Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (233)

Search Parameters:
Keywords = bidirectional feature pyramid networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4707 KiB  
Article
A Real-Time Cell Image Segmentation Method Based on Multi-Scale Feature Fusion
by Xinyuan Zhang, Yang Zhang, Zihan Li, Yujiao Song, Shuhan Chen, Zhe Mao, Zhiyong Liu, Guanglan Liao and Lei Nie
Bioengineering 2025, 12(8), 843; https://doi.org/10.3390/bioengineering12080843 (registering DOI) - 5 Aug 2025
Abstract
Cell confluence and number are critical indicators for assessing cellular growth status, contributing to disease diagnosis and the development of targeted therapies. Accurate and efficient cell segmentation is essential for quantifying these indicators. However, current segmentation methodologies still encounter significant challenges in addressing [...] Read more.
Cell confluence and number are critical indicators for assessing cellular growth status, contributing to disease diagnosis and the development of targeted therapies. Accurate and efficient cell segmentation is essential for quantifying these indicators. However, current segmentation methodologies still encounter significant challenges in addressing multi-scale heterogeneity, poorly delineated boundaries under limited annotation, and the inherent trade-off between computational efficiency and segmentation accuracy. We propose an innovative network architecture. First, a preprocessing pipeline combining contrast-limited adaptive histogram equalization (CLAHE) and Gaussian blur is introduced to balance noise suppression and local contrast enhancement. Second, a bidirectional feature pyramid network (BiFPN) is incorporated, leveraging cross-scale feature calibration to enhance multi-scale cell recognition. Third, adaptive kernel convolution (AKConv) is developed to capture the heterogeneous spatial distribution of glioma stem cells (GSCs) through dynamic kernel deformation, improving boundary segmentation while reducing model complexity. Finally, a probability density-guided non-maximum suppression (Soft-NMS) algorithm is proposed to alleviate cell under-detection. Experimental results demonstrate that the model achieves 95.7% mAP50 (box) and 95% mAP50 (mask) on the GSCs dataset with an inference speed of 38 frames per second. Moreover, it simultaneously supports dual-modality output for cell confluence assessment and precise counting, providing a reliable automated tool for tumor microenvironment research. Full article
Show Figures

Figure 1

34 pages, 4388 KiB  
Article
IRSD-Net: An Adaptive Infrared Ship Detection Network for Small Targets in Complex Maritime Environments
by Yitong Sun and Jie Lian
Remote Sens. 2025, 17(15), 2643; https://doi.org/10.3390/rs17152643 - 30 Jul 2025
Viewed by 340
Abstract
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex [...] Read more.
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex maritime environments presents significant challenges, including low contrast, background clutter, and difficulties in detecting small-scale or distant targets. To address these issues, we propose an Infrared Ship Detection Network (IRSD-Net), a lightweight and efficient detection network built upon the YOLOv11n framework and specially designed for infrared maritime imagery. IRSD-Net incorporates a Hierarchical Multi-Kernel Convolution Network (HMKCNet), which employs parallel multi-kernel convolutions and channel division to enhance multi-scale feature extraction while reducing redundancy and memory usage. To further improve cross-scale fusion, we design the Dynamic Cross-Scale Feature Pyramid Network (DCSFPN), a bidirectional architecture that combines up- and downsampling to integrate low-level detail with high-level semantics. Additionally, we introduce Wise-PIoU, a novel loss function that improves bounding box regression by enforcing geometric alignment and adaptively weighting gradients based on alignment quality. Experimental results demonstrate that IRSD-Net achieves 92.5% mAP50 on the ISDD dataset, outperforming YOLOv6n and YOLOv11n by 3.2% and 1.7%, respectively. With a throughput of 714.3 FPS, IRSD-Net delivers high-accuracy, real-time performance suitable for practical maritime monitoring systems. Full article
Show Figures

