Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (186)

Search Parameters:
Keywords = bicycle networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4949 KiB  
Article
Sustainable Mobility in Barcelona: Trends, Challenges and Policies for Urban Decarbonization
by Carolina Sifuentes-Muñoz, Blanca Arellano and Josep Roca
Sustainability 2025, 17(15), 6964; https://doi.org/10.3390/su17156964 - 31 Jul 2025
Viewed by 192
Abstract
The Barcelona Metropolitan Area (AMB) has implemented various policies to reduce car use and promote more sustainable mobility. Initiatives such as superblocks, Low Emission Zones (LEZs), and the Bicivia network aim to transform the urban model in response to environmental and congestion challenges. [...] Read more.
The Barcelona Metropolitan Area (AMB) has implemented various policies to reduce car use and promote more sustainable mobility. Initiatives such as superblocks, Low Emission Zones (LEZs), and the Bicivia network aim to transform the urban model in response to environmental and congestion challenges. However, the high reliance on private vehicles for intermunicipal travel, uneven infrastructure, and social resistance to certain changes remain significant issues. This study examines the evolution of mobility patterns and assesses the effectiveness of the above policies in fostering real and sustainable change. A mixed-methods approach was adopted, which combined an exploratory factor analysis (EFA) of 2011–2024 data, trend linear regression, and a comparative international analysis. The EFA identified four key structural dimensions: traditional transport infrastructure, active mobility and bus lines, public bicycles and mixed use, and transport efficiency and punctuality. The findings reveal a clear reduction in private car use and an increase in sustainable modes of transport. This indicates that there are prospects for future transformation. Nonetheless, challenges persist in intermunicipal mobility and the public acceptance of the measures. This study provides empirical and comparative evidence and emphasizes the need for integrated metropolitan governance to achieve a resilient and sustainable urban model. Full article
Show Figures

Figure 1

37 pages, 55522 KiB  
Article
EPCNet: Implementing an ‘Artificial Fovea’ for More Efficient Monitoring Using the Sensor Fusion of an Event-Based and a Frame-Based Camera
by Orla Sealy Phelan, Dara Molloy, Roshan George, Edward Jones, Martin Glavin and Brian Deegan
Sensors 2025, 25(15), 4540; https://doi.org/10.3390/s25154540 - 22 Jul 2025
Viewed by 236
Abstract
Efficient object detection is crucial to real-time monitoring applications such as autonomous driving or security systems. Modern RGB cameras can produce high-resolution images for accurate object detection. However, increased resolution results in increased network latency and power consumption. To minimise this latency, Convolutional [...] Read more.
Efficient object detection is crucial to real-time monitoring applications such as autonomous driving or security systems. Modern RGB cameras can produce high-resolution images for accurate object detection. However, increased resolution results in increased network latency and power consumption. To minimise this latency, Convolutional Neural Networks (CNNs) often have a resolution limitation, requiring images to be down-sampled before inference, causing significant information loss. Event-based cameras are neuromorphic vision sensors with high temporal resolution, low power consumption, and high dynamic range, making them preferable to regular RGB cameras in many situations. This project proposes the fusion of an event-based camera with an RGB camera to mitigate the trade-off between temporal resolution and accuracy, while minimising power consumption. The cameras are calibrated to create a multi-modal stereo vision system where pixel coordinates can be projected between the event and RGB camera image planes. This calibration is used to project bounding boxes detected by clustering of events into the RGB image plane, thereby cropping each RGB frame instead of down-sampling to meet the requirements of the CNN. Using the Common Objects in Context (COCO) dataset evaluator, the average precision (AP) for the bicycle class in RGB scenes improved from 21.08 to 57.38. Additionally, AP increased across all classes from 37.93 to 46.89. To reduce system latency, a novel object detection approach is proposed where the event camera acts as a region proposal network, and a classification algorithm is run on the proposed regions. This achieved a 78% improvement over baseline. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

