treatment landscape, but residual risk and safety concerns highlight the need for new agents that combine glucose-lowering efficacy with redox–inflammatory modulation. LASSBio-1986 is a synthetic N-acylhydrazone (NAH) derivative designed as a gliflozin-like scaffold with the potential to interact with SGLT1/2 while also influencing oxidative and inflammatory pathways. Here, we integrated in silico and in vivo approaches to characterize LASSBio-1986 as a multifunctional antidiabetic lead in murine models of glucose dysregulation. PASS and target class prediction suggested a broad activity spectrum and highlighted transporter- and stress-related pathways. Molecular docking indicated high-affinity binding to both SGLT1 and SGLT2, with a modest energetic preference for SGLT2, and ADME/Tox predictions supported favorable oral drug-likeness. In vivo, intraperitoneal LASSBio-1986 improved oral glucose tolerance and reduced glycemic excursions in an acute glucose challenge model in C57BL/6 mice, while enhancing hepatic and skeletal muscle glycogen stores. In a dexamethasone-induced insulin-resistance model, LASSBio-1986 improved insulin sensitivity, favorably modulated serum lipids, attenuated thiobarbituric acid-reactive substances (TBARS), restored reduced glutathione (GSH) levels, and rebalanced pro- and anti-inflammatory cytokines in metabolic tissues, with efficacy broadly comparable to dapagliflozin. These convergent findings support LASSBio-1986 as a preclinical, multimodal lead that targets SGLT-dependent glucose handling while mitigating oxidative and inflammatory stress in models relevant to T2DM. Chronic disease models, formal toxicology, and pharmacokinetic studies, particularly with oral dosing, will be essential to define its translational potential. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

20 pages, 14008 KB  
Article
The Antimicrobial Peptide CRAMP-34 Eradicates Escherichia coli Biofilms by Interfering with the kduD-Dependent Network
by Hongzao Yang, Jing Xiong, Sisi Su, Zhuo Yang, Wu Yang, Lianci Peng, Suhui Zhang, Jinjie Qiu, Yuzhang He and Hongwei Chen
Antibiotics 2026, 15(1), 83; https://doi.org/10.3390/antibiotics15010083 - 14 Jan 2026
Viewed by 229
Abstract
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes [...] Read more.
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes via electrostatic interactions, leading to membrane disruption and rapid cell lysis. Methods: In vitro assays including MIC determination, biofilm eradication testing (crystal violet, colony counts, and CLSM), swimming motility, and EPS quantification were performed. CRISPR/Cas9 was used to construct and complement a kduD mutant. A transposon mutagenesis library was screened for biofilm-defective mutants. In an in vivo murine excisional wound infection model treated with the mouse cathelicidin-related antimicrobial peptide (CRAMP-34), wound closure and bacterial burden were monitored. Gene expression changes were analyzed via RT-qPCR. Results: CRAMP-34 effectively eradicated pre-formed biofilms of a clinically relevant, porcine-origin E. coli strain and promoted wound healing in the murine infection model. We conducted a genome-wide transposon mutagenesis screen, which identified kduD as a critical gene for robust biofilm formation. Functional characterization revealed that kduD deletion drastically impairs flagellar motility and alters exopolysaccharide production, leading to defective biofilm architecture without affecting growth. Notably, the anti-biofilm activity of CRAMP-34 phenocopied aspects of the kduD deletion, including motility inhibition and transcriptional repression of a common set of biofilm-related genes. Conclusions: This research highlights CRAMP-34 as a potent anti-biofilm agent and unveils kduD as a previously unrecognized regulator of E. coli biofilm development, which is also targeted by CRAMP-34. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Biofilm-Associated Infections)
Show Figures