Figure 1

19 pages, 2698 KiB  
Article
Orga-Dete: An Improved Lightweight Deep Learning Model for Lung Organoid Detection and Classification
by Xuan Huang, Qin Gao, Hanwen Zhang, Fuhong Min, Dong Li and Gangyin Luo
Appl. Sci. 2025, 15(15), 8377; https://doi.org/10.3390/app15158377 - 28 Jul 2025
Viewed by 239
Abstract
Lung organoids play a crucial role in modeling drug responses in pulmonary diseases. However, their morphological analysis remains hindered by manual detection inefficiencies and the high computational cost of existing algorithms. To overcome these challenges, this study proposes Orga-Dete—a lightweight, high-precision detection model [...] Read more.
Lung organoids play a crucial role in modeling drug responses in pulmonary diseases. However, their morphological analysis remains hindered by manual detection inefficiencies and the high computational cost of existing algorithms. To overcome these challenges, this study proposes Orga-Dete—a lightweight, high-precision detection model based on YOLOv11n—which first employs data augmentation to mitigate the small-scale dataset and class imbalance issues, then optimizes via a triple co-optimization strategy: a bi-directional feature pyramid network for enhanced multi-scale feature fusion, MPCA for stronger micro-organoid feature response, and EMASlideLoss to address class imbalance. Validated on a lung organoid microscopy dataset, Orga-Dete achieves 81.4% mAP@0.5 with only 2.25 M parameters and 6.3 GFLOPs, surpassing the baseline model YOLOv11n by 3.5%. Ablation experiments confirm the synergistic effects of these modules in enhancing morphological feature extraction. With its balance of precision and efficiency, Orga-Dete offers a scalable solution for high-throughput organoid analysis, underscoring its potential for personalized medicine and drug screening. Full article
Show Figures

Figure 1

25 pages, 9119 KiB  
Article
An Improved YOLOv8n-Based Method for Detecting Rice Shelling Rate and Brown Rice Breakage Rate
by Zhaoyun Wu, Yehao Zhang, Zhongwei Zhang, Fasheng Shen, Li Li, Xuewu He, Hongyu Zhong and Yufei Zhou
Agriculture 2025, 15(15), 1595; https://doi.org/10.3390/agriculture15151595 - 24 Jul 2025
Viewed by 268
Abstract
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. [...] Read more.
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. This paper proposes a high-precision, lightweight solution based on an enhanced YOLOv8n with improvements in network architecture, feature fusion, and attention mechanism. The backbone’s C2f module is replaced with C2f-Faster-CGLU, integrating partial convolution (PConv) local convolution and convolutional gated linear unit (CGLU) gating to reduce computational redundancy via sparse interaction and enhance small-target feature extraction. A bidirectional feature pyramid network (BiFPN) weights multiscale feature fusion to improve edge positioning accuracy of dense grains. Attention mechanism for fine-grained classification (AFGC) is embedded to focus on texture and damage details, enhancing adaptability to light fluctuations. The Detect_Rice lightweight head compresses parameters via group normalization and dynamic convolution sharing, optimizing small-target response. The improved model achieved 96.8% precision and 96.2% mAP. Combined with a quantity–mass model, SR/BR detection errors reduced to 1.11% and 1.24%, meeting national standard (GB/T 29898-2013) requirements, providing an effective real-time solution for intelligent hulling sorting. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

26 pages, 15535 KiB  
Article
BCA-MVSNet: Integrating BIFPN and CA for Enhanced Detail Texture in Multi-View Stereo Reconstruction
by Ning Long, Zhengxu Duan, Xiao Hu and Mingju Chen
Electronics 2025, 14(15), 2958; https://doi.org/10.3390/electronics14152958 - 24 Jul 2025
Viewed by 164
Abstract
The 3D point cloud generated by MVSNet has good scene integrity but lacks sensitivity to details, causing holes and non-dense areas in flat and weak-texture regions. To address this problem and enhance the point cloud information of weak-texture areas, the BCA-MVSNet network is [...] Read more.
The 3D point cloud generated by MVSNet has good scene integrity but lacks sensitivity to details, causing holes and non-dense areas in flat and weak-texture regions. To address this problem and enhance the point cloud information of weak-texture areas, the BCA-MVSNet network is proposed in this paper. The network integrates the Bidirectional Feature Pyramid Network (BIFPN) into the feature processing of the MVSNet backbone network to accurately extract the features of weak-texture regions. In the feature map fusion stage, the Coordinate Attention (CA) mechanism is introduced into 3DU-Net to obtain the position information on the channel dimension related to the direction, improve the detail feature extraction, optimize the depth map and improve the depth accuracy. The experimental results show that BCA-MVSNet not only improves the accuracy of detail texture reconstruction, but also effectively controls the computational overhead. In the DTU dataset, the Overall and Comp metrics of BCA-MVSNet are reduced by 10.2% and 2.6%, respectively; in the Tanksand Temples dataset, the Mean metrics of the eight scenarios are improved by 6.51%. Three scenes are shot by binocular camera, and the reconstruction quality is excellent in the weak-texture area by combining the camera parameters and the BCA-MVSNet model. Full article
Show Figures