6 pages, 326 KiB  
Proceeding Paper
Traffic Flow Model for Coordinated Traffic Light Systems
by Iliyan Andreev, Durhan Saliev and Iliyan Damyanov
Eng. Proc. 2025, 100(1), 45; https://doi.org/10.3390/engproc2025100045 - 17 Jul 2025
Viewed by 90
Abstract
Traffic in large cities is increasing due to continuous urbanization, the construction of new housing complexes and the accompanying new street network. The growth of cities creates prerequisites for increasing the intensity of transport, pedestrian, and bicycle flows, especially during peak periods. To [...] Read more.
Traffic in large cities is increasing due to continuous urbanization, the construction of new housing complexes and the accompanying new street network. The growth of cities creates prerequisites for increasing the intensity of transport, pedestrian, and bicycle flows, especially during peak periods. To improve the conditions in which traffic flows, it is necessary to introduce an effective method for reducing delays that arise at intersections, especially those regulated by traffic light systems. One of the possible approaches to this is to coordinate the operation of traffic light systems. The main thing in this is to determine relatively accurate times for the movement of individual flows, for which adequate traffic models are needed. This article presents a model of the movement of transport flows when starting from the first intersection in a coordinated mode of operation of traffic light systems. This is of particular importance when determining the times of individual signals and, above all, has an impact on the moment for switching on the permitting signal at the next intersection. The presented model aims to provide an opportunity to determine accurate times of passage of vehicles through consecutive intersections that operate in a coordinated mode of traffic light systems. Full article
Show Figures

Figure 1

23 pages, 3970 KiB  
Article
Application of Neural Networks to Analyse the Spatial Distribution of Bicycle Traffic Before, During and After the Closure of the Mill Road Bridge in Cambridgeshire, United Kingdom
by Shohel Amin
Sensors 2025, 25(10), 3225; https://doi.org/10.3390/s25103225 - 20 May 2025
Viewed by 2711
Abstract
Traffic congestions due to construction and maintenance works of road infrastructure cause travel delays, unpredictability and less tolerant road users. Bicyclists are more flexible with road closures, shifting to alternative routes, public transport and other active transport depending on the infrastructure, quality and [...] Read more.
Traffic congestions due to construction and maintenance works of road infrastructure cause travel delays, unpredictability and less tolerant road users. Bicyclists are more flexible with road closures, shifting to alternative routes, public transport and other active transport depending on the infrastructure, quality and transport services. However, the mixed traffic environment near road closures increases the safety risks for bicyclists. Traditional traffic monitoring systems rely on costly and demanding intrusive sensors. The application of wireless sensors and machine learning algorithms can enhance the analysis and prediction ability of traffic distribution and characteristics in the proximity of road closures. This paper applies artificial neural networks (ANNs) coupled with a Generalised Delta Rule (GDR) algorithm to analyse the sensor traffic data before, during and after the closure of the Mill Road Bridge in Cambridge City in the United Kingdom. The ANN models show that the traffic volume of motorbikes (44%) and buses (34%) and the proximity of Mill Road Bridge (39%) are significant factors affecting bicycle traffic before the closure. During the bridge closure, the proximity of the bridge (99%) and traffic volume of large rigid vehicles (51%) are the most important factors of bicycle distribution in nearby streets leading cyclists to unsafe detours. After the reopening of the Mill Road Bridge, unclear signage caused continued traffic impact, with motorbikes (17%) and large vehicles (24%) playing the most significant role in the spatial distribution of bicycle traffic. This paper emphasises safety concerns from mixed traffic and highlights the importance of cost-effective sensor-based traffic monitoring and analysis of the sensor data using neural networks. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 5080 KiB  
Article
Sustainable Dynamic Scheduling Optimization of Shared Batteries in Urban Electric Bicycles: An Integer Programming Approach
by Zongfeng Zou, Xin Yan, Pupu Liu, Weihao Yang and Chao Zhang
Sustainability 2025, 17(10), 4379; https://doi.org/10.3390/su17104379 - 12 May 2025
Viewed by 482
Abstract
With the proliferation of electric bicycle battery swapping models, spatial supply demand imbalances of battery resources across swapping stations have become increasingly prominent. Existing studies predominantly focus on location optimization but struggle to address dynamic operational challenges in battery allocation efficiency. This paper [...] Read more.
With the proliferation of electric bicycle battery swapping models, spatial supply demand imbalances of battery resources across swapping stations have become increasingly prominent. Existing studies predominantly focus on location optimization but struggle to address dynamic operational challenges in battery allocation efficiency. This paper proposes an integer programming (IP)-based dynamic scheduling optimization method for shared batteries, aiming to minimize transportation costs and balance battery distribution under multi-constraint conditions. A resource allocation model is constructed and solved via an interior-point method (IPM) combined with a branch-and-bound (B&B) strategy, optimizing the dispatch paths and quantities of fully charged batteries among stations. This study contributes to urban sustainability by enhancing resource utilization efficiency, reducing redundant production, and supporting low-carbon mobility infrastructure. Using the operational data from 729 battery swapping stations in Shanghai, the spatiotemporal heterogeneity of rider demand is analyzed to validate the model’s effectiveness. Results reveal that daily swapping demand in core commercial areas is 3–10 times higher than in peripheral regions. The optimal scheduling network exhibits a ‘centralized radial’ structure, with nearly 50% of batteries dispatched from low-demand peripheral stations to high-demand central zones, significantly reducing transportation costs and resource redundancy. This study shows that the proposed model effectively mitigates battery supply demand mismatches and enhances scheduling efficiency. Future research may incorporate real-time traffic data to refine cost functions and introduce temporal factors to improve model adaptability. Full article
Show Figures