Figure 1

33 pages, 4734 KB  
Review
Targeting Bacterial Cell Wall Synthesis: Structural Insights and Emerging Therapeutic Strategies
by Bharat Kumar Reddy Sanapalli, Christopher R. Jones and Vidyasrilekha Sanapalli
Pharmaceutics 2026, 18(1), 106; https://doi.org/10.3390/pharmaceutics18010106 - 13 Jan 2026
Viewed by 299
Abstract
The emergence of multidrug-resistant (MDR) bacterial pathogens has heightened the urgency for novel antibacterial agents. The bacterial cell wall usually comprises peptidoglycan, which presents a prime target for antibacterial drug development due to its indispensable role in maintaining cellular integrity. Conventional antibiotics such [...] Read more.
The emergence of multidrug-resistant (MDR) bacterial pathogens has heightened the urgency for novel antibacterial agents. The bacterial cell wall usually comprises peptidoglycan, which presents a prime target for antibacterial drug development due to its indispensable role in maintaining cellular integrity. Conventional antibiotics such as β-lactams and glycopeptides hinder peptidoglycan synthesis through competitive binding of penicillin-binding proteins (PBPs) and sequestration of lipid-linked precursor molecules. Nevertheless, prevalent resistance mechanisms including target modification, β-lactamase hydrolysis, and multi-drug efflux pumps have limited their clinical utility. This comprehensive analysis explicates the molecular machinery underlying bacterial cell wall assembly, evaluates both explored and unexplored enzymatic nodes within this pathway, and highlights the transformative impact of high-resolution structural elucidation in accelerating structure-guided drug discovery. Novel targets such as GlmS, GlmM, GlmU, Mur ligases, D,L-transpeptidases are assessed for their inclusiveness for the discovery of next-generation antibiotics. Additionally, cell wall inhibitors are also examined for their mechanisms of action and evolutionary constraints on MDR development. High-resolution crystallographic data provide valuable insights into molecular blueprints for structure-guided optimization of pharmacophores, enhancing binding affinity and circumventing resistance determinants. This review proposes a roadmap for future innovation, advocating for the convergence of computational biology platforms, machine learning-driven compound screening, and nanoscale delivery systems to improve therapeutic efficacy and pharmacokinetics. The synergy of structural insights and cutting-edge technologies offers a multidisciplinary framework for revitalizing the antibacterial arsenal and combating MDR infections efficiently. Full article
(This article belongs to the Special Issue New Era in Antimicrobial Strategies)
Show Figures

Figure 1

28 pages, 1597 KB  
Article
The Influence of Material and Process Parameters on Pressure Agglomeration and Properties of Pellets Produced from Torrefied Forest Logging Residues
by Arkadiusz Gendek, Monika Aniszewska, Paweł Tylek, Grzegorz Szewczyk, Jozef Krilek, Iveta Čabalová, Jan Malaťák, Jiří Bradna and Katalin Szakálos-Mátyás
Materials 2026, 19(2), 317; https://doi.org/10.3390/ma19020317 - 13 Jan 2026
Viewed by 202
Abstract
Pellets produced from raw or torrefied shredded logging residues have been investigated in the study. The research material came from pine and spruce stands in Poland, Slovakia, Czechia and Hungary. Torrefaction temperatures (Tt) of 250, 300, and 400 °C were [...] Read more.
Pellets produced from raw or torrefied shredded logging residues have been investigated in the study. The research material came from pine and spruce stands in Poland, Slovakia, Czechia and Hungary. Torrefaction temperatures (Tt) of 250, 300, and 400 °C were applied. Before pressure agglomeration, 3% wheat flour was added to the torrefaction material as a binding agent. Pellets with a diameter of 8 mm were produced at constant humidity, compaction pressure (P) of 140 or 180 MPa and agglomeration temperature (Ta) of 100, 120 or 140 °C. The produced pellets were assessed for their physicomechanical parameters (density, radial compressive strength, compression ratio, modulus of elasticity), chemical parameters (extractive compounds, cellulose, lignin) and energy parameters (ash content, elemental composition, calorific value). The results were subjected to basic statistical analysis and multi-way ANOVA. The produced pellets varied in physical, mechanical, chemical and energy properties. A significant effect of torrefaction temperature, agglomeration temperature and compaction pressure on the results was observed. In terms of physicomechanical parameters, the best pellets were produced from the raw material, while in terms of energy parameters, those produced from the torrefied material were superior. Pellets of satisfactory quality produced from torrefied logging residues could be obtained at Tt = 250 °C, Ta = 120 °C and P = 180 MPa. Pellets with specific density of approximately 1.1 g·cm−3, radial compressive strength of 3–3.5 MPa, modulus of elasticity of 60–80 MPa and calorific value of 20.3–23.8 MJ·kg−1 were produced in the process. Full article
(This article belongs to the Special Issue Catalysis for Biomass Materials Conversion)
Show Figures

Figure 1

Back to TopTop