Figure 1

17 pages, 3708 KiB  
Article
YOLOv8-DBW: An Improved YOLOv8-Based Algorithm for Maize Leaf Diseases and Pests Detection
by Xiang Gan, Shukun Cao, Jin Wang, Yu Wang and Xu Hou
Sensors 2025, 25(15), 4529; https://doi.org/10.3390/s25154529 - 22 Jul 2025
Viewed by 377
Abstract
To solve the challenges of low detection accuracy of maize pests and diseases, complex detection models, and difficulty in deployment on mobile or embedded devices, an improved YOLOv8 algorithm was proposed. Based on the original YOLOv8n, the algorithm replaced the Conv module with [...] Read more.
To solve the challenges of low detection accuracy of maize pests and diseases, complex detection models, and difficulty in deployment on mobile or embedded devices, an improved YOLOv8 algorithm was proposed. Based on the original YOLOv8n, the algorithm replaced the Conv module with the DSConv module in the backbone network, which reduced the backbone network parameters and computational load and improved the detection accuracy at the same time. Additionally, BiFPN was introduced to construct a bidirectional feature pyramid structure, which realized efficient information flow and fusion between different scale features and enhanced the feature fusion ability of the model. At the same time, the Wise-IoU loss function was combined to optimize the training process, which improved the convergence speed and regression accuracy of the loss function. The experimental results showed that the precision, recall, and mAP0.5 of the improved algorithm were improved by 1.4, 1.1, and 1.5%, respectively, compared with YOLOv8n, and the model parameters and computational costs were reduced by 6.6 and 7.3%, respectively. The experimental results demonstrate the effectiveness and superiority of the improved YOLOv8 algorithm, which provides an efficient, accurate, and easy-to-deploy solution for maize leaf pest detection. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

20 pages, 3898 KiB  
Article
Synergistic Multi-Model Approach for GPR Data Interpretation: Forward Modeling and Robust Object Detection
by Hang Zhang, Zhijie Ma, Xinyu Fan and Feifei Hou
Remote Sens. 2025, 17(14), 2521; https://doi.org/10.3390/rs17142521 - 20 Jul 2025
Viewed by 307
Abstract
Ground penetrating radar (GPR) is widely used for subsurface object detection, but manual interpretation of hyperbolic features in B-scan images remains inefficient and error-prone. In addition, traditional forward modeling methods suffer from low computational efficiency and strong dependence on field measurements. To address [...] Read more.
Ground penetrating radar (GPR) is widely used for subsurface object detection, but manual interpretation of hyperbolic features in B-scan images remains inefficient and error-prone. In addition, traditional forward modeling methods suffer from low computational efficiency and strong dependence on field measurements. To address these challenges, we propose an unsupervised data augmentation framework that utilizes CycleGAN-based model to generates diverse synthetic B-scan images by simulating varying geological parameters and scanning configurations. This approach achieves GPR data forward modeling and enhances the scenario coverage of training data. We then apply the EfficientDet architecture, which incorporates a bidirectional feature pyramid network (BiFPN) for multi-scale feature fusion, to enhance the detection capability of hyperbolic signatures in B-scan images under challenging conditions such as partial occlusions and background noise. The proposed method achieves a mean average precision (mAP) of 0.579 on synthetic datasets, outperforming YOLOv3 and RetinaNet by 16.0% and 23.5%, respectively, while maintaining robust multi-object detection in complex field conditions. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