Figure 1

33 pages, 7292 KiB  
Article
Intelligent Optimization of Bike-Sharing Systems: Predictive Models and Algorithms for Equitable Bicycle Distribution in Barcelona
by Gerard Giner Fabregat, Pau Fonseca i Casas and Antonio Rivero Martínez
Sustainability 2025, 17(10), 4316; https://doi.org/10.3390/su17104316 - 9 May 2025
Viewed by 984
Abstract
This paper aims to propose innovative solutions to improve the management of Barcelona’s bike-sharing system, known as Bicing. This study addresses one of the system’s main challenges: the unequal distribution of bicycles across the city and at different times of the day, which [...] Read more.
This paper aims to propose innovative solutions to improve the management of Barcelona’s bike-sharing system, known as Bicing. This study addresses one of the system’s main challenges: the unequal distribution of bicycles across the city and at different times of the day, which affects the users. The analysis combines advanced statistical techniques, predictive models and optimization algorithms to identify vulnerable areas in terms of accessibility and design strategies to balance bicycle distribution. Using methods such as clustering and predictive models based on machine learning, the system’s usage patterns are anticipated. These predictions feed optimization algorithms that enable the planning of more efficient routes for bicycle repositioning, reducing unnecessary vehicle movement and supporting a more environmentally friendly mobility network. The results highlight the importance of proactive system management, improving both user satisfaction and operational efficiency while fostering a more sustainable urban transport ecosystem. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

23 pages, 59897 KiB  
Article
Method to Use Transport Microsimulation Models to Create Synthetic Distributed Acoustic Sensing Datasets
by Ignacio Robles-Urquijo, Juan Benavente, Javier Blanco García, Pelayo Diego Gonzalez, Alayn Loayssa, Mikel Sagues, Luis Rodriguez-Cobo and Adolfo Cobo
Appl. Sci. 2025, 15(9), 5203; https://doi.org/10.3390/app15095203 - 7 May 2025
Viewed by 601
Abstract
This research introduces a new method for creating synthetic Distributed Acoustic Sensing (DAS) datasets from transport microsimulation models. The process involves modeling detailed vehicle interactions, trajectories, and characteristics from the PTV VISSIM transport microsimulation tool. It then applies the Flamant–Boussinesq approximation to simulate [...] Read more.
This research introduces a new method for creating synthetic Distributed Acoustic Sensing (DAS) datasets from transport microsimulation models. The process involves modeling detailed vehicle interactions, trajectories, and characteristics from the PTV VISSIM transport microsimulation tool. It then applies the Flamant–Boussinesq approximation to simulate the resulting ground deformation detected by virtual fiber-optic cables. These synthetic DAS signals serve as large-scale, scenario-controlled, labeled datasets on training machine learning models for various transport applications. We demonstrate this by training several U-Net convolutional neural networks to enhance spatial resolution (reducing it to half the original gauge length), filtering traffic signals by vehicle direction, and simulating the effects of alternative cable layouts. The methodology is tested using simulations of real road scenarios, featuring a fiber-optic cable buried along the westbound shoulder with sections deviating from the roadside. The U-Net models, trained solely on synthetic data, showed promising performance (e.g., validation MSE down to 0.0015 for directional filtering) and improved the detectability of faint signals, like bicycles among heavy vehicles, when applied to real DAS measurements from the test site. This framework uniquely integrates detailed traffic modeling with DAS physics, providing a novel tool to develop and evaluate DAS signal processing techniques, optimize cable layout deployments, and advance DAS applications in complex transportation monitoring scenarios. Creating such a procedure offers significant potential for advancing the application of DAS in transportation monitoring and smart city initiatives. Full article
(This article belongs to the Special Issue Recent Research on Intelligent Sensors)
Show Figures