28 pages, 7404 KiB  
Article
SR-YOLO: Spatial-to-Depth Enhanced Multi-Scale Attention Network for Small Target Detection in UAV Aerial Imagery
by Shasha Zhao, He Chen, Di Zhang, Yiyao Tao, Xiangnan Feng and Dengyin Zhang
Remote Sens. 2025, 17(14), 2441; https://doi.org/10.3390/rs17142441 - 14 Jul 2025
Viewed by 379
Abstract
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering [...] Read more.
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering traditional detection algorithms largely ineffective for such imagery. This work proposes a small target detection algorithm, SR-YOLO. It is specifically tailored to address these challenges in UAV-captured aerial images. First, the Space-to-Depth layer and Receptive Field Attention Convolution are combined, and the SR-Conv module is designed to replace the Conv module within the original backbone network. This hybrid module extracts more fine-grained information about small target features by converting image spatial information into depth information and the attention of the network to targets of different scales. Second, a small target detection layer and a bidirectional feature pyramid network mechanism are introduced to enhance the neck network, thereby strengthening the feature extraction and fusion capabilities for small targets. Finally, the model’s detection performance for small targets is improved by utilizing the Normalized Wasserstein Distance loss function to optimize the Complete Intersection over Union loss function. Empirical results demonstrate that the SR-YOLO algorithm significantly enhances the precision of small target detection in UAV aerial images. Ablation experiments and comparative experiments are conducted on the VisDrone2019 and RSOD datasets. Compared to the baseline algorithm YOLOv8s, our SR-YOLO algorithm has improved mAP@0.5 by 6.3% and 3.5% and mAP@0.5:0.95 by 3.8% and 2.3% on the datasets VisDrone2019 and RSOD, respectively. It also achieves superior detection results compared to other mainstream target detection methods. Full article
Show Figures

Figure 1

26 pages, 6233 KiB  
Article
A Method for Recognizing Dead Sea Bass Based on Improved YOLOv8n
by Lizhen Zhang, Chong Xu, Sai Jiang, Mengxiang Zhu and Di Wu
Sensors 2025, 25(14), 4318; https://doi.org/10.3390/s25144318 - 10 Jul 2025
Viewed by 253
Abstract
Deaths occur during the culture of sea bass, and if timely harvesting is not carried out, it will lead to water pollution and the continued spread of sea bass deaths. Therefore, it is necessary to promptly detect dead fish and take countermeasures. Existing [...] Read more.
Deaths occur during the culture of sea bass, and if timely harvesting is not carried out, it will lead to water pollution and the continued spread of sea bass deaths. Therefore, it is necessary to promptly detect dead fish and take countermeasures. Existing object detection algorithms, when applied to the task of detecting dead sea bass, often suffer from excessive model complexity, high computational cost, and reduced accuracy in the presence of occlusion. To overcome these limitations, this study introduces YOLOv8n-Deadfish, a lightweight and high-precision detection model. First, the homemade sea bass death recognition dataset was expanded to enhance the generalization ability of the neural network. Second, the C2f-faster–EMA (efficient multi-scale attention) convolutional module was designed to replace the C2f module in the backbone network of YOLOv8n, reducing redundant calculations and memory access, thereby more effectively extracting spatial features. Then, a weighted bidirectional feature pyramid network (BiFPN) was introduced to achieve a more thorough integration of deep and shallow features. Finally, in order to compensate for the weak generalization and slow convergence of the CIoU loss function in detection tasks, the Inner-CIoU loss function was used to accelerate bounding box regression and further improve the detection performance of the model. The experimental results show that the YOLOv8n-Deadfish model has an accuracy, recall, and mean precision of 90.0%, 90.4%, and 93.6%, respectively, which is an improvement of 2.0, 1.4, and 1.3 percentage points, respectively, over the original base network YOLOv8n. The number of model parameters and GFLOPs were reduced by 23.3% and 18.5%, respectively, and the detection speed was improved from the original 304.5 FPS to 424.6 FPS. This method can provide a technical basis for the identification of dead sea bass in the process of intelligent aquaculture. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