Figure 1

22 pages, 8010 KiB  
Article
A Fuzzy Logic-Based Automatic Gear-Shifting System for Electric Bicycles in Urban Mobility Solutions for Smart Cities
by Jin-Shyan Lee and Ruo You
Systems 2025, 13(4), 228; https://doi.org/10.3390/systems13040228 - 26 Mar 2025
Viewed by 914
Abstract
In smart cities, bicycle-sharing systems have become essential as last-mile transportation solutions, seamlessly integrating into urban mobility networks worldwide. To improve riding efficiency, the development of automatic gear-shifting systems for electric bicycles has gained significant attention. This study presents a novel fuzzy logic [...] Read more.
In smart cities, bicycle-sharing systems have become essential as last-mile transportation solutions, seamlessly integrating into urban mobility networks worldwide. To improve riding efficiency, the development of automatic gear-shifting systems for electric bicycles has gained significant attention. This study presents a novel fuzzy logic controller (FLC) designed to address the challenges of frequent and unstable gear shifts in automatic bicycle transmissions. Unlike traditional systems that rely solely on velocity or cadence as inputs, the proposed FLC incorporates both acceleration and slope data to enhance shifting stability and cadence regulation. By replacing velocity with acceleration and integrating slope information, the system minimizes frequent shifting and improves overall performance. Experimental and simulation results demonstrate that the proposed approach reduces acceleration ripple, stabilizes gear-shifting, and maintains cadence within the desired range, ensuring a smoother and more comfortable riding experience. The proposed approach significantly reduces acceleration ripple by 1 m/s2, maintains target cadence, and aligns gear shifts with design intent, yielding a substantial 20% safety improvement. These advancements offer particular promise for public bicycle-sharing systems, providing a robust and adaptable solution suited to diverse cycling conditions and rider profiles. Full article
Show Figures

Figure 1

30 pages, 16455 KiB  
Article
Automated Detection of Pedestrian and Bicycle Lanes from High-Resolution Aerial Images by Integrating Image Processing and Artificial Intelligence (AI) Techniques
by Richard Boadu Antwi, Prince Lartey Lawson, Michael Kimollo, Eren Erman Ozguven, Ren Moses, Maxim A. Dulebenets and Thobias Sando
ISPRS Int. J. Geo-Inf. 2025, 14(4), 135; https://doi.org/10.3390/ijgi14040135 - 23 Mar 2025
Viewed by 1056
Abstract
The rapid advancement of computer vision technology is transforming how transportation agencies collect roadway characteristics inventory (RCI) data, yielding substantial savings in resources and time. Traditionally, capturing roadway data through image processing was seen as both difficult and error-prone. However, considering the recent [...] Read more.
The rapid advancement of computer vision technology is transforming how transportation agencies collect roadway characteristics inventory (RCI) data, yielding substantial savings in resources and time. Traditionally, capturing roadway data through image processing was seen as both difficult and error-prone. However, considering the recent improvements in computational power and image recognition techniques, there are now reliable methods to identify and map various roadway elements from multiple imagery sources. Notably, comprehensive geospatial data for pedestrian and bicycle lanes are still lacking across many state and local roadways, including those in the State of Florida, despite the essential role this information plays in optimizing traffic efficiency and reducing crashes. Developing fast, efficient methods to gather this data are essential for transportation agencies as they also support objectives like identifying outdated or obscured markings, analyzing pedestrian and bicycle lane placements relative to crosswalks, turning lanes, and school zones, and assessing crash patterns in the associated areas. This study introduces an innovative approach using deep neural network models in image processing and computer vision to detect and extract pedestrian and bicycle lane features from very high-resolution aerial imagery, with a focus on public roadways in Florida. Using YOLOv5 and MTRE-based deep learning models, this study extracts and segments bicycle and pedestrian features from high-resolution aerial images, creating a geospatial inventory of these roadway features. Detected features were post-processed and compared with ground truth data to evaluate performance. When tested against ground truth data from Leon County, Florida, the models demonstrated accuracy rates of 73% for pedestrian lanes and 89% for bicycle lanes. This initiative is vital for transportation agencies, enhancing infrastructure management by enabling timely identification of aging or obscured lane markings, which are crucial for maintaining safe transportation networks. Full article
(This article belongs to the Special Issue Spatial Information for Improved Living Spaces)
Show Figures

Figure 1

16 pages, 8851 KiB  
Article
MDDFA-Net: Multi-Scale Dynamic Feature Extraction from Drone-Acquired Thermal Infrared Imagery
by Zaixing Wang, Chao Dang, Rui Zhang, Linchang Wang, Yonghuan He and Rong Wu
Drones 2025, 9(3), 224; https://doi.org/10.3390/drones9030224 - 20 Mar 2025
Cited by 1 | Viewed by 786
Abstract
UAV infrared sensor technology plays an irreplaceable role in various fields. High-altitude infrared images present significant challenges for feature extraction due to their uniform texture and color, fragile and variable edge information, numerous background interference factors, and low pixel occupancy of small targets [...] Read more.
UAV infrared sensor technology plays an irreplaceable role in various fields. High-altitude infrared images present significant challenges for feature extraction due to their uniform texture and color, fragile and variable edge information, numerous background interference factors, and low pixel occupancy of small targets such as humans, bicycles, and diverse vehicles. In this paper, we propose a Multi-scale Dual-Branch Dynamic Feature Aggregation Network (MDDFA-Net) specifically designed to address these challenges in UAV infrared image processing. Firstly, a multi-scale dual-branch structure is employed to extract multi-level and edge feature information, which is crucial for detecting small targets in complex backgrounds. Subsequently, features at three different scales are fed into an Adaptive Feature Fusion Module for feature attention-weighted fusion, effectively filtering out background interference. Finally, the Multi-Scale Feature Enhancement and Fusion Module integrates high-level and low-level features across three scales to eliminate redundant information and enhance target detection accuracy. We conducted comprehensive experiments using the HIT-UAV dataset, which is characterized by its diversity and complexity, particularly in capturing small targets in high-altitude infrared images. Our method outperforms various state-of-the-art (SOTA) models across multiple evaluation metrics and also demonstrates strong inference speed capabilities across different devices, thereby proving the advantages of this approach in UAV infrared sensor image processing, especially for multi-scale small target detection. Full article
Show Figures

Figure 1

18 pages, 7753 KiB  
Article
SAM-Enhanced Cross-Domain Framework for Semantic Segmentation: Addressing Edge Detection and Minor Class Recognition
by Qian Wan, Hongbo Su, Xiyu Liu, Yu Yu and Zhongzhen Lin
Processes 2025, 13(3), 736; https://doi.org/10.3390/pr13030736 - 3 Mar 2025
Viewed by 1198
Abstract
Unsupervised domain adaptation (UDA) enables training a model on labeled source data to perform well in a target domain without supervision, which is especially valuable in vision-based semantic segmentation. However, existing UDA methods often struggle with accurate semantic labeling at object boundaries and [...] Read more.
Unsupervised domain adaptation (UDA) enables training a model on labeled source data to perform well in a target domain without supervision, which is especially valuable in vision-based semantic segmentation. However, existing UDA methods often struggle with accurate semantic labeling at object boundaries and recognizing minor categories in the target domain. This paper introduces a novel UDA framework—SamDA—that incorporates the Segment Anything Model (SAM), a large-scale foundational vision model, as the mask generator to enhance edge segmentation performance. The framework comprises three core modules: a cross-domain image mixing module, a self-training module with a teacher–student network, and exponential moving average (EMA). It also includes a finetuning module that leverages SAM-generated masks for pseudo-label matching. Evaluations on the GTA5 and Cityscapes datasets demonstrate that SamDA achieves a mean IoU (mIoU) of 75.2, surpassing state-of-the-art methods such as MIC-DAFormer by 1.0 mIoU and outperforming all ResNet-based approaches by at least 15 mIoU. Moreover, SamDA significantly enhances the segmentation of small objects like bicycles, riders, and fences, with, respective, IoU improvements of 4.5, 5.2, and 3.8 compared to baseline models. Full article
Show Figures