21 pages, 5194 KiB  
Article
LMEC-YOLOv8: An Enhanced Object Detection Algorithm for UAV Imagery
by Xuchuan Tai and Xinjun Zhang
Electronics 2025, 14(13), 2535; https://doi.org/10.3390/electronics14132535 - 23 Jun 2025
Cited by 1 | Viewed by 506
Abstract
Despite the rapid development of UAV (Unmanned Aerial Vehicle) technology, its application for object detection in complex scenarios faces challenges regarding the small target sizes and environmental interference. This paper proposes an improved algorithm, LMEC-YOLOv8, based on YOLOv8n, which aims to enhance the [...] Read more.
Despite the rapid development of UAV (Unmanned Aerial Vehicle) technology, its application for object detection in complex scenarios faces challenges regarding the small target sizes and environmental interference. This paper proposes an improved algorithm, LMEC-YOLOv8, based on YOLOv8n, which aims to enhance the detection accuracy and real-time performance of UAV imagery for small targets. We propose three key enhancements: (1) a lightweight multi-scale module (LMS-PC2F) to replace C2f; (2) a multi-scale attention mechanism (MSCBAM) for optimized feature extraction; and (3) an adaptive pyramid module (ESPPM) and a bidirectional feature network (CBiFPN) to boost fusion capability. Experimental results on the VisDrone2019 dataset demonstrate that LMEC-YOLOv8 achieves a 10.1% improvement in mAP50, a 20% reduction in parameter count, and a frame rate of 42 FPS compared to the baseline YOLOv8n. When compared to other state-of-the-art algorithms, the proposed model achieves an optimal balance between accuracy and speed, validating its robustness and practicality in complex environments. Full article
(This article belongs to the Special Issue Deep Learning for Computer Vision, 2nd Edition)
Show Figures

Figure 1

18 pages, 3936 KiB  
Article
BSE-YOLO: An Enhanced Lightweight Multi-Scale Underwater Object Detection Model
by Yuhang Wang, Hua Ye and Xin Shu
Sensors 2025, 25(13), 3890; https://doi.org/10.3390/s25133890 - 22 Jun 2025
Viewed by 650
Abstract
Underwater images often exhibit characteristics such as low contrast, blurred and small targets, object clustering, and considerable variations in object morphology. Traditional detection methods tend to be susceptible to omission and false positives under these circumstances. Furthermore, owing to the constrained memory and [...] Read more.
Underwater images often exhibit characteristics such as low contrast, blurred and small targets, object clustering, and considerable variations in object morphology. Traditional detection methods tend to be susceptible to omission and false positives under these circumstances. Furthermore, owing to the constrained memory and limited computing power of underwater robots, there is a significant demand for lightweight models in underwater object detection tasks. Therefore, we propose an enhanced lightweight YOLOv10n-based model, BSE-YOLO. Firstly, we replace the original neck with an improved Bidirectional Feature Pyramid Network (Bi-FPN) to reduce parameters. Secondly, we propose a Multi-Scale Attention Synergy Module (MASM) to enhance the model’s perception of difficult features and make it focus on the important regions. Finally, we integrate Efficient Multi-Scale Attention (EMA) into the backbone and neck to improve feature extraction and fusion. The experiment results demonstrate that the proposed BSE-YOLO reaches 83.7% mAP@0.5 on URPC2020 and 83.9% mAP@0.5 on DUO, with the parameters reducing 2.47 M. Compared to the baseline model YOLOv10n, our BSE-YOLO improves mAP@0.5 by 2.2% and 3.0%, respectively, while reducing the number of parameters by approximately 0.2 M. The BSE-YOLO achieves a good balance between accuracy and lightweight, providing an effective solution for underwater object detection. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

25 pages, 9677 KiB  
Article
YOLO-SEA: An Enhanced Detection Framework for Multi-Scale Maritime Targets in Complex Sea States and Adverse Weather
by Hongmei Deng, Shuaiqun Wang, Xinyao Wang, Wen Zheng and Yanli Xu
Entropy 2025, 27(7), 667; https://doi.org/10.3390/e27070667 - 22 Jun 2025
Viewed by 606
Abstract
Maritime object detection is essential for resource monitoring, maritime defense, and public safety, yet detecting diverse targets beyond ships remains challenging. This paper presents YOLO-SEA, an efficient detection framework based on the enhanced YOLOv8 architecture. The model incorporates the SESA (SimAM-Enhanced SENetV2 Attention) [...] Read more.
Maritime object detection is essential for resource monitoring, maritime defense, and public safety, yet detecting diverse targets beyond ships remains challenging. This paper presents YOLO-SEA, an efficient detection framework based on the enhanced YOLOv8 architecture. The model incorporates the SESA (SimAM-Enhanced SENetV2 Attention) module, which integrates the channel-adaptive weight adjustment of SENetV2 with the parameter-free spatial-channel modeling of SimAM to enhance feature representation. An improved BiFPN (Bidirectional Feature Pyramid Network) structure enhances multi-scale fusion, particularly for small object detection. In the post-processing stage, Soft-NMS (Soft Non-Maximum Suppression) replaces traditional NMS to reduce false suppression in dense scenes. YOLO-SEA detects eight maritime object types. Experiments show it achieves a 5.8% improvement in mAP@0.5 and 7.2% improvement in mAP@0.5:0.95 over the baseline, demonstrating enhanced accuracy and robustness in complex marine environments. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

18 pages, 2206 KiB  
Article
A High-Accuracy PCB Defect Detection Algorithm Based on Improved YOLOv12
by Zhi Chen and Bingxiang Liu
Symmetry 2025, 17(7), 978; https://doi.org/10.3390/sym17070978 - 20 Jun 2025
Viewed by 1078
Abstract
To address the common issues of high small object miss rates, frequent false positives, and poor real-time performance in PCB defect detection, this paper proposes a multi-scale fusion algorithm based on the YOLOv12 framework. This algorithm integrates the Global Attention Mechanism (GAM) into [...] Read more.
To address the common issues of high small object miss rates, frequent false positives, and poor real-time performance in PCB defect detection, this paper proposes a multi-scale fusion algorithm based on the YOLOv12 framework. This algorithm integrates the Global Attention Mechanism (GAM) into the redesigned A2C2f module to enhance feature response strength of complex objects in symmetric regions through global context modeling, replacing conventional convolutions with hybrid weighted downsampling (HWD) modules that preserve copper foil textures in PCB images via hierarchical weight allocation. A bidirectional feature pyramid network (BiFPN) is constructed to reduce bounding box regression errors for micro-defects by fusing shallow localization and deep semantic features, employing a parallel perception attention (PPA) detection head combining dense anchor distribution and context-aware mechanisms to accurately identify tiny defects in high-density areas, and optimizing bounding box regression using a normalized Wasserstein distance (NWD) loss function to enhance overall detection accuracy. The experimental results on the public PCB dataset with symmetrically transformed samples demonstrate 85.3% recall rate and 90.4% mAP@50, with AP values for subtle defects like short circuit and spurious copper reaching 96.2% and 90.8%, respectively. Compared to the YOLOv12n, it shows an 8.7% enhancement in recall, a 5.8% increase in mAP@50, and gains of 16.7% and 11.5% in AP for the short circuit and spurious copper categories. Moreover, with an FPS of 72.8, it outperforms YOLOv5s, YOLOv8s, and YOLOv11n by 12.5%, 22.8%, and 5.7%, respectively, in speed. The improved algorithm meets the requirements for high-precision and real-time detection of multi-category PCB defects and provides an efficient solution for automated PCB quality inspection scenarios. Full article
Show Figures