Figure 1

20 pages, 6141 KiB  
Article
Development of Low-Cost Monitoring and Assessment System for Cycle Paths Based on Raspberry Pi Technology
by Salvatore Bruno, Ionut Daniel Trifan, Lorenzo Vita and Giuseppe Loprencipe
Infrastructures 2025, 10(3), 50; https://doi.org/10.3390/infrastructures10030050 - 2 Mar 2025
Cited by 2 | Viewed by 1097
Abstract
Promoting alternative modes of transportation such as cycling represents a valuable strategy to minimize environmental impacts, as confirmed in the main targets set out by the European Commission. In this regard, in cities throughout the world, there has been a significant increase in [...] Read more.
Promoting alternative modes of transportation such as cycling represents a valuable strategy to minimize environmental impacts, as confirmed in the main targets set out by the European Commission. In this regard, in cities throughout the world, there has been a significant increase in the construction of bicycle paths in recent years, requiring effective maintenance strategies to preserve their service levels. The continuous monitoring of road networks is required to ensure the timely scheduling of optimal maintenance activities. This involves regular inspections of the road surface, but there are currently no automated systems for monitoring cycle paths. In this study, an integrated monitoring and assessment system for cycle paths was developed exploiting Raspberry Pi technologies. In more detail, a low-cost Inertial Measurement Unit (IMU), a Global Positioning System (GPS) module, a magnetic Hall Effect sensor, a camera module, and an ultrasonic distance sensor were connected to a Raspberry Pi 4 Model B. The novel system was mounted on a e-bike as a test vehicle to monitor the road conditions of various sections of cycle paths in Rome, characterized by different pavement types and decay levels as detected using the whole-body vibration awz index (ISO 2631 standard). Repeated testing confirmed the system’s reliability by assigning the same vibration comfort class in 74% of the cases and an adjacent one in 26%, with an average difference of 0.25 m/s2, underscoring its stability and reproducibility. Data post-processing was also focused on integrating user comfort perception with image data, and it revealed anomaly detections represented by numerical acceleration spikes. Additionally, data positioning was successfully implemented. Finally, awz measurements with GPS coordinates and images were incorporated into a Geographic Information System (GIS) to develop a database that supports the efficient and comprehensive management of surface conditions. The proposed system can be considered as a valuable tool to assess the pavement conditions of cycle paths in order to implement preventive maintenance strategies within budget constraints. Full article
Show Figures

Figure 1

25 pages, 11329 KiB  
Article
Predictive Modeling of Electric Bicycle Battery Performance: Integrating Real-Time Sensor Data and Machine Learning Techniques
by Catherine Rincón-Maya, Daniel Acosta-González, Fernando Guevara-Carazas, Freddy Hernández-Barajas, Carmen Patino-Rodríguez and Olga Usuga-Manco
Sensors 2025, 25(5), 1392; https://doi.org/10.3390/s25051392 - 25 Feb 2025
Viewed by 1110
Abstract
In the field of sustainable mobility, this study highlights the importance of using machine learning for predictive modeling based on real traffic data collected from instrumented bicycles. The advent of advanced technologies like sustainable mobility apps, sensors, and advanced data analysis methods led [...] Read more.
In the field of sustainable mobility, this study highlights the importance of using machine learning for predictive modeling based on real traffic data collected from instrumented bicycles. The advent of advanced technologies like sustainable mobility apps, sensors, and advanced data analysis methods led to the ability to collect data from various sources, which enabled researchers to estimate battery state of charge (SOC) accurately. Most current research uses them in the lab experiments for data collection. In this work, we use real-time sensors data to construct data-driven models for lithium-ion battery SOC estimation. This research integrates both electric bicycle battery, environmental and route variables to achieve the following goals: (1) Collect a multimodal data set including operational, topography, vehicle, and external variables, (2) Preprocess data obtained from sensors installed on the electric bicycle battery, (3) Create models of lithium-ion battery SOC based on electric bicycle battery and environmental variables, and (4) Assess data-driven models and compare their performance for lithium-ion battery SOC with high accuracy. To achieve that, we conducted a real study to predict the Remaining Useful Life (RUL), as a measure of state of charge, of electric bicycle battery. The study was carried out on a 15 km cycle route in Medellín, Colombia, for 28 days. To estimate the RUL, we used four different machine learning algorithms: Long Short-Term Memory (LSTM), Support Vector Regression (SVR), AdaBoost, and Gradient Boost. Notably, data preprocessing techniques played a pivotal role, with a particular focus on smoothing sensor data using Convolutional Neural Networks (CNN). The results showed a significant improvement in prediction accuracy when using data preprocessing, confirming its importance in improving model performance. Furthermore, the comparison of network performance facilitated the selection of the most effective model for the test data. This study underscores the value of using real-world data to develop and validate predictive models in the pursuit of sustainable mobility solutions, and highlights the critical role of data-driven methodologies in addressing today’s urban transportation challenges. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