Figure 1

16 pages, 9151 KiB  
Article
Insulator Defect Detection in Complex Environments Based on Improved YOLOv8
by Yuxin Qin, Ying Zeng and Xin Wang
Entropy 2025, 27(6), 633; https://doi.org/10.3390/e27060633 - 13 Jun 2025
Viewed by 523
Abstract
Insulator defect detection is important in ensuring power systems’ safety and stable operation. To solve the problems of its low accuracy, high delay, and large model size in complex environments, following the principle of progressive extraction from high-entropy details to low-entropy semantics, an [...] Read more.
Insulator defect detection is important in ensuring power systems’ safety and stable operation. To solve the problems of its low accuracy, high delay, and large model size in complex environments, following the principle of progressive extraction from high-entropy details to low-entropy semantics, an improved YOLOv8 target detection network for insulator defects based on bidirectional weighted feature fusion was proposed. A C2f_DSC feature extraction module was designed to identify more insulator tube features, an EMA (encoder–modulator–attention) mechanism and a BiFPN (bidirectional weighted feature pyramid network) fusion layer in the backbone network were introduced to extract different features in complex environments, and EIOU (efficient intersection over union) as the model’s loss function was used to accelerate model convergence. The CPLID (China Power Line Insulator Dataset) was tested to verify the effectiveness of the proposed algorithm. The results show its model size is only 6.40 M, and the mean accuracy on the CPLID dataset reaches 98.6%, 0.8% higher than that of the YOLOv8n. Compared with other lightweight models, such as YOLOv8s, YOLOv6, YOLOv5s, and YOLOv3Tiny, not only is the model size reduced, but also the accuracy is effectively improved with the proposed algorithm, demonstrating excellent practicality and feasibility for edge devices. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

27 pages, 20364 KiB  
Article
A Comparative Study of Lesion-Centered and Severity-Based Approaches to Diabetic Retinopathy Classification: Improving Interpretability and Performance
by Gang-Min Park, Ji-Hoon Moon and Ho-Gil Jung
Biomedicines 2025, 13(6), 1446; https://doi.org/10.3390/biomedicines13061446 - 12 Jun 2025
Viewed by 477
Abstract
Background: Despite advances in artificial intelligence (AI) for Diabetic Retinopathy (DR) classification, traditional severity-based approaches often lack interpretability and fail to capture specific lesion-centered characteristics. To address these limitations, we constructed the National Medical Center (NMC) dataset, independently annotated by medical professionals with [...] Read more.
Background: Despite advances in artificial intelligence (AI) for Diabetic Retinopathy (DR) classification, traditional severity-based approaches often lack interpretability and fail to capture specific lesion-centered characteristics. To address these limitations, we constructed the National Medical Center (NMC) dataset, independently annotated by medical professionals with detailed labels of major DR lesions, including retinal hemorrhages, microaneurysms, and exudates. Methods: This study explores four critical research questions. First, we assess the analytical advantages of lesion-centered labeling compared to traditional severity-based labeling. Second, we investigate the potential complementarity between these labeling approaches through integration experiments. Third, we analyze how various model architectures and classification strategies perform under different labeling schemes. Finally, we evaluate decision-making differences between labeling methods using visualization techniques. We benchmarked the lesion-centered NMC dataset against the severity-based public Asia Pacific Tele-Ophthalmology Society (APTOS) dataset, conducting experiments with EfficientNet—a convolutional neural network architecture—and diverse classification strategies. Results: Our results demonstrate that binary classification effectively identifies severe non-proliferative Diabetic Retinopathy (Severe NPDR) exhibiting complex lesion patterns, while relationship-based learning enhances performance for underrepresented classes. Transfer learning from NMC to APTOS notably improved severity classification, achieving performance gains of 15.2% in mild cases and 66.3% in severe cases through feature fusion using Bidirectional Feature Pyramid Network (BiFPN) and Feature Pyramid Network (FPN). Visualization results confirmed that lesion-centered models focus more precisely on pathological features. Conclusions: Our findings highlight the benefits of integrating lesion-centered and severity-based information to enhance both accuracy and interpretability in DR classification. Future research directions include spatial lesion mapping and the development of clinically grounded learning methodologies. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

Back to TopTop