19 pages, 3256 KiB  
Article
Predictive Machine Learning Approaches for Supply and Manufacturing Processes Planning in Mass-Customization Products
by Shereen Alfayoumi, Amal Elgammal and Neamat El-Tazi
Informatics 2025, 12(1), 22; https://doi.org/10.3390/informatics12010022 - 19 Feb 2025
Viewed by 1256
Abstract
Planning in mass-customization supply and manufacturing processes is a complex process that requires continuous planning and optimization to minimize time and cost across a wide variety of choices in large production volumes. While soft computing techniques are widely used for optimizing mass-customization products, [...] Read more.
Planning in mass-customization supply and manufacturing processes is a complex process that requires continuous planning and optimization to minimize time and cost across a wide variety of choices in large production volumes. While soft computing techniques are widely used for optimizing mass-customization products, they face scalability issues when handling large datasets and rely heavily on manually defined rules, which are prone to errors. In contrast, machine learning techniques offer an opportunity to overcome these challenges by automating rule generation and improving scalability. However, their full potential has yet to be explored. This article proposes a machine learning-based approach to address this challenge, aiming to optimize both the supply and manufacturing planning phases as a practical solution for industry planning or optimization problems. The proposed approach examines supervised machine learning and deep learning techniques for manufacturing time and cost planning in various scenarios of a large-scale real-life pilot study in the bicycle manufacturing domain. This experimentation included K-Nearest Neighbors with regression and Random Forest from the machine learning family, as well as Neural Networks and Ensembles as deep learning approaches. Additionally, Reinforcement Learning was used in scenarios where real-world data or historical experiences were unavailable. The training performance of the pilot study was evaluated using cross-validation along with two statistical analysis methods: the t-test and the Wilcoxon test. These performance evaluation efforts revealed that machine learning techniques outperform deep learning methods and the reinforcement learning approach, with K-NN combined with regression yielding the best results. The proposed approach was validated by industry experts in bicycle manufacturing. It demonstrated up to a 37% reduction in both time and cost for orders compared to traditional expert estimates. Full article
(This article belongs to the Section Industry 4.0)
Show Figures

Figure 1

27 pages, 23808 KiB  
Article
Impact of Shared Bicycle Spatial Patterns During Public Health Emergencies: A Case Study in the Core Area of Beijing
by Zheng Wen, Lujin Hu and Jing Hu
ISPRS Int. J. Geo-Inf. 2025, 14(2), 92; https://doi.org/10.3390/ijgi14020092 - 19 Feb 2025
Viewed by 847
Abstract
During public health emergencies, studying the travel characteristics and influencing factors of shared bicycles during different time periods on weekdays can provide valuable insights for urban transportation planning and offer recommendations for bike-sharing systems (BSS) affected by such events. Utilizing bike-sharing data, this [...] Read more.
During public health emergencies, studying the travel characteristics and influencing factors of shared bicycles during different time periods on weekdays can provide valuable insights for urban transportation planning and offer recommendations for bike-sharing systems (BSS) affected by such events. Utilizing bike-sharing data, this study initiated the analysis by scrutinizing the spatial flow patterns in the core area of Beijing, employing network indicators within the framework of complex network theory. Subsequently, influencing factors associated with bike-sharing trips were pinpointed using the exponential random graph model (ERGM). Using COVID-19 as an example, it examines the impact of public health emergencies on bike-sharing during multiple time periods. Supported by the network analysis method, our findings revealed that the majority of travel activities occurred between adjacent areas. Throughout weekdays, a consistent level of travel activity was observed, exhibiting distinct patterns during daytime and nighttime. The period from 4:00 to 8:00 emerged as the peak time, characterized by heightened traffic and temperature changes. Morning commuting extended until 8:00–12:00, followed by a transition period from 12:00–16:00. The most active travel time, encompassing various purposes, was identified as 16:00–20:00. Additionally, the presence of hospitals and train stations amplified travel within the pandemic-affected area. Finally, variants of ERGMs were employed to assess the influence of finance, shopping, dining, education, transportation, roads, and COVID-19 on bike-sharing activities. The road network emerged as the most critical factor, exhibiting a significant negative impact. Conversely, COVID-19 had the most pronounced positive influence, with transportation stops and educational institutions also contributing significantly in a positive manner. This research provides valuable transportation planning insights for addressing public health emergencies and promotes the effective utilization of bike-sharing systems. Full article
Show Figures

Figure 1

Back to TopTop